

BUBBLE CUP 2011

Student programming contest

Microsoft Development Center Serbia

Problem set & Analysis
from Finals and Qualifications

Belgrade, 2011

Bubble Cup Finals 2011

Scientific committee:

 Andreja Iliŏ

!ƴŘǊƛƧŀ WƻǾŀƴƻǾƛŏ

Milan Vugdelija

Milan Novakoviŏ

{ǘŜǾŀƴ Wƻƴőƛŏ

 5ƛƳƛǘǊƛƧŜ CƛƭƛǇƻǾƛŏ

 DraȌŜƴ ¿ŀǊƛŏ

 aƛƭƻǑ [ŀȊŀǊŜǾƛŏ

 aƛƭƻǑ aƛƭƻǾŀƴƻǾƛŏ

Qualification analyses:

Alexander Georgiev

bƛƪƻƭŀ aƛƭƻǎŀǾƭƧŜǾƛŏ

!ƭŜƪǎŀƴŘŀǊ Lƭƛŏ

Gustav Matula

.ƻǊƛǎ DǊǳōƛŏ

±ŀƴƧŀ tŜǘǊƻǾƛŏ ¢ŀƴƪƻǾƛŏ

5ǳǑŀƴ ½ŘǊŀǾƪƻǾƛŏ

5ƛƳƛǘǊƛƧŜ 5ƛƳƛŏ

Stefan Stojanoviŏ

Yordan Chaparov

Rajko Nenadov

5ŜƳƧŀƴ DǊǳōƛŏ

aƭŀŘŜƴ wŀŘƻƧŜǾƛŏ

Slobodan aƛǘǊƻǾƛŏ

!ƴŘǊƛƧŀ WƻǾŀƴƻǾƛŏ

Andreja Iliŏ

Cover:

 Sava 2ŀƧŜǘƛƴŀŎ

Typesetting:

 Andreja Iliŏ

Proofreader:

 Andrija WƻǾŀƴƻǾƛŏ

Volume editor:

 5ǊŀƎŀƴ ¢ƻƳƛŏ

Bubble Cup Finals 2011

Contents

Preface ... 5

About Bubble Cup and MDCS .. 6

Bubble Cup Finals 2011 ... 7

The final scoreboard ... 8

Statistics from finals .. 9

Problem A: Card .. 11

Problem B: Rook ... 13

Problem C: Tree game ... 15

Problem D: Transformations ... 17

Problem E & I: LIS .. 20

Problem F: Padlock ... 25

Problem G: LR primes .. 27

Problem H: Hashed strings .. 30

Qualifications ..33

Problem R1 01: Triathlon (ID: 1062) .. 35

Problem R1 02: Archer's Travel (ID: 1459) ... 37

Problem R1 03: Caves and Tunnels (ID: 1553) .. 40

Problem R1 04: Cactuses (ID: 1610) ... 44

Problem R1 05: Salary for Robots (ID: 1696) .. 48

Problem R1 06: Visits (ID: 1726) .. 51

Problem R1 07: Ministry of Truth (ID: 1732) .. 54

Problem R1 08: Old Ural Legend (ID: 1769) .. 56

Problem R1 09: Barber of the Army of Mages (ID: 1774) .. 58

Problem R1 10: Space Bowling (ID: 1775) .. 60

Problem R2 01: Funny Card Game (ID: 1166) ... 63

Problem R2 02: Shots at Walls (ID: 1390) ... 66

Problem R2 03: Wires (ID: 1460) .. 69

Problem R2 04: Spy Satellites (ID: 1478) .. 72

Problem R2 05: Square Country 3 (ID: 1667) .. 75

Problem R2 06: Monkey at the Keyboard (ID: 1677) .. 78

Problem R2 07: Mnemonics and Palindromes 2 (ID: 1714) ... 81

Problem R2 08: Expert Flea (ID: 1763) ... 83

Problem R2 09: Fair Fishermen (ID: 1818) .. 87

Problem R2 10: Professional Approach (ID: 1819) .. 89

Bubble Cup Finals 2011

MDCS ς Bubble Cup 2011

5

Preface

Dear Participant,

Thank you for participating in the fourth edition of the Bubble Cup. On behalf of Microsoft Development

Center Serbia (MDCS), I wish you a warm welcome to Belgrade and I hope that you will enjoy yourself.

MDCS has a keen interest in putting together a world class event. Most of our team members participated

in similar competitions in the past and have passion for solving difficult technical problems.

This edition of the Bubble Cup is special. It is the most international event that we had so far. This year,

teams from Serbia, Bosnia, Croatia and Bulgaria are competing in the finals. In our evaluation of

participants, we observed that at least a dozen IOI Olympians from the region will participate in the Bubble

Cup finals this year. You folks are the best that this region can offer!

Given that we live in a world where technological innovation will shape the future, your potential future

impact on humankind will be great. Take this opportunity to advance your technical knowledge and to build

relationships that could last you a lifetime.

Thanks,

Dragan Tomiŏ

MDCS Group Manager/Director

Bubble Cup Finals 2011

 MDCS ς Bubble Cup 2011

6

About Bubble Cup and MDCS

BubbleCup is a coding contest started by Microsoft Development Center Serbia in 2008 with a purpose of

creating a local competition similar to the ACM Collegiate Contest, but soon that idea was outgrown and

the vision was expanded to attracting talented programmers from the entire region and promoting the

values of communication, companionship and teamwork.

The contest has been growing in popularity with each new iteration. In its first year close to 100

participants took part and this year, 2011, it attracted more than 500 participants from 8 different

countries.

This year the emphasis was on keeping intact all of the things that made BubbleCup work in previous years

but taking every opportunity to tweak and subtly improve the format of the contest. Among others, the

novelties include complex, serious qualification problems that are chosen to take advantage of the long

period of time given to the contestants, as well as problems in the final which make teams think about

some constraints that are rarely tested in this type of competition.

Microsoft Development Center Serbia (MDCS) was created with a mission to take an active part in

conception of novel Microsoft technologies by hiring unique local talent from Serbia and the region. Our

teams contribuǘŜ ŎƻƳǇƻƴŜƴǘǎ ǘƻ ǎƻƳŜ ƻŦ aƛŎǊƻǎƻŦǘΩǎ ǇǊŜƳƛŜǊ ŀƴŘ Ƴƻǎǘ ƛƴƴƻǾŀǘƛǾŜ ǇǊƻŘǳŎǘǎ ǎǳŎƘ ŀǎ {v[

Server, Office & Bing. The whole effort started in 2005, and during the last 6 years a number of products

came out as a result of great team work and effort.

Our development center is becoming widely recognized across Microsoft as a center of excellence for the

following domains: computational algebra engines, pattern recognition, object classification, computational

geometry and core database systems. The common theme uniting all of the efforts within the development

center is applied mathematics. MDCS teams maintain collaboration with engineers from various Microsoft

development centers around the world (Redmond, Israel, India, Ireland and China), and Microsoft

researchers from Redmond, Cambridge and Asia.

Bubble Cup Finals 2011

MDCS ς Bubble Cup 2011

7

Bubble Cup Finals 2011

The Bubble Cup Finals, like the previous years, were held at the School of Electrical Engineering in Belgrade.

The competitors had five hours for eight problems. In this booklet you will find nine problems - problem I

(generalization of problem E) was removed from the actual competition because of its difficulty. For ties,

the same rules applied as in previous years: if two or more teams solved the same number of problems, the

one who needed the least time was ranked best. Additionally, teams received bonus points depending on

their qualification results, but for each problem there were time penalties if a team had incorrect

submissions before managing to solve it (Problem A turned out to be very good at making teams collect

penalty points). Programming style is not considered in this contest ς contestants are free to code in

whatever style they prefer and documentation is not required.

This year, problems from the finals are slightly easier than the last year. The emphasis was on stimulating

studentsΩ creativity - some of the problems were not so standard for programming competitions. The idea

behind this was to test contestants in some areas for which they were not very well-prepared. The

Scientific Committee is pleasantly surprised with the skill the competitors have shown. Three problems

were solved by all teams, while on the other side there was only one problem that no team managed to

solve.

Team Suit Up! won the competition (improving on last year, when they were second). The second place

went to wehmuma. They managed to solve six problems and edge out ex1t thanks to a smaller time

penalty.

This year the Scientific Committee decided to give some special awards:

¶ Award: Silver lightning
Team wehmuma - Rumen Hristov, Georgi Georgiev and Alex Ivanov, for the first accepted solution
to a problem.

¶ Award: system("pause");
Team Gastartbubblers - Rajko Nenadov, Slobodan Mitrovic and Nikola Skoric, for lifetime
achievement in programming excellence and spreading the BubbleCup spirit.

¶ Award: Hardcoding Expert
Team v.haralampiev - Vladislav Haralampiev, for being the first to solve LR Primes despite a lack of
manpower.

The Scientific Committee would like to congratulate all of you, teams and individuals, for the hard work you

put in solving the problems we selected, and for your enthusiasm and interest in the Bubble Cup

competition.

Bubble Cup Finals 2011

 MDCS ς Bubble Cup 2011

8

The final scoreboard

Place Team Team crew Score Penalty

1. Suit Up!
Gustav Matula, XV. Gimnazija Zagreb
Ivan Katanił, Gimnazija Pozega
Ivica Kińił, V. gimnazija Zagreb

7 824

2. wehmuma
Rumen Hristov, High School of Natural Science and Mathematics
Georgi Georgiev, SMG
Alex Ivanov, Nancho Popovich Maths and Science High School

6 760

3. ex1t
Alexander Georgiev, Sofia University
George Acev, Sofia University
Preslav Le, Sofia University

6 1019

4. Gari
Demjan Grubic, Gimn. Jovan Jovanovic Zmaj
Boris Grubic, Gimnazija Jovan Jovanovic Zmaj
Mario Cekic, Gimnazija Jovan Jovanovic Zmaj

5 480

5. Gastarbubblers
Nemanja Skoric, ETH Zurich
Slobodan Mitrovic
Rajko Nenadov, ETH Zurich

5 538

6. Tim Raketa
Viktor Braut, FER Zagreb
Frane Kurtovił, FER Zagreb
Anton Grbin, FER Zagreb

5 589

7. 5ǊƛǑƭƧŜ
Nikola Stojiljkovic, Gimnazija Svetozar Markovic, Nis
Nikola Smiljkovic, Gimnazija Svetozar Markovic, Nis
Nikola Stevanovic, Gimnazija Svetozar Markovic, Nis

5 734

8. Magic 3
Maja Kabiljo, Racunarski Fakultet
Miroslav Bogdanovił, Racunarski Fakultet
Milos Stankovic, Racunarski Fakultet

5 734

9. kikiriki i pivo
Mladen Radojevic, ETF Beograd
Ugljesa Stojanovic, RAF/ETF Beograd
Aleksandar Tomic, ETF Beograd

5 844

10. I like it RAF
Nenad Boĥidarevił, Rańunarski fakultet, Beograd
Vanja Petrovił Tankovił, Rańunarski fakultet, Beograd
Aleksandar Milovanovic, Rańunarski fakultet, Beograd

5 949

11. S-Force
Dusan Zdravkovic, Gimnazija Svetozar Markovic Nis
Dimitrije Dimic, Gimnazija Svetozar Markovic Nis
Stefan Stojanovic, gimnazija Svetozar Markovic Nis

4 358

12. The Ninjas
Nikola Milosavljevic, PMF Nis
Marija Cvetkovic, PMF Nis
Aleksandar Trokicic, PMF Nis

4 408

13. doktori
Andrija Milicevic, University of Zagreb - School of Medicine
Marin Smiljanic, FER Zagreb
Goran Gasic, FER Zagreb

4 431

14. v.haralampiev Vladislav Haralampiev, SMG 4 474

15. [BG] Coders
Vladimir Vladimirov
Yordan Chaparov, Atanas Radev
Yasen Trigonov, OMG

4 478

16. TPPH
Dominik Gleich, XV. Gimnazija
Zvonimir Medił, XV. Gimnazija
Drago Plecko, XV. Gimnazija

4 515

17. Royal Randoms
Nina Radojicic, Matematińki fakultet, Beograd
Stefan Miskovic, Matematińki fakultet, Beograd
Stefan Jankovic, Matematińki Fakultet, Beograd

4 902

18. Firewall
Damir Ferizovic, MSS Bosanski Petrovac
Daniel Ferizovic, MSS Bosanski Petrovac
Aleksandar Ivanovic, Prva kragujevańka gimnazija

3 213

19. Gimnazija Sombor
Predrag Ilkic, Gimnazija Veljko Petrovic
Slobodan Ilkic, Gimnazija Sombor
Dejan Pekter, Gimnazija Veljko Petrovic

3 414

Bubble Cup Finals 2011

MDCS ς Bubble Cup 2011

9

Statistics from finals

ID Problem name
Number of teams

with correct
solutions

Number of teams with at
least one submission

attempt

Total percentage of
accepted

submissions

A Card 13 19 09.77%

B Rook 19 19 50.00%

C Tree game 19 19 82.60%

D Transformations 9 11 20.93%

E LIS 0 3 00.00%

F Padlock 19 19 67.86%

G LR primes 6 8 22.22%

H Hashed strings 3 6 15.00%

Table 1. Problem statistics

Chart 1. Number of correct solutions

ID Task name Elapsed time for the first
accepted submission

Average elapsed time for accepted
submission

A Card 1:53 3:08
B Rook 0:09 1:03
C Tree game 0:20 1:11
D Transformations 1:42 2:56
E LIS / /

F Padlock 0:38 1:40
G LR primes 2:14 4:00
H Hashed strings 2:56 3:36

Table 2. Time statistics

0

5

10

15

20

Bubble Cup Finals 2011

 MDCS ς Bubble Cup 2011

10

Problem set & Analysis
from Finals

Taken from xkcd.com ς A web comic of Romance, Sarcasm, Math, and Language

Problem A: Card

MDCS ς Bubble Cup 2011

11

Problem A: Card

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija

Statement:

Mike often needs to know if he could place a rectangular card of size ὥ ὦ into an envelope of size ὧ Ὠ.

Lƴ ƻǊŘŜǊ ǘƻ ōŜ ŦŀǎǘŜǊΣ aƛƪŜ ŘƻŜǎƴΩǘ ǊŜŀƭƭȅ ǘǊȅ ǘƻ Ǉǳǘ ŀ ŎŀǊŘ ƛƴǘƻ ŀƴ ŜƴǾŜƭƻǇŜΣ ƘŜ Ƨǳǎǘ ǇƭŀŎŜǎ ŀ ŎŀǊŘ ƻƴ ǘƘŜ

table and then tries to cover it with an envelope. Of course, both the card and the envelope can be rotated,

but they cannot be folded.

Now, Mike wants to be even faster. He decided to find the answers for all sizes of cards and envelopes he

ƻǇŜǊŀǘŜǎ ǿƛǘƘΦ ¢ƘŀǘΩǎ ǿƘŜǊŜ ȅƻǳ ƧǳƳǇ ƛƴΦ ¸ƻur program should compute the answer for one particular case.

¢ƘŜ ǇǊƻƎǊŀƳ ǎƘƻǳƭŘ ǿƻǊƪ ǘƘŜ ǎŀƳŜ ǿŀȅ aƛƪŜ ŘƻŜǎ Ƙƛǎ ǘŜǎǘǎΣ ǎƻ ƛƴ ōƻǳƴŘŀǊȅ ŎŀǎŜǎ ǘƘŜ ŀƴǎǿŜǊ ƛǎ άȅŜǎέΦ

Input:

The first line contains four integers ὥȟὦ ὧȟ and Ὠ delimited by a space. All values are less than ς ρπ.

Output:

¢ƘŜ ƻǳǘǇǳǘ Ŏƻƴǘŀƛƴǎ ƻƴƭȅ ƻƴŜ ǎǘǊƛƴƎΥ άȅŜǎέ ƻǊ άƴƻέ όǿƛǘƘƻǳǘ ǉǳƻǘŜǎύΦ

Example input: Example output:

2 3 3 4 yes

Time and memory limit: 0.5s / 64 MB

Solution and analysis:

!ƭƭ ǿŜ ƴŜŜŘ ǘƻ Řƻ ƛǎ ǘƻ ŘƛǎǘƛƴƎǳƛǎƘ ōŜǘǿŜŜƴ ǎŜǾŜǊŀƭ ŎŀǎŜǎΦ ¢ƻ ǎƛƳǇƭƛŦȅ ǘƘŜ ŀƴŀƭȅǎƛǎΣ ƭŜǘΩǎ ŦƛǊǎǘ ǎƻǊǘ ǇŀƛǊǎ ὥȟὦ

and ὧȟὨ so that ὥ ὦȟὧ Ὠ.

Case 1: ╪ ╬

In this case the answer is clearly no, since any ώ-projection of the card is bigger than ὧ.

Case 2: ╪ ╬ȟ╫ ▀

In this case card is easily covered with the envelope, for example by matching centers and aligning
card and envelope axes, so the answer is yes;

Case 3: ╪ ╬ȟ╫ ▀ȟ╪ ╫ ╬ ▀

In this case the card diagonal Ὀ ╪ ╫ cannot be covered with the envelope, because the

Problem A: Card

 MDCS ς Bubble Cup 2011

12

envelope diagonal Ὀ ╬ ▀ is shorter than Ὀ . Therefore, the answer is no.

Case 4: ╪ ╬ȟ╫ ▀ȟ╪ ╫ ╬ ▀

This is the remaining case. Now we have Ὠ ὦ Ὀ Ὀ and we need to try to put the

ŜƴǾŜƭƻǇŜΩǎ ŘƛŀƎƻƴŀƭ ƻǾŜǊ ǘƘŜ ŎŀǊŘΦ /ƻƴǎƛŘŜǊ ǘƘŜ ŎƛǊŎƭŜ ŎŜƴǘŜǊŜŘ ŀǘ ŜƴǾŜƭƻǇŜ ŎŜƴǘŜǊ ŀƴŘ ƘŀǾƛƴƎ ǊŀŘƛǳǎ . It

intersects all four sides of the envelope and we need to check if the distance between the nearest two
intersection points is bigger or equal to ὥ. If so, the answer is yes, otherwise no.

Time complexity of this algorithm is constant - ὕρ.

