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Preface 
 

 

Greetings, fellow contestants!  

 

It is my great pleasure to express our warm welcome to all of you and thank you for coming and taking part 

in the third edition of the Bubble Cup in Belgrade, Serbia.   

 

Our team at Microsoft Development Center Serbia (MDCS) is composed of many contestants in various 

disciplines over the last 10 to 20 years.   Solving difficult problems is part of our DNA.  As soon as the MDCS 

team had grown to a respectable size we looked for an opportunity to give back to our community.   Our 

members are folks like YOU who spend countless hours reading, learning, practicing and improving 

algorithms.   

 

We live in the information age. The applications of computer science have changed the world, and they will 

continue to do so. Some of you are rising stars who will transform the world and we are happy to 

accompany you on this tiny part of your journey. 

 

Today, we are in the 3rd edition of Bubble Cup.  Initially, this was a local contest, but over the last two years 

it has become a regional event.  I hope that Bubble Cup will continue to develop and grow and that the 

competition level will further increase in the future.    

 

In addition to competing hard, I hope that you will have fun and come back to Belgrade for more editions of 

BubbleCup in the future.  

 

Sincerely, 

Dragan Tomic 

Group Manager - MDCS 
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About Bubble Cup and MDCS 

Microsoft Development Center Serbia (MDCS) has been working for 5 years on various Microsoft products 

and services. Around 40 core staff (developers, testers and program managers) have been working to 

investigate, design and implement solutions which are be used throughout the world. MDCS was founded 

by Bodin Dreševid in Belgrade and is currently led by Dragan Tomid. Divided into small teams, people in 

MDCS worked on projects for Windows, Office, SQL Server, Live Labs and Bing groups and impacted many 

products such as Windows 7, Office 14 and SQL Server 2008. The key values MDCS shows throughout the 

work are strong applied math knowledge, machine learning expertise and core understanding of relational 

database systems. The mission for MDCS is to lead the development of new technologies and to help the 

region to do the same.  

 Bubble Cup is a student programming contest originally designed as a training for the ACM ICPC. The goal 

is to help young people perfect their coding skills and prepare them for the world-wide competition. Bubble 

Cup started in 2008 and now, two years later, it increased its reach to regional countries with stronger than 

ever teams from Croatia, Romania and Serbia. The competition was organized into 2 online qualification 

rounds and a final round, which takes place in Belgrade, Serbia every year. The official website of the 

competition is www.bubblecup.org, and it includes rules, details, problem sets, information about 

competitors and organizers and an archive of previous competitions. 

 

 

 

 

 

 

 

 

 

I’m a BubbleCupper… what about you? 
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Finals 
 

 

The finals of the third Bubble Cup were held on 11 September 2010 at the School of Electrical Engineering 

in Belgrade. Fifteen teams competed in solving nine problems. The competition lasted five hours, and the 

goal was to solve as many problems as possible, but also as quickly as possible – if two or more teams 

solved the same number of problems, the one who needed the least time was ranked best. Additionally, 

teams received bonus points depending on their qualification results, but for each problem there were time 

penalties if a team had incorrect submissions before managing to solve it. 

 

The problems were of varying difficulty – on one end, one problem was solved by every team, while on the 

other there were two problems that no team managed to solve (and for one of those no one even 

attempted to submit a solution!). 

 

Team mljivo (members: Tomislav Grbin, Luka Dondjivid and Davor Jerbid, all from the faculty FER Zagreb) 

won the competition. They managed to solve five problems and edged out Suit Up! (Ivan Katanid, Marin 

Smiljanid and Stjepan Glavina, all high school students), who also had five solved problems but a larger time 

penalty. The third place went to Prongrammers (Slobodan Mitrovid, Rajko Nenadov and Nemanja Škorid, 

from PMF Novi Sad), who were the quicker of the two teams with four solved problems. 
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The final scoreboard 

Rank Team name Team crew Points Penalty 

01 Mljivo Tomislav Grbin 
Luka Dondivic 
Davor Jerbid 

5 392 

02 Suit Up! Ivan Katanic 
Marin Smiljanic 
Stjepan Glavina 

5 876 

03 Prongrammers Slobodan Mitrovic 
Rajko Nenadov 
Nemanja Skoric 

4 623 

04 I like it RAF Vanja Petrovic Tankovic 
Nenad Božidarevid 
Milan Tomid 

4 863 

05 The Ninjas Nikola Milosavljevic 
Aleksandar Trokicic 
Marko Djikic 

3 210 

06 Rivals Aren’t Frightened  (yet) Maja Kabiljo 
Igor Kabiljo 
Milos Stankovic 

3 300 

07 ZBrains Mircea Dima 
Flaviu Pepelea 
Duta Vlad 

3 740 

08 ššuga Anton Grbin 
Viktor Braut 
Vjekoslav Giacometti 

2 245 

09 S-Force Dusan Zdravkovic 
Stefan Stojanovic 
Dimitrije Dimic 

2 247 

10 Eštaf Matija Osrečki 
Ognjen Dragoljevic 
Goran Gasic 

2 280 

11 NS Boys Demjan Grubic 
Boris Grubic 
Mario Cekic 

2 517 

12 Burek Frane Kurtovid 
Adrian Satja Kurdija 
Tomislav Gudlek 

1 -19 

13 Nameless Nemanja Marsenic 
Nikola Trkulja 
Mikloš Kalozi 

1 3 

14 Strawhats Damir Ferizovic 
Daniel Ferizovic 
Dominik Gleich 

1 70 

15 Seek & Destroy Predrag Ilkic 
Aleksandar Milovanovic 
Dejan Pekter 

1 82 
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Statistics 

 

 

 

ID Problem name 
Number of teams with 

correct solutions 
Number of teams with at least 

one submission attempt 
Total percentage of 

accepted submissions 

A Brackets 6 14 12% 

B Cutting 1 1 100% 

C Extrema 0 0 / 

D Interval Graph 6 12 10% 

E Nice Subsequence 9 15 13% 

F Panuql 3 7 15% 

G Operations 0 4 0% 

H Travel 'n' Sleep 1 3 7% 

I Queen 15 15 55% 
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Problem A: Brackets 
 

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija 
 

 

Statement: 

You are given an array of   strings, and each string contains only open and closed brackets.  

 

Find out if those strings can be sorted in such a way that after the concatenation of all strings, a valid 

arrangement of brackets is achieved (like as in a math expression after removing all other characters).  

 

Input: 

The first line contains the positive integer   (           ), the number of strings. Each of the next   

lines contains a sequence of ‘(‘ and ‘)’ characters, up to the end of the line. 

Total number of all characters in all strings does not exceed            (ten millions). 

 

Output: 

The output consists of one word: 

- “yes” (without quotes) if the required arrangement of strings exists 

- “no” if it doesn’t exist 

 
Example input: Example output: 
3 
(() 
( 
)) 

yes 

 

Time and memory limit: 3s / 64MB 

 

 

Solution and analysis: 

 

In this problem each string is equivalent to a string starting with zero or more closed brackets, followed by 

zero or more open brackets. For example, underlined brackets are matching and can be removed from the 

string: “ ())((())(”,  reducing it to: “)((”. So, each string is completely characterized with two integer 

attributes: the number of unmatched closed brackets at the beginning of a string and the number of 

unmatched open brackets at the end of a string.  

 

Let’s introduce the following notation: 

       –  Number of unmatched open brackets at the end of  -th string; 

       –  Number of unmatched open brackets at the beginning of  -th string; 

              –          –  Bracket balance of  -th string, which can also be negative. 