Test data:

Test corpus for this problem contains 10 test cases constructed with following methods

¶ several tests with different orders of side sizes

¶ tests with boundary conditions (for example card and envelope being of equal size)

¶ test in which the card tightly fits into the envelope diagonally

¶ ǘŜǎǘ ƛƴ ǿƘƛŎƘ ǘƘŜ ŎŀǊŘ ŘƻŜǎƴΩǘ Ŧƛǘ ŘƛŀƎƻƴŀƭƭȅΣ ōǳǘ ƛǘ ǿƻǳƭŘ ƛŦ ƛǘ ǿŀǎ Ƨǳǎǘ ŀ ōƛǘ ǎƳŀƭƭŜǊ

Problem B: Rook

MDCS ς Bubble Cup 2011

13

Problem B: Rook

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija

Statement:

There is a generalized chess board of size ὲȟὲ. A rook should move from square ρȟρ to square ὲȟὲ. In

every move, exactly one coordinate must increase by 1 or more. There are also ά occupied squares on the

board, so the rook cannot be placed on any of them and cannot jump over them. Squares ρȟρ and ὲȟὲ

are not occupied.

In how many ways can the rook reach the square ὲȟὲ?

Input:

The first line contains two positive integers ὲ and ά delimited by a space, ὲ υπππȟά ρπππππ. In each

of the next ά lines there are two positive integers, ὼ and ώ, ρ ὼȟώ ὲ, coordinates of Ὥ occupied

square, Ὥ ρȟςȟȣά.

Output:

The output contains number of different rook paths, as described above. If this number is 1 million or

greater, you should only output its last 6 digits.

Example input: Example output:

4 2

3 3

4 1

48

Time and memory limit: 2s / 64 MB

Solution and analysis:

[ŜǘΩǎ ŘŜƴƻǘŜ ύȟ the number of ways in which the rook can reach the square ὼȟώ. Then ύȟ ρ and

ύȟ ύȟ ύȟ

where

ὼ

ÍÁØὭḊρ Ὥ ὼȟὥὲὨ ίήόὥὶὩ Ὥȟώ Ὥί έὧὧόὴὭὩὨὭὪ ὸὬὩὶὩ Ὥί ίόὧὬ ίήόὥὶὩȟ

ρ έὸὬὩὶύὭίὩ

ώ

ÍÁØὮḊρ Ὦ ώȟὥὲὨ ίήόὥὶὩ ὼȟὮ Ὥί έὧὧόὴὭὩὨὭὪ ὸὬὩὶὩ Ὥί ίόὧὬ ίήόὥὶὩȟ

ρ έὸὬὩὶύὭίὩ

Problem B: Rook

 MDCS ς Bubble Cup 2011

14

Using the formula for each square directly gives an algorithm that works in ὕὲ time, which is too slow

for limitations given in the problem statement.

Introducing two new matrices,

ὥȟ ύȟ ὦȟ ύȟ

for each square ὼȟώ we can compute ὥȟȟὦȟȟύȟ in ὕρ time, which gives the following ὕὲ

algorithm:

== ==========

01 w[1][1] = 1

02 for i = 1..n

03 for j = 1..n

04 if (square (I, j) is occupied

05 a[i][j] = 0;

06 b[i][j] = 0;

07 w[i][j] = 0;

08 else

09 a[i][j] = (a[i - 1][j] + w[i - 1][j]) mod 1000000;

10 b[i][j] = (b[i][j - 1] + w[i][j - 1]) mod 1000000;

11 w[i][j] += (a[i][j] + b[i][j]) mod 1000000;

==

We are assuming here that all elements with at least one zero coordinate are initialized to 0.

Complexity:

For this solution, there are a couple of variations regarding time and space complexity:

a) We can put info about occupied squares into a matrix (for example w), and use a, b, w as matrices.
In that case both time and space complexity is ὕὲ .

b) We could also put info about occupied squares into a separate array of length m and sort it in order
in which the squares are being visited. Also, instead of matrices ὥȟὦȟύ, it is enough to use the last
two rows of each of them. That gives us time complexity ὕάÌÏÇά ὲ , and space complexity
ὕά ὲ.

Test data:

Test cases should include:

¶ An example where it is not possible to move by the rules and reach the square ὲȟὲ;

¶ A big example with a large table and lots of occupied squares (up to the limit).

Problem C: Tree game

MDCS ς Bubble Cup 2011

15

Problem C: Tree game

Author: Stevan Jonőƛŏ Implementation and analysis: {ǘŜǾŀƴ Wƻƴőƛŏ

Statement:

You are playing a simple game. You are given an undirected connected graph which does not have cycles.

There is also one coin with is in the beginning located at vertex ὼ. One step consists of moving the coin

from the vertex at which it is currently located to any adjacent vertex (two vertexes are adjacent if there is

an edge connecting them). Every edge has an associated number of points you gain if you move the coin

from one of its vertexes to another. Your task is to calculate the maximal number of points you can gain in

Ὧ steps. You can move the coin along some edges more than once.

Input:

The first line contains number n, which is the number of vertexes of the tree (number of vertexes

ς ὲ ρπππππ). The following ὲ ρ lines contain information for ὲ ρ edges of the tree. Each of the

following ὲ ρ lines has three numbers (Ὥ-th of these lines describes Ὥ-th edge) ς the first two numbers

are vertexes connected by the edge and the third number is the number of points that you gain if you move

the coin along that edge. The number of points associated with an edge is less or equal to ρπππ. The

vertexes are labeled with numbers from ρ to ὲ.

The next line contains the number Ὧ, ρ Ὧ ρπππππ.

The last line contains the vertex ὼ, vertex at which the coin is located in the beginning.

Output:

You should output one number which is the maximal number of points you can gain in Ὧ steps with the coin

located in the beginning at vertex ὼ.

Example input: Example output:

6

1 2 3

4 3 5

4 1 2

3 6 6

5 1 9

3

4

20

Time and memory limit: 1s / 64 MB

Problem C: Tree game

 MDCS ς Bubble Cup 2011

16

Solution and analysis:

This is a graph problem. On first sight, it looks like this problem requires the standard dynamic

programming approach for trees - bottom-up from leaves to the root. But if we play a little bit with this

problem, we will see that the greedy approach will find an optimal path.

Assume that we use following edges in Ὧ steps path: ὴ ὩȟὩȟȣȟὩ. Edges can be used more than once

so Ὡ and Ὡ can be the same edge for some ρ Ὥ Ὦ Ὧ. If there is an edge Ὡ (ρ ά Ὧ) that has

more points than every edge in the path ὴ used after Ὡ , then the path p ŎŀƴΩǘ ōŜ ƻǇǘƛƳŀƭ. Namely, in that

case we can use the first part ὩȟὩȟȣȟὩ ρ of the path ὴ and after that we just use edge Ὡ for the

remaining ὲ Ὥ ρ steps. This way we will get more points than in the original path.

Because of this, in the optimal path the edge with the maximal number of points among the edges that

constitute the optimal path must be the edge which was used last (or in a last couple of steps) in the

optimal path. This is the main idea for the algorithm.

[ŜǘΩǎ ǎŀȅ ǘƘŀǘ ƛƴ ǘƘŜ ƻǇǘƛƳŀƭ ǇŀǘƘ ǘƘŜ ŜŘƎŜ Ὡ is used last in a couple of steps. We can see that the number of

edges we used prior to using edge Ὡ should be as small as possible; otherwise the path would not be

optimal because we can make a path which uses less edges prior to using edge Ὡ, and this path will then get

us more points.

Figure 1. Optimal path

The solution consists of the following: for every edge of the tree we try to go to that edge using the minimal

possible number of edges and then use that edge for every available step left and we choose among those

paths the path with the maximal number of points. Of course, we try this for every edge to which the

minimal number of edges used is less than the available number of steps. Because this is a tree, we can

accomplish all this with one traversal using some standard graph traversal algorithms ς DFS or BFS.

Time and memory complexity of this solution are both ὕὲ.

Problem D: Transformations

MDCS ς Bubble Cup 2011

17

Problem D: Transformations

Author: Stevan Jonőƛŏ Implementation and analysis: {ǘŜǾŀƴ Wƻƴőƛŏ
!ƴŘǊŜƧŀ Lƭƛŏ

Statement:

You are given ὲ different transformations of integers ρȟςȟȣȟὲ, one for each of these n numbers. Using the

first transformation you can transform number ρ to some group of numbers, using the second

transformation you can transform number ς to some other group of numbers etc. Numbers that can be

derived using given transformations are also integers between ρ and ὲ.

If you have a group of elements, which are numbers from ρ through ὲ (there can be multiple instances of

the same number in the group), in one step can you can transform any element of the group to new

elements that are produced using the transformation of the selected element. You start with a group which

has only one element, which is a number between ρ and ὲ, and you can choose which number is the

starting element of the group. Your goal is to have after ί steps a group with as much elements as possible.

Input:

The first line contains one positive integer ὲ, ρ ὲ ρπππ.

The following ὲ lines contain information for transformations of numbers from ρ to ὲ. Each of the following

ὲ lines consists of the following integers (Ὥ-th of these lines describes transformation of number Ὥ) ς the

first number, denote it with Ὡ (ρ Ὡ σπ) is the number of elements to which number Ὥ is transformed

and the following Ὡ numbers are the numbers to which number Ὥ is transformed.

The last line contains number ί (ρ ί υπ) which is number of available steps.

Output:

You should output one number which is the maximal number of elements your group can possibly have

after ί steps.

Example input: Example output:

4

3 1 1 4

5 4 4 1 3 1

1 4

2 2 1

3

10

Explanation:

There are 4 numbers. The transformations are:

ρO ρ ρ τ

Problem D: Transformations

 MDCS ς Bubble Cup 2011

18

ςO τ τ ρ σ ρ

σO τ

τO ς ρ

The optimal solution is choosing the initial element of the group to be ς, then after transforming it the

group will have elements ρ ρ σ τ τ, after that one instance of number τ is transformed and the group will

have elements ρ ρ ρ ς σ τ. Finally, the number ς is transformed and the group has ρπ elements after 3

steps.

Time and memory limit: 1s / 64 MB

Solution and analysis:

We can solve the task using dynamic programming. This is a very nice problem, because we have some kind

of two-step dynamic programming where these steps communicate with each other.

Firstly, let us introduce labels that we are going to use:

¶ Ὧᴼ ὸὯρȟὸὯςȟȣȟὸὯὲόάὯ ḳὝὯ, Ὧɴ ρȟὲ, for the transformations. Number Ὧ can

be transformed in the above group, where ὩὯ represents cardinality of this list.

¶ ὊὲόάὛὸὩὴȟὥȟὥȟȣὥ ς maximal number of elements that can be obtained starting from the
group ὥȟὥȟȣὥ and performing ὲόάὛὸὩὴ transformations in some order.

¶ ί - number of steps (transformations)

The final solution can be computed as:

ίέὰόὸὭέὲάὥὼὊίȟρ ȟὊίȟς ȟȣȟὊίȟὲ

The main observation for this problem is following: when we perform transformation ὥ ᴼὝὥ on the

group ὥȟὥȟȣȟὥ we obtain a new group

ὲὩύὋὶέόὴὥȟὥȟȢȢȟὥ ȟὥ ȟȣȟὥ ὸὯρȟὸὯςȟȣȟὸὯὩὯὲόάὯ ὃ ὝὯ

Pay attention that the plus sign in the above formula is not a union. From here, we can look at these two

ƎǊƻǳǇǎ ƛƴŘŜǇŜƴŘŜƴǘƭȅΦ ¢ƘŜ ƻƴƭȅ ǉǳŜǎǘƛƻƴ ƛǎ ǘƻ ŦƛƴŘ Ƙƻǿ Ƴŀƴȅ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴǎ ǘƻ άƎƛǾŜέ ǘƻ ŜŀŎƘ ƎǊƻǳǇ -

partition of the number of steps. Without loss of generality, we can calculate the value

ὊὲόάὛὸὩὴȟὥȟὥȟȣὥ by checking all possible number of steps for transformation ὥ ᴼὝὥ .

Formally:

ὊὲόάὛὸὩὴȟὥȟὥȟȣὥ ÍÁØ
ᶰ ȟ

ὊὲόάὛὸὩὴὯȟὥȟȢȢȟὥ ὊὯȟὥ

We can think of these transformations and groups as some kind of tree of deep ί. Basically, we start from

any group with one element ς which is going to represent a root of this tree. We want to find a leaf which

holds the set with maximal cardinality.

Problem D: Transformations

MDCS ς Bubble Cup 2011

19

Figure 1. Example of the tree mentioned in the problem analyses from example in the problem statement

with changed condition ί σ

Implementation:

This can be implemented in many ways. We will describe one of them. First let us define matrix Ὠ as

ὨὲόάὛὸὩὴȟὼ maximal number of elements that can be obtained starting

 from only one element ὼ in ὲόάὛὸὩὴ steps

When we are computing some particular element ὨὯȟὼ, we are going to use:

ήὲόάὛὸὩὴȟὺ maximal number of elements that can be obtained starting

 from the group ὸὼρȟȣȟὸὼὺ in ὲόάὛὸὩὴ steps

From here we have that ὨὲόάὛὸὩὴȟὼ ήὲόάὛὸὩὴρȟὩὼ (here we have ρ because we used one

transformation ὼO Ὕὼ). We can play with elements of the matrix ή with following relation:

ήὲόάὛὸὩὴȟρ Ὡὼ

ήὲόάὛὸὩὴȟὺ άὥὼɴ ȟ ήὯȟὺ ρ ὨὲόάὛὸὩὴὯȟὸὼὺ , for ὺɴ ςȟὩὼ

The complexity of this solution is ὕὲẗίẗά , where ά represents maximal group cardinality in the given

transformations.

Problem E & I: LIS

 MDCS ς Bubble Cup 2011

20

Problem E & I: LIS

Author: Andreja Iliŏ Implementation and analysis: Andreja Iliŏ

This document contains the problem statements for problems E and I. You will see that the only difference is

in one constraint. These are separate problems and will be tested on different test cases.

Scientific committee only has a solution for problem E.

Statement:

You are given an integer sequence ὥ of length ὲ and an integer ύ, ρ ύ ὲ. Let us denote with ὒ the

length of the longest increasing subsequence (LLIS) for subarray: ὥȟὥ ȟȣȟὥ . You have to write a

program that computes values ὒ for every Ὧ, ρ Ὧ ὲ ύ ρ.

¶ Problem E: Assume that the sum of values ὒ does not exceed σẗὲ Ѝὲ.

¶ Problem I: There are no constraints for the sum of values ὒ.

The longest increasing subsequence of a given sequence ὥ is the subsequence of strictly increasing

elements containing the largest number of elements. Elements of the subsequence do not need to be

consecutive.

Input:

The first line contains two positive integers ὲ and ύ (ρ ὲ ρππȢπππ and ρ ύ ὲ), where ὲ is the

number of elements in the given array and ύ is the width of subarray that have to be examined. Next line

contains ὲ integers, separated with one space, which represents the elements of array ὥ.

The elements are in range πȟςẗρπ.

Output:

The output contains ὲ ύ ρ numbers, one per line. The number in the Ὧ-th line is the length of the

longest increasing subsequence for ὥȟὥ ȟȣȟὥ .

Example input: Example output:

6 4

1 4 2 5 6 7
3
3
4

Explanation:

For this example we have three subsequences of width τ in given array ὥ:

¶ ρȟτȟςȟυ, where LLIS is equal to σ; one possible LIS is ρȟςȟυ

¶ τȟςȟυȟφ, where LLIS is equal to 3; one possible LIS is τȟυȟφ

Problem E & I: LIS

MDCS ς Bubble Cup 2011

21

¶ ςȟυȟφȟχ, where LLIS is equal to τ; LIS is the whole subsequence

Time and memory limit: 2s / 64 MB

Implementation and analysis:

This problem considers finding the length of the longest increasing subsequence in a sliding window (of

width ύ), over a given sequence ὥ. In the problem statement it is noted that the sum of lengths does not

exceed ὲЍὲ. This is a very interesting fact and it might be confusing. Here we are going to present an

output-sensitive data structure that solves this problem with time complexity ὕὲÌÏÇὲ ὕὟὖὟὝ or in

our case ὕὲÌÏÇὲ ὲЍὲ.

Within this framework, several related questions can be posed regarding this problem, each with

potentially different time complexity.

¶ Local Max Value - For each window report the length of the longest increasing subsequence in that
window.

¶ Local Max Sequence - Explicitly list a longest increasing subsequence for each window.

¶ Global Max Sequence - Find the window with the longest increasing subsequence among all
windows.

Here we deal with the Local Max Value. This algorithm solves the other two versions of the problem

described above. Its optimality in our case is an open question and left for contestants to improve it J

A naïve approach is to consider finding LIS for every window separately. The standard dynamic

programming algorithm for finding LIS has time complexity of ὕὲ , which will lead to complexity of

ὕὲẗύ for our problem. This approach can be sped up with algorithms which date back to Robinson [1]

and Schensted [2] with a generalization due to Knuth [3]. These algorithms have time complexity

ὕὲÌÏÇὲ, which is optimal in the comparison model. Hunt and Szmanski [4] gave an algorithm with time

complexity ὕὲ ÌÏÇÌÏÇὲ using the van Emde Boas data structure [5]. In any case, this naïve approach has

time complexity ὕὲẗύÌÏÇÌÏÇύ in the best case.

Without loss of generality we can assume that a given array ὥ is a permutation of the set ρȟςȟȣȟὲ (if not

we can simply sort the array and rename the numbers in it with corresponding index). As we have seen in

the previous paragraph, we have to find some way to use the LIS (or some other information) from the

previous window when examining the current one. For this purpose, we will use Young tableaux or the

RobinsonςSchenstedςKnuth algorithm. We will not explain these algorithms in detail, because only a part of

them will be needed here.

Above we have stated that the length of LIS for a given array can be found in ὕὲÌÏÇὲ time. How can we

do this? Let us introduce a new list Ὠ. Initially this list will be empty. We will insert elements from array ὥ

one at a time into the list Ὠ. When inserting number ὺὥὰόὩ into Ὠ we have two cases:

a) ὺὥὰόὩ is greater than all elements from the list Ὠ - In this case we add ὺὥὰόὩ to the end of list
b) ὺὥὰόὩ is not greater than all elements from the list Ὠ - In this case there exists an element that is

greater than ὺὥὰόὩ. Let us denote with ὸ the first one from the left. Remove the element ὸ from the
list Ὠ and put ὺὥὰόὩ in its place.

With this algorithm list Ὠ will be monotonically increasing. It can be shown (how?) that the length of list Ὠ is

the length of the longest increasing subsequence. It should be noted that list Ὠ is not a LIS for array ὥ,

Problem E & I: LIS

 MDCS ς Bubble Cup 2011

22

because it may not be a subsequence (see example on Figure 1). The main idea behind this method is that

the element ὨὯ is the smallest element from array ὥ for which there exists an increasing subsequence in

ὥ of length Ὧ ending with that element. We will call Ὠ the principal row of array ὥ and denote it with Ὑὥ.

Figure 1. Example of algorithm for finding the LIS in array σȟρπȟφȟρȟυȟχȟψȟςȟτȟω.

In order to deal with the problem, we will consider a slightly more general question. We want to define

some kind of structure that will maintain information about the LIS of a sequence in such a way that it

supports the following operations:

¶ adding a new element at the end of a sequence

¶ removing the first element from a sequence

¶ querying the data structure for the LLIS

For this purpose we are going to store the principal row for every suffix of the current sequence. If we

denote with ὥ the suffix ὥὥ ȣὥ, our structure will maintain Ὑὥ ȟὙὥ ȟȣȟὙὥ (note that in

our case this sequence has length ύ). This collection of principal rows is called a row tower.

Figure 2. Example of a row tower for the array σȟυȟςȟχȟτȟψȟρ and how it is generated.

Removing the first element from a sequence can be implemented easily ς delete the first principal row

Ὑὥ . The length of the first principal row is the length of LIS. Adding a new element corresponds to

inserting it in every row and adding a new row containing only this element. A naïve implementation of this

method will also lead to time complexity of ὕὲẗύÌÏÇύ . If we want to speed this up, we must store this

tower in some compressed way.

Something that we can notice in Figure 2 is that Ὑὥ is either the same as Ὑὥ or can be obtained

Problem E & I: LIS

MDCS ς Bubble Cup 2011

23

from it by deleting a single element. This can be proven by induction (how?). From this we can state a

generalization:

Lemma Let sequence ὃ be a suffix of sequence ὄ. Then Ὑὃ is a subsequence of Ὑὄ and

ȿὙὄȿ ȿὙὃȿ ȿὄȿ ȿὃȿ.

Because of this nice property, we can store the whole row tower in the following way:

¶ Ὑ Ὑὥ Ὑὥ ς the principal row of whole sequence

¶ Drop out sequence Ὠ with the length ȿὙὃȿ. Element ὨὭὲὨὩὼ represents the suffix at which the
element Ὑὥ ὭὲὨὩὼ drops out of the principal row.

For our example of Figure 2 we have Ὠ φȟσȟρȟυ. With these two sequences we can reconstruct the

whole tower. The main problem here is to see how we can efficiently update this representation of the row

tower. The expire operation simply subtracts one from each element of Ὠ and deletes the element with

expiry time π (if there is one) from Ὑ. The add operation for an element ὦ requires that ὦ should bump an

element out of each row of the row tower (unless it is appended to all of them). Since the rows form an

inclusion chain, if ὦ bumps a certain element ί out of a row, then it bumps the element ί out of all further

rows to which s belongs. In other words, the drop out time for ί changes to the index of the first row from

which it is bumped out by ὦ. Now consider the next row of the tower (if one exists) after ί has dropped out.

In this row there may or may not be elements larger than ί. If there are such elements then b bumps out

the smallest one. If not, then ὦ is appended to the end of this and all subsequent rows. We can find a

sequence of indices Ὥ Ὥ Ễ Ὥ for the sequence Ὠ such that:

¶ Ὥ is the least index of an element in the principal row Ὑ which is larger than ὦ

¶ Ὥ is the least index larger than Ὥ for which ὨὭ ὨὭ (the element is larger than the prior
one and it is still in the current principal row).

Now we can simply update the drop out sequence Ὠ according to:

¶ ὨὭ ύ
¶ ὨὭ ὨὭ , for ὼɴ ρȟὯ ρ

Implementation of this algorithm is pretty straightforward and we will leave it to the reader.

Complexity

In this way we managed to implement operations for adding and removing one element in linear time of

the LLIS problem (querying is still in constant time). In the problem statement we denoted the length of LIS

in Ὧ-th window with ὒ. From this the overall time complexity of our algorithm is ὕВὒ . The described

algorithm computes the lengths of LIS in the sliding window in total time of

ὕὲÌÏÇὲ Вὒ ὕὲÌÏÇὲ ὕὟὝὖὟὝὕὲÌÏÇὲ ὲЍὲ

Test data

The test corpus for this problem consists of 15 test cases.

Test cases were generated with a couple of algorithms which (except those for special cases) were based

on random sequences and following theorem [9]:

Problem E & I: LIS

 MDCS ς Bubble Cup 2011

24

Theorem Let “ be an uniform random permutation of set the ρȟςȟσȟȣȟὲ and ὒ an integer-

valued random variable ὒ ὒὒὍὛ“ . As ὲᴼЊ we have

Ὁὒ ςЍὲ and „ὒ έЍὲ

A short description of test cases is given in Table 1.

ID ὲ ύ min LLIS max LLIS solution sum Description

01 10 5 2 3 16 By hand

02 100 10 3 7 395 Random

03 1000 100 12 21 15.333 Random

04 1000 900 54 57 5.675 Random

05 10000 100 70 91 802.603 Increasing sequence

06 99000 1000 2 825 39.315.222 "Saw" sequence

07 100000 50000 427 446 21.829.042 "Saw" sequence

08 100000 90000 587 597 5.908.135 Random

09 100000 100 12 25 1.671.330 Random

10 100000 1 1 1 100.000 Special case - Random

11 1 1 1 1 1 By hand

12 99999 99999 618 618 618 Special case - Random

13 99888 65432 1 1 34.457 Decreasing sequence

14 99999 1000 23 61 4.159.326 Random, ὖ ωυϷ

15 99999 77777 3024 3101 67.945.385 Random, ὖ ωυϷ

Table 1. Description of the test data

References

[1] G. de B. Robinson, On representations of the symmetric group, Am. J. Math. 60 (1938) 745ς760.

[2] C. Schensted, Longest increasing and decreasing subsequences, Can. J. Math. 13 (1961) 179ς191.

[3] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970)

709ς727.

[4] J. Hunt, T. Szymanski, A fast algorithm for computing longest common subsequences, Comm. ACM

20 (1977) 350ς353.

[5] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue,

Math. Systems Theory 10 (2) (1976/77) 99ς127.

[6] M. H. Albert at al., Longest increasing subsequences in sliding windows, Theor. Comp. Sci. 321

(2004) 405 ς 414.

[7] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, AddisonςWesley,

Reading, Mass, 1973.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT Press (2009)

Problem F: Padlock

MDCS ς Bubble Cup 2011

25

Problem F: Padlock

Authors: Andreja Iliŏ

Implementation and analysis: aƛƭƻǑ [ŀȊŀǊŜǾƛŏ
5ǊŀȌŜƴ ¿ŀǊƛŏ

Statement:

You are stuck in a room with ὲ doors. On every door there is a padlock with a ρπ-digit rolling lock

combination. You can roll any digit either up or down, where rolling up at digit ω will make the digit π, and

rolling down at digit π will make the digit ω. The padlock will be open when the combination is matched

with the key for that padlock. The goal is to open all doors with the minimal number of rolling operations.

Initially all padlocks are set to ππππππππππ. Doors can be opened in any order. Besides rolling digits there

is one very cool button on the padlocks. This button can turn the digits on padlock to the same combination

as a different padlock that is already open (you cannot jump to a combination of the padlock for some door

that is not open yet). This transformation does not count as a rolling operation.

Input:

The first line contains one positive integer ὲ (ρ ὲ ρπππ), where ὲ is the number of doors. The next ὲ

lines contain ρπ-digit integers (some of them can have leading zeros), which represent the keys for

padlocks.

Output:

The output should contain only one integer ς minimal number of rolling necessary to open all doors.

Example input: Example output:

2

0000000003

0000000001

3

Figure. Explanation of the given example

Time and memory limit: 1s / 64 MB

Problem F: Padlock

 MDCS ς Bubble Cup 2011

26

Solution and analysis:

We will first give the algorithm description, and then prove its correctness. We can use a simple greedy

strategy:

1. Find a lock that needs the least number of rollings, from the initial state, to open. Add that number

to the overall cost, and put that lock into the set of open locks.

2. Repeat until all locks are open:

¶ Among locks that are still closed, find the one that requires the least number of rollings to

unlock, considering we can set it to state of any of the locks already open using zero

rollings, or we can roll the numbers from the initial state.

¶ Update the overall cost, and put the minimal lock into set of open locks.

To show that this approach does indeed yield the minimal overall number of rollings, we can consider a

graph whose vertices are locks, and weight of each edge όȟὺ is equal to number of rollings needed to

open lock ὺ once it is set to the combination of lock ό. We can extend this graph with a lock ᾀ, whose key is

all zeros, so that weights of edges ᾀȟὭ represent numbers of rollings necessary to open lock Ὥ from its

initial state. We also notice that weights of edges όȟὺ and ὺȟό must be equal, thus we have a complete

undirected graph.

When opening lock ὺ, we can either set it to a key of a previously open lock ό and then roll the numbers to

get the right key, or roll the numbers from the initial position to ὺΩǎ ƪŜȅΦ {ƻ ǳƴƭƻŎƪƛƴƎ ὺ increases the

overall cost either by weight of edge ᾀȟὺ) or by weight of edge όȟὺ. If we consider the subgraph with

only these used edges, we see that it is actually a spanning tree of the original graph. So in order to find the

least number of rollings necessary to open all locks, we need to find a minimum spanning tree of our

graph.

The proposed greedy approach is actually tǊƛƳΩǎ ŀƭƎƻǊƛǘƘƳ for finding minimum spanning trees of graphs

and is easily implemented to run in ὕὲ time. We can also precalculate numbers of rollings between all

pairs of locks, and store the graph in matrix form, which requires additional ὕὲ time and memory.

Problem G: LR primes

MDCS ς Bubble Cup 2011

27

Problem G: LR primes

Author: !ƴŘǊŜƧŀ Lƭƛŏ Implementation and analysis: aƛƭŀƴ bƻǾŀƪƻǾƛŏ
!ƴŘǊŜƧŀ Lƭƛŏ

Statement:

A number ὥ ὧὧ ȣὧὧ is called L prime if its every non-empty suffix is a prime number and all its

digits are different from zero. In other words, numbers ὧȟὧὧȟȣȟὧ ȣὧὧ and ὧὧ ȣὧὧ must be

primes. For example the number ρρσ is L prime number.

A number ὥ ὧὧ ȣὧὧ is called R prime if its every non-empty prefix is a prime number. In other

words, numbers ὧȟὧὧ ȟȣȟὧὧ ȣὧ and ὧὧ ȣὧὧ must be primes. For example number σρρ is

R prime.

You are given an integer segment ὥȟὦ. How many integers from this segment are L or R prime numbers

(including numbers ὥ and ὦ)?

Input:

The first line contains two positive integers ὥ and ὦ (ρ ὥ ὦ ρπ), which represent the given

segment.

Output:

The output contains only one integer ς the number of integers from given segment that are L or R primes.

Example input: Example output:

10 30 4

Explanation

From the segment ρπȟσπ L primes are: ρσȟρχȟςσ; R primes are ςσȟςω. Number ςσ is both L and R prime,

so we are going to count it only once.

Time and memory limit: 0.5s / 64 MB

Problem analysis:

L and R primes are also known as left-truncated and right-truncated primes. Codes of their sequences in

the On-Line Encyclopedia of Integer Sequences are A024785 and A024770. We found them interesting for a

programming problem because of two facts:

Problem G: LR primes

 MDCS ς Bubble Cup 2011

28

¶ they are finite

¶ they have some kind of recursive property

We need to find a method for generating consecutive right and left primes. Here we are going to explain

the algorithm for right primes. The same algorithm, with small modifications because of the special digit π,

can be used for the left primes.

As we mentioned, these numbers have some kind of recursive structure: every right prime number having

at least two digits is an extension of another right prime number (i.e. the least significant digit is added).

This is the main fact on which we are going to base our iterative algorithm.

Let ὗ be an empty queue, which will store the right primes. We start by inserting the one-digit right

primes (just primes). Then in every step we extract the first element ί from the queue and check if any of

the numbers ρπẗί Ὧ, Ὧᶰρȟσȟχȟω is prime. We excluded the digits πȟςȟτȟυȟφȟψ, because if the last digit

is from this set, the new number will not be prime. If this number is also a right prime - put it at the end of

the queue.

Figure 1. The queue states in the right prime construction process.

Complexity and implementation:

An interesting feature that we need to address for this algorithm is its time complexity. The complexity is

ὕὯЍά), where Ὧ is the number of the right prime numbers and ά is the greatest among them (the same

thing holds for the left primes). This fact is left for contestants to find out. Namely, these are finite

sequences and after running this algorithm it appears that the algorithm terminates with an empty queue.

There are only ψσ right prime numbers and only τςφπ left prime numbers.

The largest of them are χσȢωσωȢρσσ and συχȢφψφȢσρςȢφτφȢςρφȢυφχȢφςωȢρσχ, respectively.

Another interesting fact is that if zeros are permitted, the sequence of left primes is infinite.

Because of this fact, the described algorithm with a reasonable implementation works very fast. For this we

must use some other technique for the primality testing. In our case the Fermat test will do the work. Of

course some other algorithm, like the Miller-Rabin test, would also work. Here we will briefly describe the

Fermat test.

CƛǊǎǘƭȅΣ ǊŜŎŀƭƭ CŜǊƳŀǘΩǎ ƭƛǘǘƭŜ ǘƘŜƻǊŜƳΥ ƛŦ ὴ is a prime number and ὥ is an integer relatively prime to ὴ, then

ὥ ḳ ρ

Experimentation shows that this typically fails when ὴ is composite. This is the fact which is going to be the

Problem G: LR primes

MDCS ς Bubble Cup 2011

29

core of our test. Complexity of this algorithm is ὕὯẗÌÏÇὲ, where Ὧ is the number of times we test a

random number ὥ with above theorem.

== ====================================

Function: Fermatôs primality test

Input: n ï a value to test for primality

 Output: false if n is composite

 true if n is probably prime

--- ------------

01 repeat k times

02 pick random integer a from set {2,3,é,n- 1}

03 d = gcd(a,n);

04 if (d != 1)

05 return false;

06 tmp = a^(n - 1) mod n;

07 if (tmp != 1)

08 return false;

09

10 return true;

==

Pseudo code for the second algorithm

Another option is to hardcode all left and right primes in the code. Such solution works in linear time. Here

we have to pay attention to the size of the file. If we hardcode this in a relatively smart way, we will get the

source file of the size ~ 60KB, and 64KB is the maximum allowed size for source files on the finals.

Problem H: Hashed strings

 MDCS ς Bubble Cup 2011

30

Problem H : Hashed strings

Author: 5ƛƳƛǘǊƛƧŜ CƛƭƛǇƻǾƛŏ Implementation and analysis: !ƴŘǊƛƧŀ WƻǾŀƴƻǾƛŏ
5ƛƳƛǘǊƛƧŜ CƛƭƛǇƻǾƛŏ

Statement:

You are an evil hacker and your current evil mission is to impersonate your target by sending messages that

look like they came from them but that are actually from you. You have worked out the entire operation

except for one small detail: every string that your target sends is followed by a 32-bit hash value, which is

used for error checking. You know the algorithm, and it goes like this:

The strings are composed of lowercase letters of the English alphabet, and every letter corresponds to a

unique 16-bit code. All 32 bits of the hash value are initialized to zero. The hash is then calculated by

passing through every character of the string in order and performing the following steps:

1. Do a binary left rotation of the entire hash value (by one place)
2. Take the code for the character and the least significant 16 bits of the hash and do a binary XOR of

these two values
3. Write the result from the previous step to the least significant 16 bits of the hash

Unfortunately, to implement the algorithm you need to know the 16-bit codes for letters of the alphabet,

and those codes are secret. Not all is lost though! You have already intercepted many pairs of strings with

their hash values. Now all you have to do is find some way to use that information to crack the codes.

 Input:

The first line contains one positive integer ὲ (ρ ὲ τππ, the number of strings. Each of the following ὲ

ƭƛƴŜǎ Ŏƻƴǘŀƛƴǎ ƻƴŜ ǎǘǊƛƴƎ ŎƻƴǎƛǎǘƛƴƎ ŜȄŎƭǳǎƛǾŜƭȅ ƻŦ ƭŜǘǘŜǊǎ ΨŀΩ-ΨȊΩ ŀƴŘ ƻƴŜ ƛƴǘŜƎŜǊ ƛƴ ǘƘŜ ǊŀƴƎŜ πȟ ς ρ.

Writing this integer in 32-bit binary gives the hash value of the string. Each string is at most 100 characters

long.

Output:

The first line of oǳǘǇǳǘ ǎƘƻǳƭŘ ōŜ ƻƴŜ ƻŦ ǘƘǊŜŜ ǿƻǊŘǎΥ άLath{{L.[9έΣ ά¦bLv¦9έ ƻǊ άa¦[¢Lt[9έ όǿƛǘƘƻǳǘ

quotes), if there are respectively no solutions, exactly one solution and more than one solution. If the first

ƭƛƴŜ ƛǎ άLath{{L.[9έ ƻǊ άa¦[¢Lt[9έΣ ƴƻǘƘƛƴƎ ŜƭǎŜ ǎƘƻǳƭŘ ōŜ ǿǊƛǘǘŜƴ ǘƻ ƻǳǘǇǳǘΦ LŦ ǘƘŜ ŦƛǊǎǘ ƭƛƴŜ ƛǎ ά¦bLv¦9έΣ

each following line of output should contain exactly one letter and one number, separated by a space.