 

In the previous example                . 
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If  ∑      
     , it is clearly impossible to arrange the strings as required.  

 

Otherwise (if  ∑      
     ), we can first sort the strings according to the following criteria: 

- First we put all strings with positive (i.e. non-negative) balance, and then all strings with 

negative balance. 

-    should be increasing among strings with positive balance, and    should be decreasing 

among strings with negative balance. 

- If two strings with positive balance have the same    (or two strings with negative balance 

have the same   ), we first put the one with higher  . 

 

For the global string (obtained by concatenation of given strings), we want to check that at each point the 

number of closed brackets does not exceed the number of open brackets, i.e. that balance at each position 

is non-negative.  

 

It is not difficult to prove that for any two consecutive strings the suggested order maximizes the lowest 

balance over all positions in the global string. Consequently, if a solution exists, it can be obtained by 

sorting as described. Let’s prove this. 

 

We can look at the string as an ordered triple                   . Let’s assume that these strings are 

arranged in correct form. In other words: 

 

        

                         , for         

 

First, let us prove that a nonnegative balanced string can be moved in front of negative ones. The necessary 

and sufficient condition for this is to prove that, if we have two successive strings with indexes     and      

where        and         , we can swap them. Denote            as       . Now from 

                and                        we have that                   and 

                      because      is negative and        is nonnegative. Of course, because 

this is a successive string, described transformation does not affect the rest of strings. With this operation 

we only increase the required differences. 

 

 
Figure 1. We can look at the arrangement as Dyck lattice path with 

      and       as jups. 

 

Now we can look at the strings with positive balance and the strings with negative balance as two sub-

problems for sorting. For strings with positive balances, if we swap successive strings so that one with 
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smaller    goes first, again we have only strengthened the inequalities. On the other hand, for negative 

ones this is not so obvious. But if we put this ‘on paper’ we get this (again for successive strings): 

 

               
               
              

 
  

                , because                  
                                                   

 

 

Using the above transformation over successive strings, starting from a proper arrangement we can 

generate a new proper arrangement – which is also the output of our sort with the above criteria. 

 

Therefore, it is enough to check strings in described order. If for this order balance stays non-negative (and 

is zero at the end), the answer is “yes”, but otherwise “no”. 

 

Implementation: 

- Read the strings and sort them as described,  

- Check whether balance is non-negative at all points in concatenated string and zero at the end. 

 

Complexity 

 

Time complexity is obviously             , where   is the total number of characters in all given 

strings. Memory complexity is       . 
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Problem B: Cutting 
 

Author: Andreja Ilić Implementation and analysis: Andreja Ilić 
 

 

Statement: 

Given an integer   and an integer sequence a of length  , you have to split the given sequence into 

consecutive subsequences. The sum of elements in any subsequence must be less than or equal to  . Let 

  be the sum of maximal elements of the subsequences. Your task is to find the split that minimizes  . 

 

 
Figure 1. One possible cutting for the given example bellow 

 

Input: 

The first line contains two positive integers   and   (            and        ), where   is the 

number of elements in the given sequence and   is the maximal allowed sum of elements in a 

subsequence. The following line contains   integers – elements of the sequence. All elements are in the 

range        . 

 

Output: 

The output consists of one integer: 

- “-1” (without quotes) if a solution does not exist 

- otherwise, the minimal sum of maximal elements for any split( ) 

 

 
Example input: Example output: 
7 14 
1 1 1 6 2 6 14 

21 

 

Time and memory limit: 1s / 64MB 

 

 

Solution and analysis: 

 

Firstly, we can see that a cutting exists if all elements of the given sequence are smaller than or equal to  . 

This is the first thing that we are going to check. From now on, we are assuming that all elements are not 

greater than  . 

 

Let’s start thinking backwards – not from the sequence itself but from the subsequences. If we denote 

subsequence              as       , then in the final cutting the last subsequence has the form        for 

some      . Now we can say that the final solution is    {            }        , where 
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       is the optimal cutting for the first     elements of  . This cutting has to be optimal, because 

otherwise the cutting for the whole sequence would not be optimal either.  

 

This smells like dynamic programming.  Let’s define array   of length   as: 

 

       optimal value of cutting sequence      ] 

 

We have the following recurrent relation between the elements of  : 

 

                     {           {      }}, 

 

where          is the minimal index such that the sum of elements of               is less than or equal 

to  . In other words, if the element    is the right boundary of some subsequence, then its left boundary 

has to be in the above segment. For the base of the dynamic programming algorithm, we can define 

       and          . The final solution is stored in the element     . 

 

Implementation: 

 

The tricky part of this problem was implementation. Let’s see how we can initialize bounds fast. Array 

      is non-decreasing (                   ). When we want to initialize the element         , 

we only have to look in the segment               . If we accumulate the current sum in this segment, 

the initialization of the whole array can be implemented in linear time. 

 
================================================================================== 

01 bound [1] = 1; 

02 currentSum = a [1]; 

03 for k = 2 to n do 

04  bound [k] = bound [k – 1]; 

05  currentSum = currentSum + a [k]; 

06  while (currentSum> m) 

07   currentSum = currentSum – a [bound [i]]; 

08   bound [i] = bound [i] + 1; 

================================================================================== 

Algorithm for bound initialization 

 

What about array  ? Naive implementation of the above recurrent relation leads to time complexity of 

     , which is very slow for our constraints. The key observation is that we do not need all indices from 

the segment              when we want to find a minimum. We only need indices from the set 

 

   {          }  {                               } 

 

Therefore, we have to check for boundaries and only for elements that are strictly greater than ones before 

them. This is intuitively clear, because if we have some maximum in a subsequence we want to stretch to 

the left as long as we can.  

 

We can store these indices in a list. When we move from  -th to      -th element, we remove only some 

elements from the head and some elements from the tail of this list. From the beginning we are going to 

remove indices that are smaller than           . Since every index in the list represents an element 
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that is greater than the ones before, from the end of the list we are going to remove indices if the 

corresponding elements are less than or equal to       . After that we are going to add new element   

at the end of the list. All of this is possible because both the indices in the list and their corresponding 

elements are sorted in a strictly increasing order. 

 

And what about the minimum of these elements? Theoretically, this list can be very long. Well, we are 

going to store values          {        } in a heap structure (all of them except for boundaries). When 

we move to a new element, as we remove something from the list, we remove the corresponding element 

from the heap. In the end, only for the last element of the list, which had the value    {           

  } before adding the new one, is going to change – it becomes         {           }.   
 

================================================================================== 

01 d [0] = 0 and d [1] = a [1]; 

02 add in heap (1, a [1]); // index and value 

03 add in list 1;   // index of elements in heap 

04 for k = 2 to n do 

05  while first index in list is less than bound [k] 

06   remove it from heap; 

07   remove it from list; 

 

08  while last element in list is less than or equal to a [k] 

09   remove it from heap; 

10   remove it from list; 

 

11  if (heap is not empty) 

12   remove last element lastElement from heap; 

13   add inheap(lastElement, d [lastElement] + a [k]); 

 

14  maxInBound = max (a [k], a [firstElementInList]); 

15  d [k] = max (a [k] + d [k – 1],  

d [bound [k] – 1] + maxInBound,  

min in heap); 

 

16  add in heap (k, d [k]); 

17  add in list (k); 

================================================================================== 

Pseudo-code for described algorithm 

 

Complexity: 

 

Initialization of bounds is linear (as we have seen). Every element from the sequence is going to be added 

to the heap (and list) only once and removed from it at most once. Initialization of elements       requires 

one call for finding a minimum in the heap. This leads us to total time complexity of         . 