Every number is in the range πȟ ς ρ, and when written in 16-bit binary represents the code for the

letter. There should be as many lines as there are different letters that appear in input. The lines should be

sorted alphabetically by letter.

Example input: Example output:

2

a 4

ab 12

UNIQUE

a 4

b 4

Time and memory limit: 3s / 64 MB

Problem H: Hashed strings

MDCS ς Bubble Cup 2011

31

Implementation and analysis:

This task is based on a problem that the author actually had to solve for his real-ƭƛŦŜ Ƨƻō όƛǘ ŘƛŘƴΩǘ ƛƴǾƻƭǾŜ

any hackers though ς that part is made up J), and we thought it was interesting enough to be used for

competitive purposes.

We have ὲ ǎǘǊƛƴƎǎΦ [ŜǘΩǎ ŘŜƴƻǘŜ ǘƘŜƳ ǿƛǘƘ ί ὧȟ ὧȟ ȣὧȟ (Ὥɴ πȟρȣὲ ρ;ὰ is the length of ί).

ό²ŜΩƭƭ ǳǎŜ ƛƴŘŜȄŜǎ ǘƘŀǘ ƛƴŎǊŜŀǎŜ ǊƛƎƘǘ ǘƻ ƭŜŦǘ ǘƘǊƻǳƎƘƻǳǘ ǘƘŜ ǘŜȄǘΣ ǎƻ ŘƻƴΩǘ ǎŀȅ ȅƻǳ ǿŜǊŜƴΩǘ ǿŀǊƴŜŘΦύ ! он-bit

integer corresponds to each string: Ὤ ὦȟ ὦȟ ȣὦȟ ὦȟᶰπȟρ . And finally, each character ὧ

corresponds to a code, which is the 16-bit integer ὼ ὼȟ ὼȟ ȣὼȟ.

[ŜǘΩǎ ƻōǎŜǊǾŜ ǘƘŜ ǊƛƎƘǘƳƻǎǘ όƛƴŘŜȄ лύ ōƛǘ ƻŦ ǘƘŜ ƘŀǎƘ ǾŀƭǳŜ ὬȢ How is it calculated? Obviously, the rightmost

bit of the rightmost character of string ί (which we have denoted with ὼ
ȟȟ) can change it in the last step.

But before that, the bit ὼ
ȟ ȟ was initially added on index ρυ and then made half a circle to get to our bit

ὦȟ. And before that, bits ὼ
ȟ ȟ , ὼ

ȟ ȟΣΧ ὼȟ ȟ also ended up turning around and contributing to ὦȟ.

And another half-circle before thatȟ bit ὼ
ȟ ȟ , and so on. Obviously, this goes on until we run out of

characters in ί. The formula is

ὦȟ ὼ
ȟȟ

ȿ

ȟ

where the sum is an XOR sum (or, mathematically speaking, everything happens in ᴚύΦ bƻǿ ƭŜǘΩǎ ǘǊȅ ǘƻ

generalize this observation. We have the ή-th bit (from the right, zero-based ς as above) of hash value Ὤ.

Which bits of the original codes are important for this bit? The same line of thinking as in the previous

paragraph leaves us with the formula

ὦȟ ὼ
ȟȟ

ḳ

ȟ

This means that the problem reduces to a system of linear equations. We have one equation per every bit

of every hash sum, which is a total of σςὲ. The number of variables is 16 times the number of letters that

appear in the input.

Solving systems of linear equations is a well-known problem, and here it is made even easier by the fact

that we are working in ᴚ so the only values are 0 and 1 and there are no problems with precision. For

example, we can solve the system in time ὕόϽὺ, where ό is the number of variables and ὺ the number

of equations, by the standard Gaussian method of eliminating the variables one by one. Of course, this

algorithm is able to determine whether the system has a solution, whether it is unique and, if it is, to find it.

After this, assembling the solution bit-by-bit into codes for every letter and sorting them alphabetically

should present no trouble at all.

Complexity

It is easy to see that the most expensive part of our algorithm is solving the system of equations, so the

time complexity will be ὕόϽὺ per above. We have ό σςὲ and, since we have a finite alphabet of

known size, we could say that ὺ is a constant but that would be slightly disingenuous as this constant is

quite large. If ύ is the number of letters that appear in the input, we have ὺ ρφύ, and finally our

complexity is ὕς Ͻύ ϽὲȢ It is interesting to note that time complexity is independent from the length

Problem H: Hashed strings

 MDCS ς Bubble Cup 2011

32

of the strings.

We need ὕόϽὺ ὕςϽύϽὲ space to store the equations, which gives us the memory complexity of

this solution.

Test data:

ID Description

01 Easy test (example from the problem statement)

02 1 string with 1 letter with valid hash value (result code for the letter is equal to the hash value)

03
1 string - 31 times one letter. Code invalid/valid (IMPOSSIBLE/UNIQUE)

04

05 1 string - 32 times one letter (each bit from the code influences each bit of the hash value, so all
bits of the hash value need to be equal) (IMPOSSIBLE/MULTIPLE) 06

07 1 string - 33 times one letter. Code valid (UNIQUE)\

08 1 string - 64 times one letter (hash value doesn't depend on the code of the letter/hash value is
always 0) (IMPOSSIBLE/MULTIPLE) 09

10
Invalid hash value (larger than it could be calculated with given string) (IMPOSSIBLE)

11

12 Contradiction (last bit of the code for a letter should be both 0 and 1)

13 Large test with a small number of letters

14 Less strings than the number of used letters but still UNIQUE solution

15 Large strings but not enough equations to calculate UNIQUE solution (MULTIPLE)

16 Large test. One bit changed so IMPOSSIBLE.

17
Large tests to calculate UNIQUE solution

18

19

Qualifications

MDCS ς Bubble Cup 2011

33

Qualifications

This is the fourth birthday of Bubble Cup and we are very pleased to see that the number of participating

teams keeps increasing. This year 71 teams managed to solve at least one problem from the qualification

rounds. We are especially proud of the fact that the competition can now truly be called regional, with

more and more teams from countries such as Croatia, Bulgaria, Romania and Macedonia not only

participating but also achieving notable results.

The qualifications were split into two rounds, with ten problems in each round and 25 days for the

contestants to solve them. The first round lasted throughout April, and teams earned one point for each

successfully solved problem. The second round was in May, and problems in this round were worth two

points each. The problems for both rounds were chosen from the publicly available archives at the Timus

Online Judge site.

The qualification rounds, especially the second one, were a little bit advanced. Some of the problems (like

Expert Flea) were pretty unusual for competition problems. Namely, these problems required spending a

good couple of days thinking, or reading and analyzing scientific papers on the subject. We are very

delighted to see that competitors managed to deal with this type of tasks.

Unlike last year, every problem from qualifications has been solved by at least one team. The nineteen

teams with the highest number of points qualified for the finals. One of these teams was not eligible for

awards, but they were nevertheless allowed to compete.

Num Problem name ID Accepted solutions

01 Triathlon 1062 36

02 Archer's Travel 1459 30

03 Caves and Tunnels 1553 39

04 Cactuses 1610 28

05 Salary for Robots 1696 37

06 Visits 1726 78

07 Ministry of Truth 1732 57

08 Old Ural Legend 1769 88

09 Barber of the Army of Mages 1744 51

10 Space Bowling 1775 41

Table 1. Statistics for Round 1

Num Problem name ID Accepted solutions

01 Funny Card Game 1166 18

02 Shots at Walls 1390 5

03 Wires 1460 9

04 Spy Satellites 1478 4

05 Square Country 3 1667 25

06 Monkey at the Keyboard 1677 17

07 Mnemonics and Palindromes 2 1714 18

08 Expert Flea 1763 5

09 Fair Fishermen 1818 23

10 Professional Approach 1819 1

Table 2. Statistics for Round 2

Qualifications

 MDCS ς Bubble Cup 2011

34

The explanations of the solutions for all 20 problems are provided in this booklet. They were written by a

number of different people, some by contestants and some by MDCS Bubble Crew, and you should note

that they are not official - we cannot guarantee that all of them are accurate in general. (Still, a correct

implementation should pass all of the test cases on the Timus site.)

The organizers would like to express their gratitude to everyone who participated in writing the

solutions.

Team results chart [overall]

Average percent of points won by team members

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Qualifications

MDCS ς Bubble Cup 2011

35

Problem R1 01: Triathlon (ID: 1062)

Time Limit: 2.0 second

Memory Limit: 16 MB

Triathlon is an athletic contest consisting of three consecutive sections that should be completed as fast as

possible as a whole. The first section is swimming, the second section is riding bicycle and the third one is

running.

The speed of each contestant in all three sections is known. The judge can choose the length of each

section arbitrarily provided that no section has zero length. As a result sometimes she could choose their

lengths in such a way that some particular contestant would win the competition.

Input

The first line of the input contains integer number ὔ (ρ ὔ ρππ), denoting the number of contestants.

Then . lines follow, each line contains three integers ὠȟὟ and ὡ (ρ ὠȟὟȟὡ ρπȢπππ), separated by

spaces, denoting the speed of Éth contestant in each section.

Output

For every contestant write to the output one line, that contains word "Yes" if the judge could choose the

lengths of the sections in such a way that this particular contestant would win (i.e. she is the only one who

would come first), or word "No" if this is impossible

Sample

input output
9

10 2 6

10 7 3

5 6 7

3 2 7

6 2 6

3 5 7

8 4 6

10 4 2

1 8 7

Yes

Yes

Yes

No

No

No

Yes

No

Yes

Solution:

The constraints for this problem were relatively relaxed (in terms of both size and properties of the input)

so it was possible to solve the problem in several different ways and BubbleCup contestants have come up

with some very creative solutions. One cool way to solve it, which we will explain now, is to treat it as a

geometry problem.

[ŜǘΩǎ ŎƘƻƻǎŜ ŀƴȅ ƻŦ ƻǳǊ ὔ contestants ς without loss of generality we will assume we have chosen the first

Qualifications

 MDCS ς Bubble Cup 2011

36

one. Now, for all other contestants Ὥ ςȢȢὔ, we make expressions ὼϽ ώϽ ᾀϽ

. If we can choose a vector ὼȟώȟᾀ such that the value of this expression is greater than zero it

means that when the judge picks ὼ, ώ and ᾀ as respective distances for the three disciplines the first

contestant beats contestant Ὥ, and if we can choose ὼȟώȟᾀ such that all ὔ ρ expressions have values

greater than zero it means that the first contestant can win the race.

Of course, an equation of the type ὼϽὥ ώϽὦ ᾀϽὧ π defines an open half-space in Euclidean 3D

space. So, geometrically speaking, determining whether a chosen player can win reduces to determining

whether the intersection of half-spaces is nonempty. There is a bug hiding here, however ς we have to

make sure that our result makes physical sense! In addition to ὔ ρ half-spaces defined by the expressions

above, we have to add half-spaces ὼ π, ώ π and ᾀ π to make sure our solutions are positive.

It is known that the problem of finding the intersection of half-spaces is the dual of the problem of finding a

convex hull of a set of points in the same number of dimensions. Finding a 3D convex hull is tricky but there

exists a variety of well-known algorithmsς we will not go into detail for any of them, but the reader is

encouraged to refer to [1] for a description of a randomized incremental algorithm that works in expected

ὕὔÌÏÇὔ time (worst-case performance: ὕὔ) and ὕὔÌÏÇὔ space. You can also find the proof of

the duality property (and explanation of the duality concept itself) in [1].

Since we have to do ὔ iterations of the algorithm (one for each contestant), and the running time of one

iteration is dominated by convex hull computation, we conclude that the solution for the whole task has

expected time complexity of ὕὔ ÌÏÇὔ and worst-case time complexity of ὕὔ . (It is nearly impossible

to actually achieve ὕὔ running time, but due to the low constraints the solution should pass even if that

happens). The space complexity is ὕὔÌÏÇὔ .

References:

[1] Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried Schwartzkopf, Computational Geometry:

Algorithms and Applications, 2nd, revised edition, Springer, 2000.

Solution by:
Name: Andrija Jovanoviŏ
School: School of Computing, Belgrade
E-mail: ja.andrija@gmail.com

Qualifications

MDCS ς Bubble Cup 2011

37

Problem R1 02: Archer's Travel (ID: 1459)

Time Limit: 1.0 second

Memory Limit: 32 MB

Let an archer be a chessman that can move one square forward, back, to the left, or to the right. An archer

is situated at the square (1, 1) of an N × M chessboard (the upper right square of the board is coded as

(N, M)). The archer's goal is to travel through the board and return to the initial position in such a way that

each square of the board is visited exactly once (the travel starts with the first move of the archer). It is

required to determine the number of different ways to perform such a travel.

Input

Integers N and M ǎŜǇŀǊŀǘŜŘ ǿƛǘƘ ŀ ǎǇŀŎŜΦ н Җ N Җ рΤ н Җ M Җ мл9.

Output

You should output the number of ways to travel through the board calculated modulo 109.

Sample

input output
2 3 2

Solution:

In this task we need to find the number of directed Hamiltonian cycles in the grid matrix ὔ ὓ, where

ς ὔ υ and ὓ ρπ. This task requires dynamic programming with bitmasks as well as fast

computation of matrix powers. We will calculate the number of undirected Hamiltonian cycles and at the

end just multiply this number by ς.

For ὔ ς or ὓ ς it is obvious that there is exactly one such cycle.

For ὔ σ, we will give some mathematical arguments. By coloring the grid in chessboard pattern, it

follows that after each step a color of a cell is changed. Therefore, if the number of white and black cells is

not equal ς there are no Hamiltonian cycles. So assume that ὓ is even. Since cells with coordinates ρȟρ

and ρȟσ have only two neighbors, we are forced to have the cycle as shown on Figure 1. Using a

symmetry one can easily conclude that there are only two possibilities for next moves (see Figure 1). If

Ὠὓ denotes the number of Hamiltonian cycles in table σ ὓ, we have the recurrence Ὠὓ ς ςẗ

Ὠὓ with starting value Ὠς ρ. Finally, Ὠὓ ς for ὓ being even.

Figure 1. Example for ὔ σ.

Qualifications

 MDCS ς Bubble Cup 2011

38

For ὔ τ we can extend the above argument and establish a similar, although much more complicated,

recurrence formula. But here we will present a more general method for ὔ τ and ὔ υ.

In order to solve these linear homogenous recurrence relations, we will use the matrix multiplication

method. To illustrate this, consider Fibonacci numbers, defined as Ὂ Ὂ ρ and Ὂ Ὂ Ὂ . In

order to the calculate ὲ-th Fibonacci number, we can consider the matrix ὃ
ρ ρ
ρ π

 and verify the

following identity Ὂ Ὂ
ρ ρ
ρ π

Ὂ Ὂ . Therefore, by taking ὲ-th power of matrix !, one can

easily calculate Ὂ with the starting row vector ρ ρ.

We can calculate the ὲ-th power of a matrix ὃ in time complexity ὕά ẗÌÏÇὲ, where ά is the dimension

of a square matrix ὃ. This can be done using a general principle called exponentiation by squaring:

==

Function: Exponential squaring

01 result = 1;

02 while exponent > 0 do

03 if (exponent & 1) == 1 then

04 result = (result * base) mod modulus;

05 exponent = exponent >> 1;

06 base = (base * base) mod modulus;

07 return result;

==

For ὔ τ and ὔ υ, we will code one column state with numbers π, ρ and ς by taking the cross section

between any two neighboring columns: π means that this cell is not an end of some path, while ρ and ς

represent ends of two possible paths. It can be easily seen that there must be exactly two ρΩǎΣ ƻǊ ǘǿƻ ρΩǎΣ

and two ςΩǎ ƛƴ ŜŀŎƘ ǎǘŀǘŜ όǘƘŜ ǊŜǎǘ ŀǊŜ ȊŜǊƻǎύΦ CǳǊǘƘŜǊƳƻǊŜΣ ǿŜ ƴŜŜŘ ǘƻ ōŜ ŎŀǊŜŦǳƭ ǿƘŜƴ ǘƘere are two

paths ς these are either independent (one above the other) or nested (one inside the other). Using a

symmetry, for ὔ τ there are exactly five possible states ρρππȟρπρπȟρππρȟπρρπ and ρρςς.

For example consider the position ρςςπρ for ὔ υ as shown in Figure 2. In order to continue to the next

column and include the empty cell, one has three possibilities: the lower end of the second path will

include the empty cell, the lower end of the upper path will include the empty cell and the second path will

join the first path (in the last case again lower end of the upper path will include empty cell). We can

establish similar relations for other states.

Figure 2. Example state 12201 for N=5.

Qualifications

MDCS ς Bubble Cup 2011

39

For N=5, there are eleven possible states:

ρρπππȟρπρππȟρππρπȟρπππρȟπρρππȟρρςςπȟρρςπςȟρρπςςȟρςςρπȟρςςπρ and ρςπςρ

and the corresponding matrix is

{0 , 0, 0, 1, 0, 0, 0, 0, 2, 0, 0}

{0 , 0, 1, 0, 0, 0, 1, 0, 0, 0, 1}

{0 , 1, 0, 0, 0, 0, 0, 1, 0, 0, 0}

{2 , 0, 0, 0, 2, 2, 0, 0, 0, 1, 0}

{0 , 0, 0, 1, 0, 0, 0, 0, 1, 0, 0}

{0 , 1, 0, 0, 0, 0, 0, 1, 0, 0, 0}

{0 , 0, 0, 1, 0, 0, 0, 0, 1, 0, 0}

{2 , 0, 0, 0, 1, 1, 0, 0, 0, 1, 0}

{0 , 0, 1, 0, 0, 0, 1, 0, 0, 0, 1}

{0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0}

We use starting row vector πȟπȟπȟρȟπȟπȟπȟρȟπȟπȟπ and the final solution is the sum of the third and

twice the eighth element of the product (these are the only possible ending positions).

Solution by:
Name: Aleksandar Iliŏ
Organization: Facebook Inc.

E-mail: aleksandari@gmail.com

Qualifications

 MDCS ς Bubble Cup 2011

40

Problem R1 03: Caves and Tunnels (ID: 1553)

Time Limit: 3.0 second

Memory Limit: 64 MB

After landing on Mars surface, scientists found a strange system of caves connected by tunnels. So they

began to research it using remote controlled robots. It was found out that there exists exactly one route

between every pair of caves. But then scientists faced a particular problem. Sometimes in the caves faint

explosions happen. They cause emission of radioactive isotopes and increase radiation level in the cave.

Unfortunately robots don't stand radiation well. But for the research purposes they must travel from one

cave to another. So scientists placed sensors in every cave to monitor radiation level in the caves. And now

every time they move robots they want to know the maximal radiation level the robot will have to face

during its relocation. So they asked you to write a program that will solve their problem.

Input

The first line of the input contains one integer ὔ (ρ ὔ ρππȢπππ) τ the number of caves. Next ὔ ρ

lines describe tunnels. Each of these lines contains a pair of integers ὥȟὦ (ρ ὥȟὦ ὔ) specifying the

numbers of the caves connected by corresponding tunnel. The next line has an integer ὗ (ὗ ρπππππ)

representing the number of queries. The ὗ queries follow on a single line each. Every query has a form of

"ὅ Ὗ ὠ", where ὅ is a single character and can be either ᴂὍᴂ or ᴂὋᴂ representing the type of the query

(quotes for clarity only). In the case of an ᴂὍᴂ query radiation level in Ὗ-th cave (ρ Ὗ ὔ) is incremented

by ὠ (π ὠ ρππππ). In the case of a ᴂὋᴂ query your program must output the maximal level of radiation

on the way between caves with numbers Ὗ and ὠ (ρ Ὗȟὠ ὔ) after all increases of radiation (ᴂὍᴂ

queries) specified before current query. It is assumed that initially radiation level is 0 in all caves, and it

never decreases with time (because isotopes' half-life time is much larger than the time of observations).

Output

For every 'Ὃᴂ query output one line containing the maximal radiation level by itself.

Sample

input output
4

1 2

2 3

2 4

6

I 1 1

G 1 1

G 3 4

I 2 3

G 1 1

G 3 4

1

0

1

3

Qualifications

MDCS ς Bubble Cup 2011

41

Solution:

CƛǊǎǘΣ ƭŜǘΩǎ ǿǊƛǘŜ the problem statement in graph theory language: We are given a tree (connected acyclic

graph) where every node has some value. In a query we are either asked to find the maximum value on a

path between two given nodes (and because this is a tree this path is unique) or to change the value of a

given node.

We could do the first query type, Ὃ query, using any graph search algorithm (BFS for example) and find this

value in time complexity of ὕὔ and the second query type, Ὅ query, in constant time. Unfortunately, this

naïve approach would be too slow for this problem.

Without loss of generality, let us assume that the tree is rooted in node 1. This way we have a father ς son

ǊŜƭŀǘƛƻƴǎƘƛǇ ōŜǘǿŜŜƴ ƴƻŘŜǎΦ [ŜǘΩǎ ŦƻǊƎŜǘ ŀōƻǳǘ the second query for a moment. Then we could solve it

using a preprocessed matrix Ὢȟ which contains the maximum value on the path between node ὼ and its

ς -th father. This could be easily preprocessed in ὕὔÌÏÇὔ using simple dynamic programming. This

would help in finding the asked value in ὕÌÏÇὔ) ς first we will find the lowest common ancestor (LCA) and

then maximal value on paths between LCA and given nodes using Ὢȟ. But with the second type of query

ǘƘƛǎ ǎƻƭǳǘƛƻƴ ŘƻŜǎƴΩǘ ǿƻǊƪΦ

[ŜǘΩǎ ƛƴǘǊƻŘǳŎŜ a relation Ὑ between nodes. Nodes ὺ and ό are in relation Ὑ iff ό is a direct son of ὺ and it

has the maximal number of nodes in its subtree among other direct sons of node ὺ. If there are several

maxima, ό has to be the son with the minimal index. This way relation Ὑ decomposes the tree into paths

(every node is in relation with at most one son). A useful property of this decomposition is the number of

distinct paths on path from some node to any other node in its subtree. How can we determine this

number?

Let Ὂὺ represent the number of nodes in the subtree rooted at node ὺȢ [ŜǘΩǎ ŀǎǎǳƳŜ ǿŜ ŀǊŜ ƛƴ ƴƻŘŜ ὺ

with Ὂὺ ὢ. Now if we continue going down the tree we can either:

¶ go to node ό which is in relation Ὑ with ὺ - but then we do not change path and Ὂό ὢ

¶ go to node ό ǿƘƛŎƘ ƛǎƴΩǘ ƛƴ ǊŜƭŀǘƛƻƴ Ὑ with ὺ ς then we do change path, but Ὂό ὢȾς (if

Ὂό ὢ Ⱦ ς then ό would be in relation Ὑ with ὺ)

We can see that the number of distinct paths on a path from some node to any other node in its subtree is

limited by logarithm of the number of nodes in the tree. This is very convenient for our needs.

This decomposition is known as heavy-light decomposition of a tree. We can achieve it using this simple

algorithm:

¶ Put every leaf in other paths.

¶ Using BFS from leaves, put every next node in the same path as its son with maximum number of

nodes in its subtree, or if there are several maxima, choose the minimal-indexed among them

(please note that you should put a new ƴƻŘŜ ƛƴ ǉǳŜǳŜ ƻƴƭȅ ƛŦ ŀƭƭ ƻŦ ƛǘǎ ǎƻƴǎ ƘŀǾŜ ōŜŜƴ ǾƛǎƛǘŜŘΣ ǘƘŀǘΩǎ

because we have rooted our tree around node ρ).

LǘΩǎ ŎƭŜŀǊ ǘƘŀǘ ǘƘƛǎ ŀƭƎƻǊƛǘƘƳ ǘŀƪŜǎ linear time.

Now, how does this decomposition help us (this is a very good question)? [ŜǘΩǎ ŀǎǎǳƳŜ ǿŜ ŀǊŜ ŀǎƪŜŘ ǘƻ ŦƛƴŘ

maximum value on the path between nodes ό and ὺ. We can find LCA in ὕÌÏÇὔ time, find maximum

value from LCA to ό and from LCA to ὺ and combine these results. So, now it is left to solve the following

Qualifications

 MDCS ς Bubble Cup 2011

42

problem: Find the maximum value from node ὺ to node ό if we know that node ό is in ὺΩǎ ǎǳōǘǊŜŜΦ

We know that the number of distinct paths from ὺ to ό is at most ÌÏÇὔ, so we could go to every path and

find the ƳŀȄƛƳǳƳ ǾŀƭǳŜ ƛƴ ƛǘΦ ¢ƘŜ ǇǊƻōƭŜƳ ƛǎ ǘƘŀǘ ƛǘ ƛǎƴΩǘ always the whole path that we are looking at, so

we should find maximum value in some part of the path. We can do this in ὕÌÏÇὔ using a well-known

structure called the segment tree (we could do it even faster, but because of the second query type

segment tree is the optimal choice).

Figure 1. Example of the paths in heavy-light decomposition of a given tree.

This completes the solution for this task. [ŜǘΩǎ ǎǳƳƳŀǊƛȊŜΥ

¶ Find decomposition of tree ς ὕὔ .

¶ On every path in decomposition construct segment tree - overall ὕὔÌÏÇὔ .

¶ Initialize the matrix Ὃ where Ὃȟ is ς-th father of ό (we need this for finding LCA) ς ὕὔÌÏÇὔ

¶ Read queries:

o If query is to find maximum value on path between nodes ό and ὺ then:

Á Find LCA of ό and ὺ ς ὕÌÏÇὔ

Á Find maximum value on path from LCA to ό ς ὕÌÏÇὔ

Á Find maximum value on path from LCA to ὺ ς ὕÌÏÇὔ

Á Combine results

o If query is to change value of node

Á Update its value in segment tree of the path for this node ς ὕÌÏÇὔ

Overall time complexity is ὕὔÌÏÇὔ ὲόάὗόὩὶώẗÌÏÇὔ . Memory complexity for this approach is

ὕὔÌÏÇὔ .

Qualifications

MDCS ς Bubble Cup 2011

43

¢ƘŜ ƛŘŜŀ ƻŦ ŘŜŎƻƳǇƻǎƛƴƎ ŀ ǘǊŜŜ ƛƴǘƻ ǇŀǘƘǎ ŀƴŘ ŀǇǇƭȅƛƴƎ ǎƻƳŜ άŀǊǊŀȅέ Řŀǘŀ ǎǘǊǳŎǘǳǊŜ ƻǾŜǊ ǘƘŜƳ ƛǎΣ ƳƻǊŜ ƻǊ

less, well-known. For those who want to test this algorithm on a slight generalization of this problem, we

would recommend the problem Otoci from Croatian Open Competition in Informatics 2009. Another

variant of this problem can be found on SPOJ ς problem QTREE3.

References:

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT Press (2009)

[2] Michael A. Bender, Martín Farach-Colton, The level ancestor problem simplified, Theoretical Computer

Science, 321 (2004) 5 ς 12

[3] http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor

[4] http://ww w.hsin.hr/coci/archive/2008_2009/

[5] http://courses.csail.mit.edu/6.897/spring05/lec/lec05.pdf

Solution by:
Name: Boris Grubiŏ
School: άWƻǾŀƴ WƻǾŀƴƻǾƛŏ ½ƳŀƧέ DǊŀƳƳŀǊ {ŎƘƻƻƭ
E-mail: borisgrubic@gmail.com

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor
http://www.hsin.hr/coci/archive/2008_2009/
http://courses.csail.mit.edu/6.897/spring05/lec/lec05.pdf

Qualifications

 MDCS ς Bubble Cup 2011

44

Problem R1 04: Cactuses (ID: 1610)

Time Limit: 1.0 second

Memory Limit: 64 MB

There is no doubt that Yekaterinburg trams are the best in the world. Nevertheless, it is Saint-Petersburg

that has the largest tram network in Russia. Not long ago, the Saint-Petersburg tram network was included

into the Guinness Book of Records as the largest in the world.

Two fans of the tram forum from Yekaterinburg decided to make a trip to Saint-Petersburg to visit the

centenary celebration of the tram launch in that city. From their Saint-Petersburg friends they learned that

in the previous 15 years the amount of tram service had been constantly decreasing. In many avenues,

tram lines were dismantled. Tram service in the city center was minimized, and the city tram network was

divided into three fragments, so that it was no longer possible to get by tram from any part of Saint-

Petersburg to any other part.

Another thing the travelers learned was that cactuses were in fashion in Saint-

Petersburg. Upon their return to Yekaterinburg, they decided to plant a cactus

at their office. A cactus is a connected undirected graph such that each of its

edges belongs to at most one simple cycle. One vertex of a cactus touches the

ground and is called its root.

However, it soon turned out that cactuses became too popular, and all fans of

the tram forum already had them. Then the friends decided to get rid of their

cactus by a very unusual method: they by turns choose some edge of the

cactus and chop it up. This edge is removed, and if the cactus breaks into two

parts, then the part that is not connected to the root anymore is thrown out.

The friends have bet a monthly tram ticket on who will chop the last edge growing from the root.

Determine who will win if they both play optimally

Input

Along with the vogue of cactuses, the friends follow the Saint-Petersburg vogue to describe the set of edges

of a cactus by a family of paths such that in each path all edges are different. The first line contains the

amount ὲ of vertices of the cactus, the amount ά of paths, and the number ὶ of the root vertex;

ρ ὶ ὲ υπȢπππ.

lines describes a path in the form of a sequence of its vertices. Each description starts with the length of the

sequence ὲ (ς ὲ ρππȢπππ). Then there are ὲ integers, which are the numbers of vertices of the

path, in the order in which they are on the path. Adjacent vertices of any path are different. There can be at

most one edge between any two vertices of the cactus. Each edge of the cactus is given in the input only

once.

Qualifications

MDCS ς Bubble Cup 2011

45

Output

hǳǘǇǳǘ άCƛǊǎǘέ ƛŦ ǘƘŜ ǇŜǊǎƻƴ ǿƘƻ ƳŀƪŜǎ ǘƘŜ ŦƛǊǎǘ ƳƻǾŜ ǿƛƴǎ ŀ ƳƻƴǘƘƭȅ ǘƛŎƪŜǘ ŀǎǎǳƳƛƴƎ ǘƘŀǘ ōƻǘƘ Ǉƭŀȅ

ƻǇǘƛƳŀƭƭȅΦ hǘƘŜǊǿƛǎŜΣ ƻǳǘǇǳǘ ά{ŜŎƻƴŘέΦ

Sample

input output
17 2 1

15 3 4 5 6 7 8 3 2 9 10 11 12 13

14 9

6 2 1 15 16 17 15

First

16 2 1

15 3 4 5 6 7 8 3 2 9 10 11 12 13

14 9

5 2 1 15 16 1

Second

Solution:

This task requires graph and game theory.

A rooted graph is an undirected graph with every edge connected by some path to a special vertex called

the root. A cactus graph is a connected graph in which every edge belongs to at most one simple cycle. It

can be easily proven that the number of edges in a cactus graph is less than 2n-1, where n denotes the

number of vertices in a graph (what is the maximal number of edges of a cactus graph on n vertices?). As

the input graph is given by an edge disjoint partition of paths, we can store the rooted cactus in O (n)

memory using graph using an adjacency list.

Nim is a mathematical game of strategy in which two players take turns removing objects from distinct
heaps. On each turn, a player must remove at least one object, and may remove any number of objects
provided they all come from the same heap. The winner is a player that takes the last object.

The key to the theory of this game is the binary digital sum (xor) of the heap sizes. Within combinatorial
game theory it is usually called the nim sum. The nim sum of ὼ and ώ is written ὼṥώ to distinguish it from
the ordinary sum. An example of the calculation with heaps of size 3, 4, and 5 is as follows:

σṥτṥυ πρρṥρππṥρπρ πρπ ς

In normal play, the winning strategy is to finish every move with a nim sum of 0. This is always possible if
the nim sum is not zero before the move. If the nim sum is zero, then the first player will lose if the second
player does not make a mistake. For the proof of this fact and other variants of Nim we refer the reader to
[1, 2].

The game of Hackenbush is played by hacking away edges from a rooted graph and removing those pieces
of the graph that are no longer connected to the ground. We discuss the impartial version of this game in
which either player at his turn may chop any edge. Our task is to determine who has the winning strategy
(the first or the second player) if both players play optimally.

The simplest case is when there are just pendent paths (also called Bamboo stalks) attached to the root
vertex. A move consists of hacking away one of the edges, and removing that edge and all edges above it
that are no longer connected to the ground. Players alternate moves and the last player to move wins. A
single bamboo stalk of n segments can be transformed into a bamboo stalk of any smaller number of
segments from n-1 to 0. So a single bamboo stalk of n segments is equivalent to a nim pile of n chips.

Qualifications

 MDCS ς Bubble Cup 2011

46

Playing a sum of games of bamboo stalks is thus equivalent to playing nim.

Consider now a more complicated case ς when the game is played on rooted trees (connected graphs
without cycles). Since the game is impartial, the general theory tells us that each such tree is equivalent to
some nim pile (or if you will to some bamboo stalk). The problem is to find the nim value of each subtree.
This may be done using the following principle, known in its more general form as

The Colon Principle: When branches come together at a vertex, one may replace the branches by a non-
branching stalk of length equal to their nim sum.

We will illustrate this principle on the tree in Figure 1. The leftmost branching vertex has two branches of
lengths three and one. The nim sum of three and one is two, so the two branches may be replaced by a
single branch of length two. The rightmost branching vertex has two branches of lengths one and two
whose nim sum is three, so the two branches may be replaced by a single branch of length three.
Continuing in like manner we arrive at the conclusion that the tree on Figure 1 is equivalent to a nim pile of
8 chips. Since this is not zero, the first player has a winning strategy. We leave to the reader to figure out
how to choose a winning move (although this is not required in the task).

Figure 1. An example of nim sum transformations for trees.

The method of pruning trees given by the colon principle works to reduce all trees to a single bamboo stalk.
One starts by depth first search from the root and for each child v calculates the nim sum of the subtree
rooted at v, by recursively calculating nim sums and XOR-summing the values of all children. This gives an O
(n) dfs algorithm for trees. For the proof of the Colon Principle see [3].

We now consider arbitrary graphs. These graphs may have circuits and loops and several segments may be
attached to the ground. To find the equivalent nim pile, we look for an equivalent tree, from which the
equivalent nim pile may be found. This is done using the fusion principle. We fuse two neighboring vertices
by bringing them together into a single vertex and transforming the edge joining them into a loop (an edge
joining a vertex to itself). As far as Green Hackenbush is concerned, a loop may be replaced by a leaf (an
edge with one end unattached).

The Fusion Principle: The vertices on any circuit may be fused without changing the nim sum value of the
graph.

The fusion principle allows us to reduce an arbitrary rooted graph into an equivalent tree which can be
further reduced to a nim pile by the colon principle. For a proof of the fusion principle see [1]. An example
of fusion and colon principles is given in Figure 2.

Qualifications

MDCS ς Bubble Cup 2011

47

Figure 2. An example of nim sum transformations for general graphs.

We see more generally that a circuit with an odd number of edges reduces to a single edge, and a circuit
with an even number of edges reduces to a single vertex. Therefore, in the cactus graph we can transform
each cycle to a single vertex or single edge in one graph traversal and reduce the problem to trees. For an
even easier solution, one can modify depth-first search for cactus graphs and when examining a back-edge,
recursively calculate the nim sum of all subtrees rooted at vertices of a given cycle. The time complexity of
this algorithm is O (n).

References:

[1] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy: Winning Ways for your Mathematical Plays,
Academic Press, Inc., 1982.
[2] http://en.wikipedia.org/wiki/Nim
[3] http://www.math.ucla.edu/~tom/Game_Theory/comb.pdf

Solution by:
Name: Aleksandar Iliŏ
Organization: Facebook Inc.
E-mail: aleksandari@gmail.com

http://en.wikipedia.org/wiki/Nim
http://www.math.ucla.edu/~tom/Game_Theory/comb.pdf

Qualifications

 MDCS ς Bubble Cup 2011

48

Problem R1 05: Salary for Robots (ID: 1696)

Time Limit: 2.0 second

Memory Limit: 16 MB

There are n robots on planet PTZZZ. Each robot has its own unique rank τ an integer from 1 to ὲ, and

should execute all orders from robots with a higher rank.