 

Memory complexity is                , because we must store information of positions in heap 

structure. Also, we have to pay attention to cumulative sums and use int64 for storing this information. 

 

Test data: 

 

Test corpus for this problem contains 30 test cases. Short description of test cases is given in Table 1. 

 
Num     maximal       Solution Desciption 

01 10 20 15 37 By hand 

02 20 1000 46 46 You don't need to cut 
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03 100 10000 978 5621 Random 

04 1000 100000 32746 -1 -1 

05 100 1000 452 452 Sum is equal to M 

06 10000 100000 100000 834993296 Every element is one subsequence 

07 50000 100000000 132767 7830539 ~ 50 subsequences of 1.000 elements 

08 99999 100000000 132867 15540259 ~ 100 subsequences of 10.00 elements 

09 99999 98765432 19753 296266 ~ 10 subsequences of 10.000 elements 

10 99999 99999999 40007 1159863 ~ 10 subsequences of 10.000 elements 

11 99999 99999999 32768 556893 Random 

12 99999 99999999 532767 273208529 ~ 1000 subsequences of 100 elements 

13 99999 99999999 32768 556910 changing big  - small subsequence 

14 100000 7654321 123456 12345600000 Every element is equal to M 

15 1 100 50 50 One element 

16 100000 98765432 999987 479320035 Random monotonic subsequences 

17 99999 100000000 9999 9999 Many zeros 

18 100000 10000 9999 999900000 Monotonic down subsequences 

19 99999 67834589 987655 -1 One element M + 1 and all ones 

20 80000 100000000 532767 221021568 ~ 10 subsequences of 10.000 elements 

21 90000 10000 6012 92936424 Monotonic up subsequences 

22 999999 9999999 999998 4064318963217351 Monotonic down subsequences 

23 80000 100000000 999982 306422910 Random monotonic subsequences 

24 80000 100000000 100 100 Random small 

25 80000 100000000 49999 1449530 ~ 20 subsequences of 10.000 elements 

26 30000 100 0 0 All zeros 

27 10000 1000 999 9990000 All equal to M – 1 

28 100000 100000000 999996 355237902 Random monotonic subsequences 

29 100000 100000000 504243 528239 ~ 3 subsequences of 30.000 elements 

30 100000 100000000 532767 275873972 ~ 1000 subsequences of 1000 elements 
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Problem C: Extrema 
 

Author: Andreja Ilić Implementation and analysis: Nikola Mihajlović  
                                                      Andreja Ilić   

 

 

Statement: 

Let’s define a function   as            ∑     
 
   , where           and  ∑      

   . 

Given two points   and   from    and value       , find minimum and maximum value for     . 

 

Input: 

The first line of input contains the number   (            . The second line contains numbers 

        separated by a space. The third line contains        . The final line contains the number . It is 

guaranteed that there will always be coefficients    for which         satisfying the above conditions. 

 

Output: 

The first line of output should contain minimum value for      rounded to two decimal places, and the 

second line should contain the maximum value for     , also rounded to two decimal places. 

 
Example input: Example output: 
3 
0 2 1 
0 0 1 
0.75 

0.00 
0.75 

 

Time and memory limit: 1s / 64MB 

 

 

Solution and analysis: 

 

This problem requires some math skills. At first sight, it seems to be a kind of linear programming problem, 

but it can be solved quite elegantly.  

 

We have a function   and we know that it has the form            ∑     
 
   , where          and 

∑      
   . The coefficients satisfying these conditions are called barycentric. We can easily spot the 

following property in one-dimensional space: given         and  ,       {  }     {  }  there exists a 

function   as defined above such that              ∑     
 
   . It is enough to vary coefficients for 

minimum and maximum of   , the rest can be 0. Now we know that   must be between these two values. 

 

Extending this to the two-dimensional case is harder. This is stated by the following theorem. 

 

Theorem: Given points                   and       from   ,       are in the convex hull of 

                  iff there exists a function   as defined above such that                  , where 

            and            . 

 



Problem C: Extrema 

MDCS – Bubble Cup 2010 
 

20 

Again, we can accomplish this by varying just the coefficients    for points which are vertices of the convex 

hull, the rest can be 0. 

 

From the theorem, we conclude that the possible values for      are just projections of the points which 

belong to the convex hull to the  -axis. The additional constraint        restricts the set of possible 

points to the ones which lie on the intersection of the convex hull and the line    . This intersection is a 

segment (or just a point in extreme case), so the final solution will be the boundaries of this segment. 

 

 
Figure 1. Point and corresponding convex hull for points 

                    and                     and value     

 

Implementation and complexities  

 

The described idea can be implemented easily: find the convex hull for the given points and find where the 

line     intersects it. Finding the convex hull has the complexity of         . Finding the intersections 

is linear, because we only need to check for consecutive vertices of the convex hull. This leads to the final 

complexity of         .  
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Problem D: Interval Graph 
 

Author: Andreja Ilić Implementation and analysis: Milan Novaković 
 

 

Statement: 

For a set of closed intervals on real line, one the can construct an interval graph. Represent each interval 

with a different graph vertex and connect two vertices if and only if two corresponding intervals have 

common points. 

 

Does a the given tree represent an interval graph for some set of intervals? 

 

Input: 

The first line contains positive integer   (           ) — the number of nodes in a tree. The nodes 

are numbered by IDs:            . The node    is the root node of the tree. 

The next   lines describe children for all nodes.  

Line   (each od n lines) lists all children of the node with ID  . 

The first integer in the line is   , the number of child nodes of node  . The next    integers in the same line 

are IDs of those child nodes. 

 

Output: 

The output consists of one line: 

- “yes” (without quotes) if the given tree represents an interval graph 

- “no” if it doesn’t 

 

 
Example input: Example output: 
3 
1 2 
0 
1 1 

yes 

 

Example input: Example output: 
7 
31 2 3 
14 
15 
16 
0 
0 
0 

no 

 

Time and memory limit: 3s / 64MB 
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Solution and analysis: 

 

First, note that no three intervals can have a common point. If that were the case, the interval graph would 

have a triangle and wouldn’t be a tree. 

Now consider one interval and all intervals that have common points with it.  

The intervals that are nested in that interval cannot therefore have any more common points with other 

intervals. They generate only one edge in the interval graph. 

Intervals that are not nested contain one or both end points of the interval we are considering, therefore 

we can have no more than two intervals that have common points with considered interval and are not 

nested in it.  

 

So, if we prune all one-edge sub-graphs corresponding to nested intervals, each vertex in the remaining 

graph can have at most degree two. In other words, the graph on Figure 1. can’t be a sub-graph of the 

pruned graph. 

 

 
Figure 1. Forbidden structure for interval tree 

 

We can see that if the tree satisfies this property, it is an interval graph. In the pruned graph every edge has 

degree one or two (if the graph is connected), therefore it is just a sequence of edges. We can therefore 

construct a sequence of intervals that correspond to this graph, and include nested intervals for additional 

one-edge sub-graphs that were pruned. 

 

Conclusion is that not having the graph on Figure 1. for a sub-graph is a necessary and sufficient condition 

for the tree to be an interval graph. 

 

Interval trees are a very important subclass of intersection graphs and perfect graphs. The generalization of 

above statement is a famous result of Lekkerkerker and Boland given below: 

 

Theorem.  A graph is an interval graph if and only if it contains none of the graphs shown in Figure 2. as an 

induced sub-graph. 

 
Figure 2. Forbidden structures for interval graphs 
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Implementation: 

 

For the nodes on the first two levels, the described condition is equivalent to not having more than two 

sub-trees of depth one or more. 