Once a month all robots get their salary: a positive integer number of credits, not exceeding Ὧ. The salary is

paid by an accountant-robot. Salary is so important for robots that the first month when all the robots got

their salary was named the First month of the First year. There are ὴ months in the year on PTZZZ, so the

robots get their salary ὴ times a year.

The salary paid to each robot can be different in different months. If it turns out that all the robots get

exactly the same salary as in any month earlier, the accountant-robot will rust of sadness. What is more,

the law doesn't allow the accountant-robot to pay salary in such a way that there will be a triple of robots

ὥȟὦȟὧ with rank of ὥ higher than rank of ὦ, rank of ὦ higher than rank of ὧ and the salary of ὥ less than

the salary of ὦ and the salary of ὦ less than the salary of ὧ.

The accountant-robot doesn't want to rust, so since the First month of the First year he tries to pay salary in

different ways. However, the accountant-robot will rust sooner or later. Your task is to calculate the month

number when this will happen.

Input

The only input line contains three space-separated integers ὲȟὯ and ὴ τthe number of robots on PTZZZ,

the maximal possible salary and the number of months in a year, respectively (ρ ὲ ρπππ, ρ Ὧ

ςππ, ς ὴ ρπ).

Output

Output the month number the accountant-robot will rust in. Months are numerated 1 to ὴ.

Sample

input output
3 3 20 7

Solution:

Here we have a ǇǊŜǘǘȅ ƛƴǘŜǊŜǎǘƛƴƎ ǘŀǎƪΦ [ŜǘΩǎ ǊŜŦƻǊƳǳƭŀǘŜ it a little bit. Define ὃ as a sequence of ὲ integers

where each element is between ρ and Ὧ, inclusive. Call ὃ άōŀŘέ ƛŦ ǘƘŜǊŜ ŜȄƛǎǘ ǘƘǊŜŜ ƛƴŘŜȄŜǎ ὭȟὮȟὯ Ὥ Ὦ

 Ὧ such that ὃ ὃ ὃ and call sequence ὃ άƎƻƻŘέ ƻǘƘŜǊǿƛǎŜΦ Iƻǿ Ƴŀƴȅ άƎƻƻŘέ ǎŜǉǳŜƴŎŜǎ ŀǊŜ ǘƘŜǊŜΚ

Output that number modulo ὴ.

²Ŝ ŎƻǳƭŘ Ƨǳǎǘ ƛǘŜǊŀǘŜ ƻǾŜǊ ŀƭƭ ǎŜǉǳŜƴŎŜǎ ŀƴŘ Ŏƻǳƴǘ ƻƴƭȅ άƎƻƻŘέ ƻƴŜǎΣ ōǳǘ ƻŦ ŎƻǳǊǎŜ ƛǘ ǿƻǳƭŘ ōŜ ǘƻƻ ǎƭƻǿΦ

Qualifications

MDCS ς Bubble Cup 2011

49

[ŜǘΩǎ ŀǎǎǳƳŜ ǘƘŀǘ ǿŜ ƘŀǾŜ ƻƴŜ άƎƻƻŘέ ǎŜǉǳŜnce for ὲɀρ numbers. Suppose we add the number ὼ, which is

between ρ and Ὧ (inclusive), ŀǘ ǘƘŜ ŜƴŘ ƻŦ ǘƘƛǎ ǎŜǉǳŜƴŎŜΦ Lǎ ǘƘƛǎ ǎŜǉǳŜƴŎŜ άƎƻƻŘέΚ

Because the first ὲ ρ ƴǳƳōŜǊǎ ŀǊŜ άƎƻƻŘέΣ ǘƘŜ ƻƴƭȅ Ǉƻǎǎƛōƛƭƛǘȅ ǘƘŀǘ ǘƘƛǎ ǎŜǉǳŜƴŎŜ ƛǎ άōŀŘέ ƛǎ ǘƘŀǘ ǘƘŜǊŜ ŀǊŜ

two indexes ὭȟὮ Ὥ Ὦ such that ὃ ὃ ὼΦ .ŜŎŀǳǎŜ ǿŜ ŘƻƴΩǘ ŎŀǊŜ ŀōƻǳǘ ƛƴŘŜȄŜǎΣ ǿŜ Ŏŀƴ Ƨǳǎǘ ŎƻƴǎƛŘŜǊ

the maximum ὃ such that there exists ὃ ὃ where Ὥ Ὦ. If the ǎŜǉǳŜƴŎŜ ƛǎ άƎƻƻŘέΣ the number ὼ can

be a new such value. When does it happen? This happens if ὼ ὃ and there exists an index Ὧ such that

ὃ ὼΣ ōǳǘ ōŜŎŀǳǎŜ ǿŜ ŘƻƴΩǘ ŎŀǊŜ ŀōƻǳǘ ƛƴŘŜȄŜǎΣ ǿŜ Ŏŀƴ Ƨǳǎǘ ŎƻƴǎƛŘŜǊ ƳŀȄƛƳǳƳ ὃ .

Now with this we can represent sequence of integers ὃ with three numbers:

¶ current length of the sequence ὃ, denoted by ὰὩὲὫὸὬὃ

¶ the maximum number such that there is a larger number before it (with a smaller index), denoted

by Ὂὃ

¶ maximal value in the sequence, denoted by Ὃὃ

We can directly see that not all sequences have ὊὃΣ ōǳǘ ƭŜǘΩǎ ǎŜǘ Ὂὃ π for those sequences. Also,

we have that Ὂὃ is strictly smaller then Ὃὃ.

[ŜǘΩǎ ŘŜŦƛƴŜ a three-dimensional matrix Ὠ, such that

Ὠὲȟὥȟὦ represents ǘƘŜ ƴǳƳōŜǊ ƻŦ άƎƻƻŘέ ǎŜǉǳŜƴŎŜǎ ὃ

 such that ὰὩὲὫὸὬὃ ὲ, Ὂὃ ὥ and Ὃὃ ὦ

How can we calculate these values? Assuming that we have calculated all Ὠάȟὴȟή for all άȟὴȟή such that

ά ὲ and that the last number in sequence is ὼ, we have five cases:

1) Case ὼ ὥ: this case is not possible because then we would have a άōŀŘέ ǎŜǉǳŜƴŎŜ όthe number ὥ

is bigger than ὼ and we have a number before ὥ which is bigger than ὥ);

2) Case ὼ ὥ and x ὦȡ this case is not possible either because the maximal element among the first

ὲɀρ elements is ὦ, but then ὼ is Ὂὃ and ὼ ὥ.

3) Case x ὥ and ὥ πȡ we should add Ὠὲ ρȟὴȟὦ for all ὴ π and ὴ ὥ

4) Case ὼ ὦ: we should add Ὠὲ ρȟὥȟὴ for all ὴ ὥ and ὴ ὦ

5) Case ὼ ὦ: this is not possible because Ὃὃ then would be ὼ, but ὼ ὦ

So, we have:

Ὠὲȟὥȟὦ Ὠὲ ρȟὴȟὦ Ὠὲ ρȟὥȟήȟ Ὢέὶ ὥ π

Ὠὲȟὥȟὦ Ὠὲ ρȟὥȟήȟ Ὢέὶ ὥ π

For the initial states we have Ὠρȟπȟὦ ρ for all ὦ, ρ ὦ Ὧ. The final results is В Ὠὲȟὥȟὦ.

A naive implementation of this idea runs in ὕὲẗὯ , which is too slow for our constraints. We can speed

up our algorithm if we return the required sums in constant time. We can achieve this by creating two

matrices ί and ί defined as:

ίὲȟὥȟὦ Ὠὲȟὴȟὦ

Qualifications

 MDCS ς Bubble Cup 2011

50

ίὲȟὥȟὦ Ὠὲȟὥȟή

The initialization of these matrices can be done using the following recurrent relations:

ίὲȟὥȟὦ ίὲȟὥ ρȟὦ Ὠὲȟὥȟὦ

ίὲȟὥȟὦ ίὲȟὥȟὦ ρ Ὠὲȟὥȟὦ

Finally we have that

Ὠὲȟὥȟὦ ίὲ ρȟὥȟὦ ίὲ ρȟὥȟὦȟὪέὶ ὥ π

Ὠὲȟὥȟὦ ίὲ ρȟὥȟὦȟ Ὢέὶ ὥ π

Actually, there is one more thing we should do. Memory complexity of this solution is ὕὲẗὯ which gives

Memory Limit Exceeded, but we can note that we only need the last two matrices of dimension Ὧ for

every array. Pay attention that you should do all calculations modulo ὴ.

This completes the solution for this task. The time complexity is ὕὲẗὯ and the memory complexity is

ὕὯ .

Solution by:
Name: Boris Grubiŏ
School: άWƻǾŀƴ WƻǾŀƴƻǾƛŏ ½ƳŀƧέ DǊŀƳƳŀǊ {ŎƘƻƻƭ
E-mail: borisgrubic@gmail.com

Qualifications

MDCS ς Bubble Cup 2011

51

Problem R1 06: Visits (ID: 1726)

Time Limit: 1.0 second

Memory Limit: 64 MB

The program committee of the school programming contests, which are often held at the Ural State

University, is a big, joyful, and united team. In fact, they are so united that the time spent together at the

university is not enough for them, so they often visit each other at their homes. In addition, they are quite

athletic and like walking.

Once the guardian of the traditions of the sports programming at the Ural State University decided that the

members of the program committee spent too much time walking from home to home. They could have

spent that time inventing and preparing new problems instead. To prove that, he wanted to calculate the

average distance that the members of the program committee walked when they visited each other. The

guardian took a map of Yekaterinburg, marked the houses of all the members of the program committee

there, and wrote down their coordinates. However, there were so many coordinates that he wasn't able to

solve that problem and asked for your help.

The city of Yekaterinburg is a rectangle with the sides parallel to the coordinate axes. All the streets stretch

from east to west or from north to south through the whole city, from one end to the other. The house of

each member of the program committee is located strictly at the intersection of two orthogonal streets. It

is known that all the members of the program committee walk only along the streets, because it is more

pleasant to walk on sidewalks than on small courtyard paths. Of course, when walking from one house to

another, they always choose the shortest way. All the members of the program committee visit each other

equally often.

Input

The first line contains the number ὲ of members of the program committee (ς ὲ ρπȢ The Ὥ-th of the

following ὲ lines contains space-separated coordinates ὼȟώ of the house of the Ὥ-th member of the

program committee (ρ ὼȟώ ρπ). All coordinates are integers.

Output

Output the average distance, rounded down to an integer, that a member of the program committee walks

from his house to the house of his colleague.

Sample

input output
3

10 10

20 20

10 20

13

Qualifications

 MDCS ς Bubble Cup 2011

52

Solution:

In this problem we are given ὲ points and asked to calculate the average distance between two points.

Clearly th͔ distance defined in this problem is Manhattan distance - since for walking from one to another

point one can use only paths that are parallel to ὼ-axis or to ώ-axis.

Let us denote the coordinates for the Ὥ-th point, ρ Ὥ ὲ, as ὼȟώȢ Let Ὠ ὭȟὮ denote the distance

between points Ὥ and Ὦ, i.e. Ὠ ὭȟὮ ὼ ὼ ώ ώ . Ὓ will be the sum of distances of all pairwise

distinct points. Note that for every two points Ὥ and Ὦ both Ὠ ὭȟὮ and Ὠ ὮȟὭ will be counted for Ὓ.

Therefore, the output should be . How can we calculate Ὓ efficiently?

Obviously, it can be calculated in time ὕὲ , but taking into account the constraints of the problem, that

would be highly inefficient. Formally,

Ὓ Ὠ ὭȟὮ

Since Ὠ ὭȟὮ Ὠ ὮȟὭ we can rewrite Ὓ as:

Ὓ ς Ὠ ὭȟὮ ς ὼ ὼ ȿώ ώȿ ς ὼ ὼ ȿώ ώȿ

From the above equation we conclude that in order to compute Ὓ one can split calculation into two parts -

calculating ὼ-distances and calculating ώ-distances.

If ὼ values and ώ values were sorted, independently from each other, then in the equation we can get rid of

absolute values. Therefore, from now on assume that ὼ and ώ values are independently sorted in increasing

order, and rewrite Ὓ in the following way:

Ὓ ς Ὥẗὼ ὼ Ὥẗώ ώ

Let ὖὯ В ὼ, and similarly ὖὯ В ώȢ Finally, we can rewrite Ὓ in the following way:

Ὓ ς Ὥẗὼ ὖὭ Ὥẗώ ὖὭ

In order to sort ὼ and ώ values one can use quick or merge sort and achieve sorting in time ὕὲÌÏÇὲ. Thus

overall time complexity of the algorithm is ὕὲ ὲÌÏÇὲ ὕὲÌÏÇὲ. Solution can be big number, (of

the order ρπ), so in the implementation we must use ὰέὲὫ ὰέὲὫ or ͅ ᾭὲὸφτ types.

We can solve this problem in another way (with same time complexity).

Figure 1. Example for the points on ὼ axces with coordinates σȟυȟωȟρρȟρσȟρχ.

Qualifications

MDCS ς Bubble Cup 2011

53

The key observation is that we can calculate the sum of the distances separately for ὼ and for ώ

ŎƻƻǊŘƛƴŀǘŜǎΦ [ŜǘΩǎ ǎŜŜ Ƙƻǿ Ŏŀƴ ǿŜ ǎǳƳ ǘƘŜ ŘƛǎǘŀƴŎŜǎ ŦƻǊ ὼ coordinate (it is analogous for ώ). We have that

the distance between the Ὧ-th and Ὧ ρ-th point is ὼ ὼ. Instead of calculating the distance

between every two points, let see which pairs of points pass through this segment ὼȟὼ]. We can easily

see that the number of such pairs is Ὧẗὲ Ὧ. This is because every pair with one point on the left side of

the segment and one point on the right side of the segment passes through (recall that array ὼ is sorted).

See example of Figure 1, where we have that ψ pairs of point pass through the segment υȟω.

== ==

Function: getDistance

Input: n ï number of points

X ï x coordinates of points

Y ï y coordinates of points

 Output: average distance between points

--- ------------------------

12 sort arrays x and y;

13 toReturn = 0;

14 for i = 1 to n - 1 do begin

15 segmentX = x [i + 1] ï x [i];

16 toReturn = toReturn + segmentX * (i + 1) * (n ï 1 ï i);

17

18 segmentY = y [i + 1] ï y [i];

19 toReturn = toReturn + segmentY * (i + 1) * (n ï 1 ï i);

20 endif

21 numPair = (n * (n ï 1)) / 2;

22 toReturn = toReturn / numPair;

23 return toReturn

==

Pseudo code for the second algorithm

At the end let us mention the Serbian IOI 2008 preparation where one of the problems was very similar to

this one. Here we will just give the problem statement:

You are given a set Ὓ of ὲ points in the plane. Coordinates of the given points are integers. For every given

point ὃ let us denote

Ὠὃ άὥὼ ȿὃȢὼ ὄȢὼȿȟȿὃȢώ ὄȢώȿ

ᶰ

In other word, Ὠὃ is sum of distance to all other points, where distance between point ὃ and ὄ is defined

as ὨὭίὸὃȟὄ άὥὼ ȿὃȢὼ ὄȢὼȿȟȿὃȢώ ὄȢώȿ.

Find a point for which function Ὠ has minimal value.

Solution by:
Name: Slobodan Mitroviŏ
School: EPFL Lausanne
E-mail: boba5555@gmail.com

Qualifications

 MDCS ς Bubble Cup 2011

54

Problem R1 07: Ministry of Truth (ID: 1732)

Time Limit: 1.0 second

Memory Limit: 64 MB

In whiteblack on blackwhite is written the utterance that has been censored by the Ministry of Truth. Its

author has already disappeared along with his whole history, and now, while Big Brother is watching

somebody else, you, as an ordinary official of the Minitrue, have to delete some letters from the utterance

so that another utterance will appear, which has been approved of by the Ministry.

The Ministry of Truth defines a ύέὶὨ as a nonempty sequence of English letters and an όὸὸὩὶὥὲὧὩ as a

sequence of one or more words separated with one or more spaces. There can also be spaces before the

first word and after the last word of an utterance. In order to compare two utterances, one should delete

all the leading and trailing spaces and replace each block of consecutive spaces with one space. If the

resulting strings coincide, then the utterances are considered to be equal. When the official deletes a letter

from the utterance, this letter turns into a space.

Input

The first line contains the original utterance and the second line contains the utterance that must be

obtained. The length of each utterance is at most ρπππππ symbols. The words in both utterances are

separated with exactly one space; there are no leading or trailing spaces in each line. The original and the

required utterances are different.

Output

LŦ ȅƻǳ Ŏŀƴϥǘ ŎŀǊǊȅ ƻǳǘ ȅƻǳǊ ƻǊŘŜǊΣ ƻǳǘǇǳǘ άL I!±9 C!L[95ΗΗΗέ ƛƴ ǘƘŜ ƻƴƭȅ ƭƛƴŜΦ hǘƘŜǊǿƛǎŜΣ ƻǳǘǇǳǘ ǘƘŜ ƻǊƛƎƛƴŀƭ

utterance replacing the letters that are to be deleted with the underscore character.

Sample

input output
Preved to Medved

Preved Me

Preved __ Me____

this is impossible

im possible

I HAVE FAILED!!!

Solution:

Denote the original utterance as ί and the utterance that must be obtained as ί. Next algorithm checks if

string ί can be obtained from string ί using the rules from the problem statement and, if the answer is

ΩȅŜǎΩΣ ǊŜǇƭŀŎŜǎ ǘƘŜ ƭŜǘǘŜǊǎ ǿƘƛŎƘ ǎƘƻǳƭŘ ōŜ ŘŜƭŜǘŜŘ ŦǊƻƳ ǘƘŜ ƻǊƛƎƛƴŀƭ ǳǘǘŜǊŀƴŎŜ ǿƛǘƘ ǘƘŜ ǳƴŘŜǊǎŎƻǊŜ

character. The algorithm executes these steps in a circulary fashion:

1. Take the next word from ί and search for it in ί from the corresponding position (for the first

word it is the beginning of ί).

Qualifications

MDCS ς Bubble Cup 2011

55

2. If there is no such substring in ί ǘƘŜƴ ǇǊƛƴǘ άL I!±9 C!L[95ΗΗΗέ ŀƴŘ ǉǳƛǘΦ

3. Ok, a word was found. Replace all letters in ί before the newly found substring and after the

previously found substring (or from the beginning of ί if it is the first word) with the underscore

character.

4. If there are no more words to be searched then replace all letters in ί after the last found

substring with the underscore character. Print ί and quit.

5. The next position to start searching for a new substring in ί is two positions to the right from the

last letter in the previously found substring.

In step 1 what we actually want is to find out if some pattern appears in the text. For that some fast enough

string searching algorithm should be used. Implementations of string searching algorithms from standard

libraries are generally slow (for example, functions string::find() in c++ and strstr() in c, their time

complexity is ὕὲ , where ὲ is text length).

The two probably best-known appropriate algorithms are KMP (Knuth-Morris-Pratt) and Boyer-Moore.

Both of them have time complexity ὕὲ. KMP is easier for implementation, but Boyer-Moore algorithm is

in general faster, especially on large alphabets (relative to the length of the pattern). A simplified version of

Boyer-Moore algorithm is often implemented in text editors for the <<search>> and <<substitute>>

commands. A slightly deeper analysis of the chosen string searching algorithm with the previously

described solution shows that the time complexity for the whole solution is ὕὲ, where ὲ is length of ί.

Solution by:
Name: Mladen Radojeviŏ
School: The Faculty of Electrical Engineering, University of Belgrade
E-mail: mladen0211@yahoo.com

Qualifications

 MDCS ς Bubble Cup 2011

56

Problem R1 08: Old Ural Legend (ID: 1769)

Time Limit: 1.0 second

Memory Limit: 64 MB

According to a tale, in the sacred Indian city of Benares, beneath a temple that marked the center of the

world, Brahma put three diamond needles and placed φτ gold disks on them. Priests of the temple are busy

transferring the disks from needle to needle. It is believed that the world will perish as soon as the task is

done.

Another legend is known in Ural. It is said that a monastery is lost in woods at the boundary of Europe and

Asia, where the mythical stone flower grew. The monks who live there are doomed to write positive

integers on parchment until the Last Judgement. Nobody knows when and where they started this work.

There is a legend among monks that when the monastery had been built its first abbot was visited in his

dream by the Archangel Gabriel, who showed a stone on the slopes of the Ural mountains where a string of

digits was carved. Gabriel ordered to write all the integers starting from the smallest integer that was not a

substring of that string. If this legend is true, which integer was written by the monks first?

Input

The only input line contains the nonempty string consisting of decimal digits carved on the stone. The

length of the string does not exceed ρπ.

Output

Output the positive integer that is the first number written by the monks.

Sample

input output
10123456789 11

Solution:

After reading the problem statement we can shorten it to: what is the smallest positive integer that is not a

substring of a given string?

The first thing we should ask ourselves is how big the answer can be. Even if each substring of the given

string is a different integer there are at most substrings, i.e. integers, where ὲ is the length of the

given string. So the answer is at most υȟπππȟπυπȟππρ. Obviously, naïve brute-force solution that checks

each integer would time out.

! ŎƻƳƳƻƴ ǘǊƛŎƪ ƛƴ ǎǳŎƘ ǇǊƻōƭŜƳǎ ƛǎ άƛƴǾŜǊǘƛƴƎέ ǿƘŀǘ ǿŜ ƴŜŜŘ ǘƻ Řƻ ς instead of selecting a number and

checking if it is contained in the string, we should get all integers that are contained in the string and find

the smallest that is not. Since the answer has no more than ÌÏÇὲ ρπ digits, we can iterate the string

and get all integers with length less than or equal to 10 out of it in ὕὲẗ ρπ. Since ρπὲ is not really big we

Qualifications

MDCS ς Bubble Cup 2011

57

can do one of the following:

a) Use a hash set and then iterate for the smallest integer that is not in the hash set. Since it contains

at most ρπὲ entries, we will find the answer in at most ρπὲ ρ iterations.

b) Do the same as a), using a tree set (which can be slow, depending on the implementation, but STL

set should do fine).

c) Store the integers in an array, then sort it afterwards and find the smallest missing positive integer

in linear time.

d) Note that the upper bound we used is much bigger than the real one (try to solve the following

problem: generate an input to this problem that covers the maximal number of integers) and use

arrays instead of a hash set. The maximal answer in TƛƳǳǎΩ ǘŜǎǘ ǎŜǘ ƛǎ ǎƳŀƭƭŜǊ ǘƘŀƴ ρςȟπππȟπππ, so

the memory is quite enough.

The complexity is ὕὲẗÌÏÇὲ ὕὲÌÏÇὲ for finding the numbers and ὕὲÌÏÇὲ for finding the

smallest missing one in a) and d), or ὕὲÌÏÇὲÌÏÇὲÌÏÇὲ if we are using b) or c).

The overall complexity with the faster solution is ὕὲÌÏÇὲ.

Solution by:
Name: Alexander Georgiev
School: Sofia University, Sofia, Bulgaria
E-mail: espr1t.net@gmail.com

Qualifications

 MDCS ς Bubble Cup 2011

58

Problem R1 09: Barber of the Army of Mages (ID: 1774)

Time Limit: 0.5 second

Memory Limit: 64 MB

Petr, elected as a warlord of the army of mages, faced a challenging problem. All magicians recruited in the

army had heavy beards, which were quite unacceptable for soldiers. Therefore, Petr ordered all recruits to

shave their beards as soon as possible. Of course, all magicians refused to do it, referring to the fact they

don't know any shaving spell. Fortunately, a magician Barberian agreed to shave all recruits.

.ŀǊōŜǊƛŀƴ Ŏŀƴ Ŏŀǎǘ ŀ άCǳǎƛƻƴ tƻǿŜǊέ ǎǇŜƭƭ ǿƘƛŎƘ ǎƘŀǾŜǎ ōŜŀǊŘǎ ƻŦ ŀǘ Ƴƻǎǘ k magicians in one minute. In

order to achieve full effect every magician should be shaved twice: the first spell shaves close, the second

spell shaves even closer. For each recruit Petr appointed a time when he should visit Barberian.

Unfortunately, the discipline in the new army is still far from perfect, so every magician will come to

Barberian in time, but everyone will wait for the shave until his patience is exhausted and will disappear

after that.

Determine whether Barberian will be able to shave beards of all magicians before they disappear.

Input

The first line contains two space-separated integers ὲ and Ὧ(ρ ὲȟὯ ρππ), which are the number of

recruits in the army and the number of magicians Barber can shave simultaneously. The Ὥ-th of the

following ὲ lines contains space-separated integers ὸ and ί (π ὸ ρπππ, ς ί ρπππ, which are

the time in minutes, at which the Ὥ-th magician must come to Barberian, and the time in minutes he is

ready to spend there, including shaving time.

Output

If Barberian ƛǎ ŀōƭŜ ǘƻ ǎƘŀǾŜ ōŜŀǊŘǎ ƻŦ ŀƭƭ ƳŀƎƛŎƛŀƴǎΣ ƻǳǘǇǳǘ ά¸Ŝǎέ ƛƴ ǘƘŜ ŦƛǊǎǘ ƭƛƴŜΦ ¢ƘŜ Ὥ-th of the following ὲ

lines should contain a pair of integers ὴ, ή which are the moments at which Barberian should cast the

spell on the Ὥ-th magician (ὸ ὴ ή ὸ ί ρ). If at least one magician disappears before being

ŎƻƳǇƭŜǘŜƭȅ ǎƘŀǾŜŘΣ ƻǳǘǇǳǘ ŀ ǎƛƴƎƭŜ ǿƻǊŘ άbƻέΦ

Sample

input output
3 2

1 3

1 3

1 3

Yes

1 2

1 3

2 3

2 1

1 3

1 3

No

Qualifications

MDCS ς Bubble Cup 2011

59

Solution:

First we are going to solve an easier version of this task, where one magician has to be shaved only once,

ŀƴŘ .ŀǊōŜǊƛŀƴ Ŏŀƴ ǎƘŀǾŜ ƻƴƭȅ ƻƴŜ ƳŀƎƛŎƛŀƴ ƛƴ ƻƴŜ ǎŜŎƻƴŘΦ [ŜǘΩǎ ƳŀƪŜ ŀ ƎǊŀǇƘ ƛƴ ǿƘƛŎƘ ŜŀŎƘ ƳŀƎƛŎƛŀƴ ƛǎ

represented with a node. We will denote these nodes with ὓ, where ὓ represents the Ὥ-th magician. We

can notice that there is at most ςπππ ǎŜŎƻƴŘǎΣ ǎƻ ǿŜ Ŏŀƴ ƳŀƪŜ ŀ ƴƻŘŜ ŦƻǊ ŜǾŜǊȅ ǎŜŎƻƴŘΦ [ŜǘΩǎ Ŏŀƭƭ ǘƘŜǎŜ

nodes Ὓ, where Ὓ represents Ὥ-th second. Edges will be constructed in the following way: if the Ὥ-th

magician comes to Barberian at time ὸ and he can wait ή seconds, we should connect node ὓ with nodes

 ὛȟὛ ȟὛ ȟȣȟὛ . Now it is quite obvious that it is a bipartite matching problem. If there is a

perfect bipartite matching on that graph there is a solution and we should write all edges which are in the

perfect matching, otherwise there is no solution.

bƻǿ ƭŜǘΩǎ ŜȄǘŜƴŘ ǘƘƛǎ ǎƻƭǳǘƛƻƴ ŦƻǊ ƻǳǊ ǇǊƻōƭŜƳΦ .ŜŎŀǳǎŜ every magician should be shaved ς times, we

should make a global node Ὃ, which will be connected to all nodes in ὓ with weight ς. The second

condition says that Barberian can shave Ὧ magicians in one second, so we should make a second global

node Ὕ, which will be connected to all nodes in Ὓ with weight Ὧ. Weight between nodes in ὓ and nodes in

Ὓ is ρ, because every magician can be shaved only once in one second. Now we have a standard maximum

flow problem between nodes Ὃ (sink) and Ὕ (target). If the maximum flow through that graph is ςẗὔ,

there is a solution and we should write edges which are in maximum flow, otherwise there is no solution.

Because there are at most ςẗὔ augmenting paths, the complexity of this algorithm is only ὕὔẗὉ.

Memory complexity is also ὕὔẗὉ.

Solution by:
 Name: 5ŜƳƧŀƴ DǊǳōƛŏ
School: άWƻǾŀƴ WƻǾŀƴƻǾƛŏ ½ƳŀƧέ DǊŀƳƳŀǊ {ŎƘƻƻƭ, Novi Sad
 E-mail: demjangrubic.f@gmail.com

Qualifications

 MDCS ς Bubble Cup 2011

60

Problem R1 10: Space Bowling (ID: 1775)

Time Limit: 1.0 second

Memory Limit: 64 MB

The inhabitants of planets orbiting around the pulsar PSR 2010+15 enjoy playing space bowling. A few

cylindrical pins of unit diameter are set on a huge field. A player chooses a certain point of the field and

rolls a ball from this point, trying to destroy as many pins as possible. After the ball is released, it rolls in a

straight line, touching the surface all the time before rolling away from the field. If the ball touches a pin,

this pin dematerializes, and the ball doesn't change direction. To score a strike, the player has to destroy at

least Ὧ pins in one shot.

Unfortunately, aliens haven't yet invented a machine that would return the balls that rolled away from the

field. Instead, they use a machine that materializes a new ball from vacuum before each shot. A player

enters the diameter and in a second he obtains a ball of exactly the same diameter.

It is time for an alien Vas-Vas to roll a ball. There are ὲ pins standing on the field at the moment. Help Vas-

Vas to determine the minimal diameter of a ball, he can score a strike with.

Input

The first line contains space-separated integers ὲ and Ὧ (ρ Ὧ ὲ ςππ). The Ὥ-th of following ὲ lines

contains space-separated integers ὼ andώ (ρπ ὼȟώ ρπ), which are the coordinates of the

centers of pins. All pins are situated at different points.

Output

Output the minimal possible diameter of a ball which can be used to score a strike, with absolute or relative

error not exceeding 10ҍ6. If a strike can be scored with a ball of arbitrarily small diameter, output

άлΦллллллέΦ

Sample

input output
5 4

0 4

0 6

6 4

6 6

3 0

1.0000000000

Solution:

Let us first make a couple of observations. Suppose that the starting position of the ball of radius ὶ is ὼȟώ,

and that we roll it in some direction Ὠ. The gray area in the Figure 1 (plus the area of the ball) represents all

points that are touched by the ball. Note that moving the ball to the left, in the opposite direction from Ὠ,

Qualifications

MDCS ς Bubble Cup 2011

61

only increases this area, anŘ ƘŜƴŎŜ ǿŜ Ŏŀƴ ƳƻǾŜ ƛǘ αƛƴŦƛƴƛǘŜƭȅά ǘƻ ǘƘŜ ƭŜŦǘ ǿƛǘƘƻǳǘ ƭƻǎƛƴƎ ŀƴȅǘƘƛƴƎ - Figure 2.

This allows us to completely ignore the starting position of the ball, and consider only the strip of width ὶ as

the area affected by the ball. With this new setting in mind, our goal is to find minimum ὶ such that there is

a strip of width ὶ that intersects at least Ὧ balls.

Since brute-forcing our way through all possible strips is too slow, we need an observation about what the

solution looks like. Let us consider an example with the set of pins and a possible solution stripe as on the

Figure 3, and suppose that Ὧ is φ.

It is easy to see that the given solution can be improved, shortened, by moving the upper boundary of the

stripe down and the lower boundary of the stripe up.

Moving the upper boundary further down causes the loss of intersection with the topmost pin, and hence it

would no longer be a possible solution. Thus we can conclude that in the optimal solution there is at least

one pin such that the upper boundary is tangential to it and its center lies outside of the stripe (and a

CƛƎǳǊŜ мΥ wƻƭƭƛƴƎ ƻŦ ǘƘŜ ōŀƭƭ CƛƎǳǊŜ нΥ aƻǾƛƴƎ ǘƘŜ ōŀƭƭ ǘƻ ǘƘŜ ƭŜŦǘ

CƛƎǳǊŜ оΥ tƛƴǎ ŀƴŘ ǎƻƭǳǘƛƻƴ ǎǘǊƛǇŜ

CƛƎǳǊŜ пΥ LƳǇǊƻǾŜŘ ǎƻƭǳǘƛƻƴ

Qualifications

 MDCS ς Bubble Cup 2011

62

similar statement holds for the lower boundary). If that is not the case, we can move the upper boundary

further towards the lower one until this happens, because in order for the ball not to be intersected by the

stripe anymore we need to pass the moment when its upper bound is tangential to it. Hence stopping

exactly at that moment does not change the number of intersections.

However, for two fixed pins, there are infinitely many stripes that are tangential to them (one from the

below and one from above). Note that only those stripes that are tangential to at least one additional pin

are candidates for the optimal solution, because otherwise we could rotate the stripe in the direction that

ŘŜŎǊŜŀǎŜǎ ƛǘǎ ǿƛŘǘƘ όǊƻǘŀǘŜ αŀǊƻǳƴŘά ǘǿƻ ŦƛȄŜŘ Ǉƛƴǎύ ǳƴǘƛƭ ǘƘƛǎ ƘŀǇǇŜƴǎ όFigure 5).

We can now easily transform these observations into a solution. Since we know that the upper and lower

boundary of the solution stripe must be tangential to at least one pin, and that it further needs to be

tangential to at least one additional pin, we can assume that the center of this additional pin will be above

the upper boundary. Hence, we can iterate over all pairs ὥȟὦ of pins, and fix them as pins that are

tangential to the solution stripe and whose centers are above it. After that we just need to find a pin that

will be tangential to the lower boundary. Note that we can do this greedily, by selecting the Ὧ ςth

farthest pin from the line that goes through the centers of pins ὥ and ὦ (and that is also below it, since we

are looking for the lower boundary). Taking any other pin gives either a strip of larger width or too few

intersections. Since there are ὲ pairs, and for each pair we can find the Ὧ ςth farthest one in ὕὲ, the

total running time is ὕὲ . Note that for an easier implementation, selecting can be done in ὲÌÏÇὲ (sort

and then pick) which gives ὕὲÌÏÇὲ, which is still good enough for ὲ ςππ.

Solution by:
Name: Rajko Nenadov
School: ETH Zurich
E-mail: rajkon@gmail.com

CƛƎǳǊŜ рΥ wƻǘŀǘƛƻƴ

Qualifications

MDCS ς Bubble Cup 2011

63

Problem R2 01: Funny Card Game (ID: 1166)

Time Limit: 1.0 second

Memory Limit: 16 MB

Of course all of you want to know how to become ACM world champions. There is no exact answer to this

question but it is well known that the champions of the last two ACM World Finals enjoyed playing the

following funny card game. Two or more players can play this game simultaneously. It is played using a

standard 54-card deck. At the beginning the players sit forming a circle. One of the players shuffles the deck

and then he deals the cards in clockwise order starting from the neighbour on his left. He deals the top card

of the deck to the current player each time. He does it until each player gets five cards. Then he takes the

top card of the deck and lays it onto the table face up and he also lays the remainder of the deck nearby

(these cards are laid face down preserving their original order). The card laid by the shuffler is considered

as the first turn of the game (as if it was made by the shuffler to the player on his left).

The normal game flow as following: the player should cover the last laid card with the card of the same suit

or value. If he has none, he takes one card from the top of the deck and again checks this condition. If still

there are no matching cards, the move will go to the next player (his left neighbour). But for some cards

special rules are applied:

1. If the laid card is 6, the player takes one card from the top of the deck and skips his turn

2. If the laid card is 7, the player takes two cards from the top of the deck (if there is only one card in

the deck, he takes just it) and skips his turn

3. If the laid card is Ace the player skips his turn without taking any cards

4. If the player lays Queen, he himself announces the suit of the card it should be covered with

5. Eight is one of the most powerful weapons in this game. When it is laid, the next player has to

cover it in any case. If he cannot cover it with his cards he has to take cards from the deck, until he

is able to cover it.

6. And the most important card in the game is the King of Spades. If it's laid, the next player takes 4

cards from the top of the deck (if there is not enough cards in the deck, he takes all of them) and

skips his turn.