For nodes on deeper levels, the described condition is equivalent to not having more than one sub-tree of 

depth one or more. 

This check could be easily done by depth-first search in linear time. 

For simplicity, this could be broken into the following steps: 

- Traverse tree and for each node calculate maximal depth of the sub-tree under it; 

- Traverse tree and for each node calculate the number of children sub-trees with depth one or 

more; 

- Traverse tree and for each node, check the condition taking in consideration the level of the 

node. 

 

These steps could be done in one tree traversal. 

 

Since depth of the tree can be up to 1,000,000, recursive DFS cannot be used due to stack limitations. 

Iterative DFS is not much harder to implement. For techniques on how to refactor recursion to iteration, a 

good resource is The Art of Computer Programming. 

 

Complexity 

 

Time and memory complexity for DFS are     and           respectively, but storing the tree structure 

requires      memory. Overall, both memory and time complexity are linear:     . 

 

 



Problem E: Nice Subsequence 

 

MDCS – Bubble Cup 2010 
 

24 

Problem E: Nice Subsequence 
 

Author: Andreja Ilić Implementation and analysis: Dimitrije Filipović 
                                                    Andrija Jovanović 

 

 

Statement: 

Given an array   of   integers, find the longest nice subsequence of consecutive elements.  

 

The subsequence            ,    , is nice if 

a)           
b)               , for all         

 

Input: 

First line contains one positive integer   (             ), where   is the number of elements in the 

given array. Each of the next   lines contains one integer which represents an element of the array. 

Elements are in range          . 

 

Output: 

The output consists of one integer number: 

- “-1” (without quotes) if nice subsequence doesn’t exist 
- Length of the longest nice subsequence 

 

 
Example input: Example output: 
6 
1  
3  
4  
2  
5  
0 

5 

 

Time and memory limit: 3s / 64MB 

 

 

Implementation and analysis: 

 

First, we can see that a nice subsequence doesn’t exist if the array is monotonically decreasing. 

 

A naïve solution would be to find the longest nice subsequence ending with each index   and then find the 
longest of those, but that’s too slow. We need to somehow use the information we have already obtained 
to speed up the search. For that purpose we will create a stack of nice subsequences we have obtained (we 
will call it  ). It will initially be empty. 
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We traverse the array, starting from the right. We want to keep some properties of   invariant: 

 All subsequences on the stack will either be nice, or have length 1. 

 The subsequences on the stack will always be sorted so that their left boundary values 
(minimums) are decreasing (the largest value is at the top), and their right boundary values 
(maximums) are increasing (the smallest value is at the top). 

 The subsequences will be sorted by their left boundary and they will not overlap each other. 
 
We will always keep a “current” monotone subsequence, which we will denote  , and as we traverse the 
array from end to beginning, as long as the values of the elements are decreasing we can keep adding them 
to  . When we arrive to an element that breaks monotonicity (it is larger than its neighbor on the right), we 
want to push   to the stack (monotone sequences are nice by definition) - but first we have to perform 
some operations in order to ensure that   will continue to have the desired properties. Namely: 

 
If                     and                   , the subsequence which spans from the left 
boundary of   to the right boundary of        is also nice, so we can expand   to match this subsequence 
and pop from  . 
 
If                    , we can discard       , because it means that any subsequence we find in the 
future cannot be nice if it stretches further than the right boundary of  .  
 
Either of these steps can be repeated several times. Finally, when                     and        
           , we push   to the stack and continue the traversal.  
 
It is not hard to check that the properties of   we have highlighted will continue to hold after any of these 
steps are performed. Of course, we will keep a variable holding the best result we have found so far, and if 
we come across a nice subsequence longer than that value during any of these steps, we update the result.  
 
Let’s now try to sketch a proof that, after the entire array is processed, we will have found the correct 
result. We are only looking at subsequences on the stack, and we know that they will always be nice, so we 
will obviously never return a result larger than the correct one. What remains to be shown is that the 
longest subsequence will always be found by this algorithm. 
 
If the longest nice subsequence is the subsequence      , we know that             (or   is the first 
element) and             (or   is the last element). So, both        and      will cause breaks in 
monotonicity, although in general they won’t be in the same monotone subsequence. This means that we 
need to make sure that the sequence starting with   (  ) will eventually merge with the sequence ending 
with   (  ). But that is simple:                      because otherwise       would not be nice at all, so 

the subsequences between    and    on the stack will either get merged into    or be discarded. Finally, 

when    becomes the top of  ,    will merge with it, because, again,       being nice implies that         

        . This means that       will definitely be processed at some point, which means that the proof is 

finished. 
 

Complexity: 

 
Since the number of monotone subsequences in the array cannot be larger than  , the main part of the 
algorithm essentially consists of      “push” and      “pop” operations on the stack, making the overall 
time complexity of the solution linear. 
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Buxkdop F: Panuql 

 
Authors: Milan Novaković, 
                Andreja Ilić 

 
Implementation and analysis: Milan Novaković 

 

 

Tnanopozn: 

A boufoin panuql qt a panuql jqnc qznomou odopoznt qz jcqic oaic njx zoqmckxuqzm odopoznt auo 

uodanqyodw buqpo (ix-buqpo), azv nco aktxdrno yadro xf oaic odopozn qt muoanou ncaz xzo. Oaic 

odopozn cat rb nx fxru zoqmckxut. 

 

Wxr auo mqyoz a panuql      jqnc qznomou odopoznt                  

 

Icoie qf ncouo olqtnt a boufoin panuql      jcouo     vqyqvot     fxu oyouw            . 

 

Qzbrn: 

Nco fqutn dqzo ixznaqzt bxtqnqyo qznomout     (        ) — nco vqpoztqxzt xf nco panuql     . 

Oaic xf nco zoln   dqzot ixznaqzt a tohrozio xf   qznomout tobauanov kw tbaiot, uobuotoznqzm odopoznt 

    (  |   |        xf nco panuql     . 

 

Xrnbrn: 

Xrnbrn ixztqtnt xf xzo vqmqn: : 

- “1” (jqncxrn hrxnot) qf a boufoin panuql olqtnt 

- “0” qf qn vxotz’n olqtn 

 

 
Olapbdo qzbrn: Olapbdo xrnbrn: 
2 2 
6 4 
10 9 

1 

 

Olapbdo qzbrn: Olapbdo xrnbrn: 
1 3 
4 6 9  

0 

 

DON’T PANIC  

 

 

Nqpo azv popxuw dqpqn: 0.5t / 64PK 

 

Solution and analysis: 

 

The statement of this problem was put through a cipher and presented to the competitors in encrypted 

form, which they had to decipher before they could start solving the actual problem.  
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Since the other eight problems were unencrypted and the texts had the same basic shape, starting by 

trying to compare the ciphertext with them was a good idea. It is noticeable that certain words repeat 

multiple times, and looking at the other problems reveals that they probably correspond to certain 

important phrases, for example "input", "output", "integer", with unchanged number of letters in a word. 

This implies that the cipher is a simple substitution cipher, and also reveals the encrypted values for many 

of the letters.   

 

Going in this direction starts producing text that is already somewhat intelligible, so we are encouraged to 

continue: we know where keywords such as "statement" and "problem" are located, and we can guess the 

remaining letters in frequently occurring words:  "the", "line". The rest is easy: most words will have only 

one of two letters left encrypted, and simple common sense should be enough to finish the job. Also, a cool 

thing is that when you translate “DON’T PANIC” you get “LET’ MATCH”. 

 

Translated problem looks like this: 

 

Statement: 

A perfect matrix is a matrix with integer elements in which each two neighboring elements are relatively prime (co-

prime), and the absolute value of each element is greater than one. Each element has up to four neighbors. 

 

You are given a matrix      with integer elements                  

 

Check if there exists a perfect matrix      where     divides     for every            . 

 

Input: 

The first line contains positive integers     (        ) — the dimensions of the matrix     . Each of the next 

  lines contains a sequence of   integers separated by spaces, representing elements     (  |   |        of the 

matrix     . 

 

Output: 

Output consists of one digit: 

- “1” (without quotes) if a perfect matrix exists 

- “0” if it doesn’t exist 

 

The condition that neighboring elements are relatively prime can be stated in the form that neighboring 

elements cannot have the same prime factors. Since     divides    , candidates for prime factors for     are 

prime factors of    . Clearly, if there exists a perfect matrix, we can transform it to another perfect matrix 

where all     are prime numbers, by omitting all but one prime factors of    . Resulting perfect matrix has 

all prime elements and neighboring elements are different. Therefore, it is sufficient to check if a perfect 

matrix with prime elements and described properties exists to get the final answer. 

 

In view of these conclusions, problem can be restated in the following way: For every element in the 

original matrix  , pick one of its prime factors, so that two neighboring elements have different factors 

picked. This is closely related to the graph coloring problem, which is NP, so backtrack is the way to go. 
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Implementation: 

 

The most naive backtrack implementation is too slow. A few improvements can be made. Prime numbers 

up to 1,000 can be pre-computed and included in the source file. 

 

All numbers up to 1,000 can also be factored to prime factors offline and included in the source file. If some 

element     has a unique prime divisor among its neighbors, this prime divisor can be picked for the perfect 

matrix. 

 

If some element     has only one prime divisor, this prime divisor cannot be picked from its neighbors. 

 

The last observation is the crucial one for speeding up the backtrack algorithm. What should be noted here 

is that once a prime divisor is removed from the list of possible primes for all neighboring elements, the 

process can continue if one of the neighboring elements is left with only one prime divisor. This can 

propagate as long as there are changes made.  

 

Complexity: 

 

Time complexity is exponential. Memory complexity in most implementations shouldn’t be larger than 

        where   is the number of different prime factors. 
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Problem G: Operations 
 

Author: Mladen Radojević Implementation and analysis: Mladen Radojević 
 

 

Statement: 

You are given an array of   characters in the form of            (  is odd) where    {‘0’...’9’- and  

S   ,‘+’,’-‘,’=’,’>’,’<’-. 

 

Find out the maximal number of non-overlapping correct expressions (a correct expression is a substring of 

the given string which starts and ends with a digit, has exactly one comparison operator (’=’ or ’>’ or ’<’), 

and is mathematically correct). 

 

Input: 

The first line contains a positive integer   (  is odd, and            ). The next line consists of   

characters in the form described above (without any spaces between characters). 

 

Output: 

The output consists of the integer number which represents the maximal number of non overlapping 

correct expressions. 

 
Example input: Example output: 
7 
7-5<3=5 

1 

Example input: Example output: 
11 
2+5<6-4<5=3 
 

2 

 
Time and memory limit: 3s / 64MB 

 
 

Implementation and analysis: 

 

It is not hard to check that the maximal number of correct expressions can be achieved using the following 

algorithm (Greedy algorithm): 

 Find the first comparison operator for which we can obtain the correct expression, take the correct 

expression which contains that comparison operator and for which the rightmost character has the 

smallest index in the original array. 

 Start looking for new correct expression from the position of first digit after the previously found 

correct expression. 

 

Checking if it exists and finding the optimal correct expression (optimal in the meaning described above) 

that contains some fixed comparison operator and that starts from some particular position (on the left 
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side of comparison operator) can be done in the following way:  

First we calculate all possible values on the left side of the comparison operator. Then we scan digit by digit 

on the right side of the comparison operator, calculating the value of the expression on the right side by 

considering the digit and checking if that value, with the comparison operator and any value from the left 

side, gives a true statement. 

 

Checking if a value from right side, the comparison operator and any value from the left give a true 

statement can be done by sorting values from the left side in non-decreasing order. Then, if the comparison 

operator is ‘=’, use binary search to check if that value exists in a set from left. If the comparison operator is 

‘<’, check if the value from the right is greater than the first value from left in the sorted array, and in case 

when the comparison operator is ‘>’, check if the value from the right is less than the last value from the 

left in the sorted array. Alternatively, since the minimal possible value on the left is            and the 

maximal is          , another approach would be to have an array of           elements, so that 

for each value calculated on the left we join one element of the array, and while filling that array we can 

calculate the minimal and maximal value from all those that we were using in filling, so we can easily check 

if a value from the right exists on the left, just by looking in the corresponding place in the new array. If the 

value from the right is greater than some value from the left we can check using min, and whether the 

value from the right is less than some value from left we can check using max. We can also use min and 

max for initializing array for each new comparison operator. 

 

Example: 3+8-6=2+4<3+2 

 

First we calculate values on the left side of ‘=’. These are 6,2,5. Then we go from ‘=’ to the right. The first 

potential value is 2. Check if it is found in the set from the left. If it is, meaning that we found one correct 

expression, start looking for a new one from ‘4’. The next comparison operator is ‘<’. The only value on its 

left side is 4. The first digit on the right is 3. Considering that 3 is not greater than any value from the left (in 

this case just 4) we continue. The next digit is 2, so the next potential value is 5. Since 5 is greater than 4, 

we do have a new correct expression. We get to the end of the array, so the maximal number of non-

overlapping correct expressions is two. 

 

Complexity: 

 

It is obvious that the complexity of the solution which uses a sorted array is            and that the 

complexity of the second solution is     . 

 

Memory complexity is      in either case. 
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Problem H: Travel ‘n’ sleep 
 

Author: Milan Novaković Implementation and analysis: Andrija Jovanović 
 

 

Statement: 

You are the manager of a company and you want to send some of your employees to a big company 

meeting, which starts   days from now. The city where the meeting will be held is very far away from your 

headquarters, so they will have to travel for a couple of days, passing through some other cities and making 

pauses to sleep and rest during the journey. You have a map that assigns numbers between 1 and   to the 

cities and shows which of these cities have direct routes between each other. All the employees start from 

your headquarters (city 1) on the first day. On any given day, each employee can choose either to travel 

between two connected cities or to stay where he is and rest, and they all have to reach the meeting place 

(city  ) and must not be late for the meeting. 

 

There is just one small problem: your employees hate each other, so you can never allow two or more of 

them to be in the same city at the same time (except at the start and the end of their journeys, of course). 

It is allowed for someone to enter a city on the same day when someone else is leaving, however. You kind 

of hate all of them too, so you don’t want to allow anyone to stay in your headquarters or to return there 

during the journey. 

 

The meeting is quite important, so you would like to send as many people there as possible, and now you 

want to calculate exactly how many is that. 

  

Input: 

The first line contains three numbers,   (      ),   (      ) and   (       ). Each of the 

following   lines contains two different integers, the numbers of connected towns. All routes are two-way. 

 

Output: 

The output consists of exactly one non-negative integer, the maximal number of people that can reach 

town   from town 1 in   or less days. 

 
Example input: Example output: 
4 2 4  
1 2 
1 3 
2 4 
3 4 

2 

 

Explanation:  

On the first day, the first person can go to city 2 and the second can go to city 3, and they will both reach 

city 4 on the second day. 

 

Time and memory limit: 1s / 64MB 
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Implementation and analysis: 

 

Looking at the problem statement carefully, it is noticeable that this problem is fairly similar to the problem 

of finding maximum flow in a graph. There are a few difficulties, however. Paths in our graph depend on a 

time component, while maximum flow assumes that edges have constant capacities. Also, we need to 

make sure that only one path can include any single vertex at a point in time. So what we need to do is try 

to find a way to transform our graph into one that is more suited to the max-flow constraints. 

 

First, we will transform every vertex   of the original graph (except one!) into   vertices of the form       , 

with the idea that one vertex of the new graph will represent a single point in space and time. With this, 

the original graph is turned into a graph in which we always know whether a particular route is available or 

not. To be more precise, for each edge    in the original graph, the new graph will have directed edges 

from vertex        to          and from        to          for    between 0 and    . We also have to 

account for the possibility of staying in the same city on a particular day, so every vertex        should also 

have an edge towards          for       We will not do this for city  , however, in order to eliminate 

staying in this city or returning to it later. 

 

 
Figure 1. Vertex transformation with time parameter 

 

Now we have a graph we can traverse without paying special attention to the time component. The other 

problem is ensuring that no two people can be in the same city on the same day, and we can do this using 

another easy trick to transform the graph: we split every vertex           into an “in” vertex     and an 

“out” vertex     , and add an edge of capacity 1 from     to     . All edges that went to   should be 

redirected to    , while all edges that went out from   should now start from     . 

 

The only thing remaining is to define the starting and the finishing vertex (the source and the sink) for the 

flow in our new graph. The source is easy: it is the out vertex corresponding to city 1, where everyone has 

to start. We do not have a single finishing vertex, however - all vertices corresponding to city   are valid 

finishing points. We will get around this by adding yet another (!) vertex,          and adding edges of 

unlimited capacity from all vertices          to      . (If “unlimited” is a problem for the computer to 

understand, any relatively large number will do.) It is now ensured that the solution to the problem is the 

maximum flow of the transformed graph.  
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Complexity: 

 

The constraints are such that most standard algorithms for finding maximum flow will work, so feel free to 

pick your favorite one. For example, the Edmonds–Karp algorithm is relatively easy to implement, and its 

complexity is         for a graph with   vertices and   edges. The number of vertices in the transformed 

graph is approximately      , while the number of edges is approximately          . This looks 

like bad news, but a closer look at the algorithm reveals that it consists of iterating breadth-first searches 

(     time), and that each iteration augments the flow. In the general case the number of iterations can be 

      , but here it is easy to see that the flow can never be larger than    , since only     people 

have a city to go to on any given day. This means that the overall time complexity is actually       , 

which reduces to         and that should be well within the time limit. The space complexity primarily 

depends on the size of the transformed graph, which, if we use lists of edges for storage, is        

 (        )  
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Problem I: Queen 
 

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija 
 

 

Statement: 

Compute how many squares on average does a queen attack on a generalized chess board    . 

 

The queen attacks a square if it is on the same row, column or diagonal. For example, the queen denoted 

by the letter Q in the image bellow attacks 17 squares marked with dots: 

 

 ◦  ◦   

◦ ◦ ◦    

◦ Q ◦ ◦ ◦ ◦ 

◦ ◦ ◦    

 ◦  ◦   

 ◦   ◦  

 

Input: 

The first line contains positive integer   (             ), the number of lines and columns of a board.  

 

Output: 

The output consists of one real number rounded to exactly three decimal places, the average number of 

fields attacked by a queen. 

 

 
Example input: Example output: 
3 6.222 
 

Time and memory limit: 0.5s / 64MB 

 

 

Solution and analysis: 

 

From each of     fields, a queen attacks     fields in its row, and     in its column.  
Let’s now count the fields on the same up-left to down-right diagonal. Counting diagonal by diagonal, we 
get  
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For up-right to down-left diagonals we obviously obtain the same result. This gives the total number of 
fields that are attacked from all positions of the queen: 
 

              
After summation, we obtain 

  
              

 
 

and the average number of attacked fields is  

  
 

  
 

        
 
 

 
 

 

Summation can be done by using math, or a computer program. In the latter case, time complexity will be 

linear (instead of constant) and care should be taken of overflow / precision. 

 

Implementation: 

Trivial: just read    and write 
        

 

 

 
 . 

 

Complexity 

 

As mentioned before, time complexity is      if computation is done mathematically, and      if 

computation is done programmatically.  

 

Memory complexity is      in any case. 

 

Test data: 

The case     is an interesting example, so it should be included. Other tests should include odd and even 
numbers, as well as small and big numbers, to check different cases, time complexity and computation 
accuracy. 
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Qualifications 
 

 

BubbleCup continued to increase in popularity in this year’s edition. A total of 44 teams were involved and 

solved at least one problem, representing the highest turnout in its brief history. The tournament 

continued on the path of slowly becoming genuinely international, with multiple teams from Serbia, 

Croatia, Bosnia and Herzegovina, Macedonia and Romania all involved. The majority of teams consisted of 

university students but many younger teams competed as well, and some of them achieved very good 

results - six high school teams managed to pass through to the finals. 

 

The qualifications were split into two rounds, with ten problems in each round and 25 days for the 

contestants to solve them. The first round lasted throughout April, and teams earned one point for each 

successfully solved problem. The second round was in May, and problems in this round were worth two 

points each (a rule change from the previous years).  

 

The problems for both rounds were chosen from the publicly available archives at the Timus Online Judge 

site (acm.timus.ru). The first round is designed to be easier, and numbers confirm that - the most difficult 

problem according to the statistics (Mouse) was solved 17 times, and only one other problem was solved 

less than 30 times. The second round increased the difficulty considerably, resulting in one problem that no 

team managed to solve (Cockroach Race), while four other problems were solved 10 times or less. 

 
Num Problem name ID Accepted solutions 

01 Like Comparisons 1177 32 

02 Mouse 1199 17 

03 Asteroid Landing 1232 29 

04 Evacuation Plan 1237 33 

05 Bus Routes 1434 46 

06 Brainfuck 1552 34 

07 Dean’s debts 1580 44 

08 Pharaohs’ Secrets 1584 31 

09 Vasya Ferrari 1666 45 

10 The Most Complex Number 1748 54 

Table 1. Statistics for Round 1 

 
Num Problem name ID Accepted solutions 

01 Cockroach Race 1369 00 

02 Lights 1464 10 

03 Fat hobbits 1533 21 

04 Aztec Treasure 1594 10 

05 Abstractionism to the People 1649 04 

06 The Hobbit or Three and Back Again 2 1663 16 

07 Asterisk 1670 22 

08 Mortal Kombat 1676 22 

09 Sniper shot 1697 09 

10 Periodic sum 1749 25 

Table 2. Statistics for Round 2 
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The fifteen teams with the highest number of points qualified for the finals. In another rule change from 

the previous contests, the results in the qualifications continue to matter - each team gets bonus time 

points in the finals based on their number of points in the qualifying rounds. 

 

 

 
 

 

The explanations of the solutions for all 20 problems are provided in this booklet. They were written by a 

number of different people, some by contestants and some by MDCS BubbleTeam, and you should note 

that they are not official - we cannot guarantee that all of them are accurate in general. (Still, a correct 

implementation should pass all of the test cases on the Timus site.) Important algorithms and data 

structures are marked bold. It is assumed that you are familiar with them - if you are not, you can easily 

find information about them in literature or on the Internet. 

 

The organizers would like to express their gratitude to everyone who participated in writing the 

solutions. 
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Problem R1 01: Like Comparisons (ID: 1177) 

Time Limit: 1.0 second 

Memory Limit: 16 MB 

 

Development team of new DBMS asks you to write subroutine for the ‘like’ operator. 

‘Like’ operator works as following. It returns true if text string matches specified template. Template is a 

text string containing any symbols or following special sequences:  

% matches any number of any characters 

_ matches any single character 

[с1-с2] matches any single character in the range c1-c2 

[c1c2c3…cN] matches any single character of the set {c1,c2,c3,…,cN} 

[^с1-с2] matches any single character not in the range c1-c2 

[^c1c2c3…cN] matches any single character not in the set {c1,c2,c3,…,cN} 

Input 

First line contains number of tests N ≤ 1000. Next N lines contain comparisons in the following format: 

'string' like 'template' 

String or template may contain any symbols with ASCII codes 32-255. Inner entrance of apostrophe symbol 

(ASCII 39) into string or template is encoded by double apostrophe symbol. Maximal length of string or 

template is     symbols. 

 

Output 

For each of N comparisons output single 'YES' or 'NO' at a line. 

 

Sample 

input output 
15 

'abcde' like 'a' 

'abcde' like 'a%' 

'abcde' like '%a' 

'abcde' like 'b' 

'abcde' like 'b%' 

'abcde' like '%b' 

'25%' like '_5[%]' 

'_52' like '[_]5%' 

'ab' like 'a[a-cdf]' 

'ad' like 'a[a-cdf]' 

'ab' like 'a[-acdf]' 

'a-' like 'a[-acdf]' 

'[]' like '[[]]' 

'''''' like '_''' 

'U' like '[^a-zA-Z0-9]' 

NO 

YES 

NO 

NO 

NO 

NO 

YES 

YES 

YES 

YES 

NO 

YES 

YES 

YES 

NO 
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Solution: 

 

The key to this problem lies in the fact that both strings which should be compared are short (up to 100 

symbols). Therefore we can use dynamic programming to solve this problem. We will create the matrix m, 

the size of which can be up to 100x100B = 10kB.  By ‘character’ we are going to imply the character for the 

given string or special sequence which is described with a symbol at position   in the second string. Matrix 

element         will indicate if the first   characters of the first string   are ‘like’ the first   characters of the 

second string   (template). Having this in mind we can create the recurrent relation to populate the entire 

matrix. The recurrent relation is presented below: 

 

 
 

         

      ,     and     
      , (    or      and (       
     ,                  and              
     ,               and (            or           or          ) 
      , in all other cases 

 

The explanation for this formula is the following: if the character      is equal to the character     , and if 

the first     characters of the string A are ‘like’ the first     characters of the string  , then the first   

characters of the string   are ‘like’ the first   characters of the string  . If a character      is equal to  , 

there are three different cases:            ,            and          .  The factor          

   is there because the character   can match any character, including     ;           is there because 

the character   can be substituted with zero characters; finally,           is there because the character 

           is already included in substitution of the character      so the character B          can also 

substitute the character A     . The element                        will show if the string   is ‘like’ 

the string  . 

 

The function       checks if two given special sequences can produce/cover at least one common 

character. Since the strings can contain only ASCII characters with codes in range 32-255, this function can 

be implemented by producing the two character sets (up to 255 characters each), which are defined by the 

given special sequences, and check if these character sets have an intersection. During the implementation 

of this function, we should pay attention to the possibility that a special sequence can be defined 

recursively (like ‘**++’, or ‘*%+’). 

 

The function        checks if the given special sequences can produce/cover exactly the same character 

sets. For example, % is equivalent to [%] or [_%]. 

 

The time complexity of this algorithm is      . 

 

Solution by:  
Name: Miloš Milovanović 
School: The Faculty of Electrical Engineering, Belgrade 
E-mail: milmil@microsoft.com 
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Problem R1 02: Mouse (ID: 1199) 

Time Limit: 2.0 second 

Memory Limit: 16 MB 

 

In the kitchen lives a mouse. There are also a cat and a piece of cheese in the kitchen. The coordinates of 

the cheese and the mouse are known, and the cat is sleeping. Finally, there is some furniture in the kitchen. 

The furniture is a set of convex polygons. The mouse wants to get to the cheese unnoticed. A point of the 

route is called dangerous if the distance to the nearest piece of furniture is greater than 10 cm. It is 

required to find the least dangerous route for the mouse, i.e., the route in which the sum of the lengths of 

dangerous segments is minimal. 

 

Input 

In the first line there are four numbers xm, ym, xc, yc separated with a space. They are the coordinates of the 

mouse (xm, ym) and of the cheese (xc, yc). In the second line there is the number of pieces of furniture N 

(0 ≤ N ≤ 100). The next N lines describe these pieces. Each description starts with the number of vertices of 

the corresponding polygon K (3 ≤ K ≤ 10), given in a separate line. Each of the next K lines contains two 

numbers, which are the coordinates of the corresponding vertex. It is known that the distance between any 

two points of different polygons is greater than 20 cm (so that it would be easier for the cat to catch the 

mouse). Neither the mouse nor the cheese are inside any of the polygons. All the coordinates are given in 

meters and have no more than three fractional digits. The absolute values of coordinates do not exceed 

105. 

 

Output 

You should give the mouse’s route in the form of a broken line. In the first line output the number of its 

vertices (including the initial and final ones). Then give the coordinates of the vertices, two numbers per 

line, accurate to 10-4. Each segment of the broken line must be either entirely dangerous or entirely safe 

(with the possible exception of its endpoints). The broken line must contain no more than 1000 vertices. 

 

Sample 

input output 
1.0 1.5 0.0 1.5 

1 

4 

0.0 0.0 

0.0 1.0 

1.0 1.0 

1.0 0.0 

4 

1.0 1.5 

1.0 1.1 

0.0 1.1 

0.0 1.5 

 

 

 

 

Solution: 

 

The idea is basically simple (like most geometric problems), but problems may arise in the implementation 

of which special care should be taken. The solution consists of three steps: 

1. Determination of the shortest distance between any two polygons; 

2. Finding the shortest path in a graph; 

3. Reconstruction of line segments of the final path. 
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The first step consists solely of geometry. It is convenient to define a class of two-dimensional vector to 

simplify implementation of the further calculations, whereby the points can be represented as radius-

vectors from the origin. It provides easy manipulation of points, calculation of distances, application of 

operators such as cross and dot product, etc. 

 

When determining the shortest distance between two polygons, it is necessary to determine the distance 

from a point (the polygon vertex) to the given line segment (the other polygon edge). For final path 

reconstruction, it is also necessary to determine the point on the line segment that is closest to a given 

point. Figure 1 shows (in two cases) the shortest distance   from the point   and line segment   , and the 

point   on line segment, closest to the point  . (Shown distance is also the shortest distance of those two 

polygons.) 

 

 

 
Figure 1. The shortest distance from a point to the line segment 

 

 

The shortest distance between two polygons can be trivially determined by taking the minimum distance 

between all pairs (the first polygon vertex, the other polygon edge) and vice versa. The complexity of this 

approach is       , where    and   are the numbers of vertices of the first and second polygon, 

respectively. For this task, this is good enough. By using a somewhat more sophisticated algorithm (e.g. 

rotating calipers), the complexity of this step can be reduced to       . 

 

The second step involves graph theory. Each polygon is represented by a vertex of a complete weighted 

graph, where edge weights correspond to the shortest distances between the two polygons. For simplicity, 

the mouse and the cheese can also be treated as polygons (composed of only one point, or degenerate 

triangle with three equal vertices, or alike). In addition, the correction of edge weights is performed in a 

way to subtract       for each edge side associated with actual polygon (subtraction is not performed for 

the mouse and the cheese). The shortest path in this graph is also the requested path with a minimal length 

of the "dangerous" route. A typical algorithm for determining the shortest path in a graph is Dijkstra's 

algorithm. 

 

A

B

C

P d

A

B

C

P

d
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Figure 2. The final path reconstruction 

 

Finally, the third step performs the reconstruction of linear segments of the required path (Figure 2). Based 

on the shortest path in the graph, the polygon traversal sequence is known. The specified path consists of 

the line segments along the edges of polygons, and the line segments that connect two polygons by the 

shortest route. It is necessary to make sure that the line segment which connects two polygons is broken 

down into three parts: two "safe" of       length from the edge of each polygon, and a "dangerous" one, 

which connects the previous two. 

 

 

Solution by:  
Name:  Ognjen Dragoljević 
School: The Faculty of Electrical Engineering and Computing, University of Zagreb 
E-mail: ognjen.dragoljevic@gmail.com 
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Problem R1 03: Asteroid Landing (ID: 1232) 

Time Limit: 1.0 second 

Memory Limit: 16 MB 

 

A guided probe is launched from the space station located at the 
distance of h from the surface of a large asteroid. The probe must land at 
the asteroid. The probe moves straight forward for a fixed distance d, 
after that it receives a new command from the station. The command 
defines the new direction for the movement. Each movement of the 
probe must help it to get closer to the surface. The control signals from 
the station are transmitted only within a cone having a vertex angle of α. 
 
So, the trajectory of the probe is a broken line with segments of equal 
length, which is lying inside the cone described above. The last segment 
of the trajectory must also be of length d, lie inside the transmission 
cone and end at the surface of the asteroid. 
 
Your task is to determine if it is possible to perform the landing of the probe taking into consideration the 
above conditions. If the landing is possible, then find the trajectory of minimal length including the 
coordinates of the ends of each segment. The landing point must be found, too. 
 
The coordinates of the points are Cartesian. Ox and Oy lie on the surface of the asteroid, and Oz passes 

through the space station. 

 

Input 

h (0 < h < 100), d (h/1000 ≤ d ≤ 10*h), α (the angle is in radians, 0.1 ≤ α ≤ 3). All numbers are float. 

 

Output 

n — the number of segments in the trajectory, or −1, if landing is impossible 

x1 y1 z1 

x2 y2 z2 

… 

xn yn zn — the coordinates of the points where the probe receives control signals, and the landing point. All 

coordinates must be calculated to within 0.0001. 

 

Sample 

input output 
11 5 2 

 

3 

0 3 7 

3 3 3 

3 –1 0 
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Solution: 

 

The distance   of the asteroid from the surface can be written as  

        

where   is a nonnegative integer. If      , the asteroid can land on the surface in   movements 

by just moving down, i.e. in the direction of the surface. Otherwise, it will need     movements.  

 

Let’s find the maximum possible distance from the surface after   movements —         for every  . We 

can see that maximal distance is achieved if the asteroid is moving as in Figure 1. Note that we are moving 

only in the    plane, so   is always  .  

 

 
Figure 1. Asteroid moving 

 

We know that            , and            –            . Observe the (isosceles) triangle formed by 

two consecutive movements and lateral surface of the cone (figures below show first two such triangles).  

 

 
 

It can be shown that  -th such triangle has base angle of size    , and therefore the size of its base side is:  

               . 

Knowing that, we can compute        : 

                  –            . 

If         (the sum of angles in a triangle), then such triangle is not formed and                    

for such  .  

 

Having determined      we can find    coordinates of points where the probe receives the control signal.  

If               then the solution does not exist.  

If               then all    coordinates will equal        .  

Else find         such that                   and                  . First   points will 

 

C A 

B 

α α 

d d 

 

D B 

C 

2α 2α 

α 

d d 

 



Qualifications 

MDCS – Bubble Cup 2010 
 

45 

have    coordinate equal        , and the rest will have       (    –   )    (the probe is moving down 

vertically in that part).  

 

Having found    coordinates, we can find    coordinates.  

 
               

   
       –     

  

   coordinates are changing in alternating directions: 

                     

   is always zero as mentioned, so we have found our solution. 

 

 

Solution by:  
Name: Luka Donđivić 
School: The Faculty of Electrical Engineering and Computing, Zagreb 
E-mail: ldondjivic@yahoo.com 
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Problem R1 04: Evacuation Plan (ID: 1237) 

Time Limit: 1.0 second 

Memory Limit: 16 MB 

 

The City has a number of municipal buildings and a number of fallout 
shelters that were build specially to hide municipal workers in case 
of a nuclear war. Each fallout shelter has a limited capacity in terms 
of a number of people it can accommodate, and there's almost no 
excess capacity in The City's fallout shelters. Ideally, all workers from 
a given municipal building shall run to the nearest fallout shelter. 
However, this will lead to overcrowding of some fallout shelters, 
while others will be half-empty at the same time. 
 
To address this problem, The City Council has developed a special 
evacuation plan. Instead of assigning every worker to a fallout 
shelter individually (which will be a huge amount of information to 
keep), they allocated fallout shelters to municipal buildings, listing 
the number of workers from every building that shall use a given 
fallout shelter, and left the task of individual assignments to the 
buildings' management. The plan takes into account a number of workers in every building - all of them are 
assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned 
to no more workers then it can accommodate, though some fallout shelters may be not used completely. 
 
The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to 
reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the 
worker's municipal building to the fallout shelter assigned to this worker. 
 
The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim 
and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that 
the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with 
the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence. 
 

During initial requirements gathering phase of your project, you have found that The City is represented by 

a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer 

numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the 

location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes. 

 

Input 

The input consists of The City description and the evacuation plan description. The first line consists of two 

numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all 

municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City 

(all fallout shelters are numbered from 1 to M). 

 
The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi 
separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi 
(1 ≤ Bi ≤ 1000) is the number of workers in this building. 
 
The description of municipal buildings is followed by M lines that describe fallout shelters. Each line 
contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are 



Qualifications 

MDCS – Bubble Cup 2010 
 

47 

the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter. 
 
The description of The City Council's evacuation plan follows on the next N lines. Each line represents an 
evacuation plan for a single building (in the order they are given in The City description). The evacuation 
plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a 
number of workers that shall evacuate from the ith municipal building to the jth fallout shelter. 
The plan is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that 
are actually working in any given municipal building according to The City description and does not exceed 
the capacity of any given fallout shelter. 
 

Output 

If The City Council's plan is optimal, then write the single word OPTIMAL. Otherwise, write the word 

SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the 

input. Your plan need not be optimal itself, but must be valid and better than The City Council's one. 

 

Sample 

input output 
3 4 

-3 3 5 

-2 -2 6 

2 2 5 

-1 1 3 

1 1 4 

-2 -2 7 

0 -1 3 

3 1 1 0 

0 0 6 0 

0 3 0 2 

SUBOPTIMAL 

3 0 1 1 

0 0 6 0 

0 4 0 1 

 

3 4 

-3 3 5 

-2 -2 6 

2 2 5 

-1 1 3 

1 1 4 

-2 -2 7 

0 -1 3 

3 0 1 1 

0 0 6 0 

0 4 0 1 

OPTIMAL 

 

 

 

 

Solution: 

 

This is another interesting graph theory problem. The question is how to send workers from buildings to 

shelters and make a better solution than the one given in the task (the new plan does not need to be 

optimal, but it must be valid). 

 

We see that there are two types of shelters, the ones that are not completely filled up with workers and 

the ones that are. For the second type it is important that if we want to move a worker into the shelter, 

first we have to move one out. 
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Figure 1.  