You may assume that the deck is looped and the laid cards are immediately moving to the bottom of the

deck. So it can happen that the player has to cover the card by itself. We should say some words about

Jokers. Jokers can have any card value by the wish of the player who has it. If the player lays the joker, he

assigns a definite card value and suit for it, so this Joker has this assigned value until another player takes it

from the deck (if it ever happens). The player is free to use or not to use the Joker whenever he wants (if it

is his turn to play, of course). If the player is left without any cards in his hand, he is considered a winner

and the game continues without him (his left neighbour becomes the left neighbour of his right neighbour).

If there is only one player left, he is the looser, so he is called a Japanese Fool (it is a Russian name of this

game). We are interested in the following situation. Consider the moment when only two players are left in

the game. If one of them has a special combination of cards, it may happen that he can lay out all his cards

in a some sequence so that the other player won't get a move (he'll just have to take cards from the deck

Qualifications

 MDCS ς Bubble Cup 2011

64

and skip turns) and will be the loser τ provided the first one finds the winning sequence.

You will be given the position of the game in which only two players are left. Your task will be to determine

whether such a winning sequence for the first player exists or not. We will consider that the first player

have already taken all cards from the deck that he had to (if any), so he cannot take any cards from the

deck. We will also consider that if the last laid card is a skip-turn card, it was the second player who skipped

the turn.

Input

The first line contains cards of the first player separated by spaces. The second line contains the last laid

face up card. The card description consists of two characters. The first of them corresponds to the card

value (2-9 for digits, T for 10, J for Jack, Q for Queen, K for King and A for Ace). The next describes the suit

of the card and may be one of the following: S for Spades, C for Clubs, D for Diamonds or H for Hearts. Joker

is represented by a character '*'. If the last laid card is Queen, it is followed by a suit letter. If the last laid

card is a joker, then the '*' is followed by an actual card description (the card specified by the player who

laid the Joker).

Output

The first line should contain a single word YES or NO signalling whether the winning sequence exists. If the

answer is positive the second line must contain the winning sequence of cards separated by spaces. As in

the input, the Joker is to be followed by a card specification and the Queen should follow a suit letter. If

there is more than one solution you may output an arbitrary one.

Sample

input output
6C QD 6S KS 7S *

*QHS

YES

7S KS 6S 6C *6D QDS

Solution:

This problem was tricky in terms of understanding and coding, but the idea hiding behind it is more or less

standard.

CƛǊǎǘΣ ƭŜǘΩǎ ǊŜŀŘ ǘƘŜ ǘŜȄǘ ƻŦ ǘƘŜ ǇǊƻōƭŜƳ ŎƭƻǎŜƭȅ ŀƴŘ ǎŜŜ ƛŦ ǿŜ Ŏŀƴ ŘǊŀǿ ǎƻƳŜ ǇǊŜƭƛƳƛƴŀǊȅ ŎƻƴŎƭǳǎƛƻƴǎΦ

¶ The part about picking up cards from the deck is obviously irrelevant to the solution so we can

simply ignore it wholesale.

¶ [ŜǘΩǎ Ŏŀƭƭ ŎŀǊŘǎ ǘƘŀǘ Řƻ ƴƻǘ ƘŀǾŜ ŀ ǎǇŜŎƛŀƭ ǊǳƭŜ ŀǘǘŀŎƘŜŘ ǘƻ ǘƘŜƳ ordinary cards. It is clear that if the

first player has two or more ordinary cards in his hand he cannot finish the game, and if he has

exactly one ordinary card the only way to finish is to play that card last.

¶ Queens and eights can for our purposes be considered ordinary cards as well (although we will

have to pay attention to the case when a queen is the last laid card at the start).

¶ There is no point to play a joker as a card you already possess in your hand ς it is always smarter to

simply play that card instead and keep the joker because it is more versatile.

Qualifications

MDCS ς Bubble Cup 2011

65

¶ There is no point to play a joker as an ordinary card.

From all this, we can conclude that the largest amount of cards we will be dealing with at any point is 16 ς 4

sixes, 4 sevens, 4 eights, the King of Spades, two jokers and one ordinary card.

The simplest way to solve this is to use backtrack to try all possible paths until we reach one that

ǎǳŎŎŜǎǎŦǳƭƭȅ ƎŜǘǎ ǊƛŘ ƻŦ ŀƭƭ ǘƘŜ ŎŀǊŘǎΦ [ŜǘΩǎ ǘǊȅ ǘƻ ŜǎǘƛƳŀǘŜ Ƙƻǿ ƳǳŎƘ ǘƛƳŜ ǘƘƛǎ ǿƛƭƭ ǘŀƪŜΦ

The highest amount of possible moves in a position (the branching factor) is 7 (if the last card was 6, 7 or 8

of spades and we have at least one joker in hand ς note again that we should never use jokers as

replacements for cards we currently possess, and that if we have an ordinary card we should never play it

until the very end). Of course, we can be in that kind of situation at most five times (until we spend the

three spades and the two jokers), and otherwise the branching factor cannot be over 6. Also, we never

have a meaningful choice when we have reached the last special card (even if it is a joker). So the upper

bound on the number of positions we can go through is ὔ χϽφḙρπ.

Note that a much better upper bound can be calculated by examining the problem more closely and that

card configurations that come close to that bound will have many solutions, so only a small portion of the

search space will have to be traversed before we find one. This means that it is actually possible that a very

fast implementation of this approach using some good heuristics will pass all the tests. However, a much

safer way is to use a bitmask to store the positions we have already been in and thus avoid unnecessary

calculations.

To keep all data about a position during our move we will need the following information: which cards from

our original hand are still present (1 bit per card for 13 special cards and 2 more bits to keep track of the

jokers) and which card is laid on the table (5 more bits ς remember that the only time this can be a non-

special card is at the very beginning so we use 4 bits to specify a card, plus one more bit to know if it was

actually a joker posing as that card). This gives a total of ς possible positions at most.

For each position all we care about is whether it leads to a solution, which takes up just one bit. If a solution

is found, we can easily reconstruct the path since we are already storing the last-played card for every step

of the way.

Now, since we know that we never have to go through any position more than once, we can conclude that

the overall time is ὕς , where ὲ is the number of special cards (or jokers) in our original hand. Since we

have seen that ὲ cannot be larger than 15, we finally conclude that, even after including the constant

factors, we still have more than enough time to calculate everything. The memory complexity is also ὕς ,

but it is probably simpler to just allocate ς bits (or even ς booleans) in advance and not worry about it

afterwards.

There are several small obstacles involved in the implementation, such as correctly interpreting the input

(including cases when a joker or a queen is the last laid card) and dealing with jokers, but we will leave that

to the reader.

Solution by:
Name: Andrija Jovanoviŏ
School: School of Computing, Belgrade
E-mail: ja.andrija@gmail.com

Qualifications

 MDCS ς Bubble Cup 2011

66

Problem R2 02: Shots at Walls (ID: 1390)

Time Limit: 3.0 second

Memory Limit: 64 MB

A new pistol is being tested. The pistol can fire shots with variant bullet speeds. In some points of time

shots are fired from the point of origin with certain horizontal speeds, and in some other points of time

walls are built on a horizontal platform. The walls are non-singular segments lying on lines that do not go

through the point of origin. The walls may intersect. For processing of the test results, you are to determine

the time that each shot bullet had been flying for. You can assume that the speed of the bullet after shot is

constant.

Input

Each line of the input begins with either "shot", "wall", or "end" (without quotes). The number of lines

doesn't exceed υππππ. After "shot", the two coordinates of speed of the bullet are listed; the speed cannot

be zero. After "wall", the four numbers follow, being the coordinates of wall's beginning and end. "end"

denotes the end of the input. All the coordinates are integers whose absolute values doesn't exceed 10000.

All the events are listed in chronological order, and time intervals between the events exceed the time

needed to build a wall, or the time needed for bullet to reach the next wall or end of the proving ground.

Output

For each of the shots, you must output the single number, on a line by itself: the time that the bullet had

been flying for, with precision of 10ҍ6. If the bullet doesn't hit any wall, you must output "Infinite" instead of

a number.

Sample

input output
shot 1 0

wall 1 0 0 1

shot 1 1

shot - 1 3

wall 1 0 - 1 2

shot - 1 3

wall 1 1 - 1 1

shot - 1 3

wall 2 3 2 - 3

wall 3 - 2 - 3 - 2

shot 1 - 1

shot 40 - 39

shot 9999 - 10000

shot - 1 - 1

shot - 3000 - 2000

shot - 3001 - 2000

shot - 3000 - 2001

shot 1 0

shot 1 1

wall - 1 2 10 - 10

Infinite

0.50000000000000000000

Infinite

0.50000000000000000000

0.33333333333333333333

2.00000000000000000000

0.05000000000000000000

0.00020000000000000000

2.00000000000000000000

0.00100000000000000000

Infinite

0.00099950024987506247

1.00000000000000000000

0.50000000000000000000

1.00000000000000000000

0.90909090909090909091

0.43478260869565217391

0.83333333333333333333

2.00000000000000000000

3333.33333333333333333

Qualifications

MDCS ς Bubble Cup 2011

67

shot - 1 1

shot 0 1

shot 1 1

shot 1 0

shot 1 - 1

wall 0 - 10000 - 10000 0

shot - 2 - 1

end

Solution:

We can consider each shot having two attributes ς direction and speed. The direction is the polar angle at

which the shot is fired. We will use it to determine the wall which the shot hits. The speed is the change of

each coordinate for 1 time unit and it is given in the input. Let's denote them with ὺὼȟ the change in ὼ-

coordinate, and ὺώ, the change in ώ-coordinate. Once we know which wall is shot, if any, we can easily find

the time the bullet had been flying for.

We find the equation for the line of the wall in the form ὃẗὼ ὄẗώ ὅ. We know that the shot crosses

the wall - so the bullet crosses the line. The bullet is at point ὸẗὺὼȟὸẗὺώ at time ὸ. From this we have

the equation ὃẗὸẗὺὼὄẗὸẗὺώ ὅ. We can find ὸ from this equation.

Now the tricky part: how to find which wall is hit by the bullet? For each shot we know the direction ς an

angle from segment πȟςẗ“. We must use some data structure so we can do two things with it:

¶ answer ǘƘŜ ǉǳŜǎǘƛƻƴΥ ǿƘƛŎƘ ǿŀƭƭ ƛǎ Ƙƛǘ ƛŦ ǘƘŜ ŘƛǊŜŎǘƛƻƴ ƻŦ ǘƘŜ ǎƘƻǘ ƛǎ ʰ Κ

¶ insert a new wall and update the data structure.

At each time we keep a sequence of intervals and a wall corresponds to each interval. It looks like: ȟ

ς wall ύ for Ὧᶰρȟὴ, where π Ễ ὦὩὸὥ ς“. There might be gaps in

ǘƘƛǎ ǎŜǉǳŜƴŎŜ ƻŦ ƛƴǘŜǊǾŀƭǎΦ ²ƘŜƴ ǘƘŜǊŜ ƛǎ ŀ ƎŀǇ ǘƘŜ ōǳƭƭŜǘ Ƙƛǘǎ ƴƻ ǿŀƭƭ ŀƴŘ ǿŜ Ƴǳǎǘ ƻǳǘǇǳǘ άInfiniteέΦ

Let's imagine we add a wall. We know the coordinates of the wall's both ends, so we can find their polar

angles ς say they are and (we have to be careful when the wall crosses the ὕὼ axis, i.e. when the

angle π should be in the interval). If no other interval we had in our structure before intersects with

ȟ ȟ we can just add it to the data structure and say it corresponds to the current wall we add. This

means that no other wall had covered the interval ȟ

Otherwise we have to process each interval which intersects it. The order in which we process them

doesn't matter. Imagine we have to process an interval ȟ which crosses ȟ . First we remove

ȟ from the data structure. We see the walls corresponding to both intervals and decide which is

closer to the origin at each angle ς we get some new intervals. We are left with a part of ȟ ς which is

the interval which intersected the interval we add. This part is added to the data structure ς it won't cross

anything else and we are done with it. We have a part of ȟ ς the one we try to add which doesn't

cross the part of ȟ we added in the data structure. But this interval can cross another interval from

our structure. While we are left with a part of the interval we are trying to add on this step which crosses

an interval from the data structure we have to process those intervals and split them into smaller intervals.

A little more detail about the data structure: it has to support fast searches, erases and insertions. In C++

we can use the set class to store the intervals. We just need to predefine the comparison operator so the

intervals are sorted as we want. We have a number of disjoint intervals. We want the interval ὒρȟὙρ to

Qualifications

 MDCS ς Bubble Cup 2011

68

be before ὒςȟὙς ǿƘŜƴ ƛǘ ƛǎ ŜƴǘƛǊŜƭȅ ǘƻ ǘƘŜ άƭŜŦǘέ ƻŦ ƛǘ ƛΦŜΦ Ὑρ ὒς. If we overload the comparison

operator like this we can easily find the intervals which our interval intersects. We just need to search for

our interval in the set and the one returned will be one of the intervals intersected by ours. How to find

which wall is hit if the direction of the shot is ? We just need to search for the interval ȟ.

Solution by:
Name: Yordan Chaparov
School: 'Atanas Radev' Mathematics High School, Yambol, Bulgaria
E-mail: ancho_mg@abv.bg

Qualifications

MDCS ς Bubble Cup 2011

69

Problem R2 03: Wires (ID: 1460)

Time Limit: 1.0 second

Memory Limit: 32 MB

Connoisseur of sound Vova decided to update his equipment. One of the ways to improve the sound is to

use point-to-point wiring with heavy wires, and the wires must be as short as possible to diminish the

resistance. It is clear how to connect two terminals, it is also easy to find an optimal wiring for three

terminals. But what about four terminals?

There are four terminals on a circuit board. You should connect them (there must be a contact between

each pair of terminals). It is permitted to add at most three auxiliary terminals and to connect terminals

with wire pieces. The goal is to minimize the total length of the wires.

Input

ὔ is the number of tests

ὼρ ώρ the first test

ὼς ώς

x3 y3

x4 y4

x1 y1 the second test

x2 y2

x3 y3

x4 y4

Χ

ρ ὔ ρππ, ὼȟώ are integers, ςππὼȟώ ςππ, no two points coincide in each test.

Output

For each test, you should output a line containing the minimal possible length of the wires. The number

must be given with at least four fractional digits.

Sample

input output
2

0 0

2 0

2 1

3 0

0 0

0 1

1 0

1 1

3.9093

2.7321

Qualifications

 MDCS ς Bubble Cup 2011

70

Solution:

This problem in combinatorial optimization is known as the Steiner tree problem. The original problem

(also known as Euclidean Steiner tree problem) is: Given ὔ points in the plane, the goal is to connect them

by lines of minimum total length in such a way that any ς points are connected directly by a line segment,

or via other points and line segments. It may be shown that for the Euclidean Steiner problem points added

to the graph (called Steiner points) must have a degree of three, and any two of these three line segments

must form a ρςπ degree angle. It follows that the maximum number of Steiner points that we need to add

is ὔ ɀ ς, where ὔ is the initial number of given points. In this task we have 4 points, so the number of

Steiner points here equals ς. We are not going to prove this, instead we will just show how to find Steiner

points and give one of the ways to implement it.

We can split the task into two smaller tasks, based on whether the starting quadrilateral is convex or not.

If the quadrilateral is not convex, we take the σ points that form the triangle which contains the last point

and find Fermat's point for this triangle. If FermatΩǎ point is inside a triangle then we reach the minimum

total length by connecting all τ points with it, else we need to connect the point in the triangle with the

other σ points.

Figure 1 - Ὃ ƛǎ CŜǊƳŀǘΩǎ Ǉƻƛƴǘ ƻŦ ǘǊƛŀƴƎƭŜ ὃὄὅ

If the quadrilateral is convex, we need to find two Steiner points using the following algorithm:

¶ We construct ς equilateral triangles using ς opposite edges of the quadrilateral and mark their

third points with Ὁ and Ὂ (Ὁ and Ὂ are outside of the quadrilateral)

¶ We construct circles ὑρ and ὑς around these ς triangles

¶ Intersection of line ὉὊ with circles ὑρ and ὑς consists of two points (possibly identical) Ὃ and Ὄ.

¶ Points Ὃ and Ὄ are Steiner points of that quadrilateral.

We get the minimal network if we connect the points like in the Figure 2.

Qualifications

MDCS ς Bubble Cup 2011

71

Figure 2. Example for the convex case

If these points are outside of the quadrilateral, then it is best not to include any of them, and connect the

starting points by edges of the quadrilateral like in the Figure 3.

Figure 3. Another example for the convex case

Since it is always better to avoid many special cases in the implementation of a geometry problem, here the

easiest way to do that is the following: we find FermatΩǎ point for each σ points of the quadrilateral (that

way we eliminate the case in which the quadrilateral is not convex), and find Steiner points for both pairs of

opposite edges. This way we get ψ points which we can include in getting the minimum network. Now we

try out all cases for adding ς points, for adding one point, and without adding any points (which is

ψẗψ ψ ρ χσ cases). When we have chosen the points we want to add, we make the minimum

spanning tree where vertices are the points we have, and edges exist between every two of the vertices

and their weights are distances between the points. From all the cases, we take the smallest tree we have

Ǝƻǘ ŀǎ ǘƘŜ ǎƻƭǳǘƛƻƴΦ ²ƛǘƘ ǎǳŎƘ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǘƻ Ƴŀƴǳŀƭƭȅ ŎƘŜŎƪ ǿƘŜǘƘŜǊ ǘƘŜ ǉǳŀŘǊƛƭŀǘŜǊŀƭ

is convex nor whether Steiner and Fermat points are inside or outside of the quadrilateral.

Solution by:
Name: 5ǳǑŀƴ ½ŘǊŀǾƪƻǾƛŏ, Dimitrije Dimiŏ, Stefan Stojanoviŏ
School: DȅƳƴŀǎƛǳƳ ά{ǾŜǘƻȊŀǊ aŀǊƪƻǾƛŏέΣ bƛǑ

 E-mail: zdravkovicdusan@hotmail.com, dimke92@gmail.com, dolarlord@gmail.com

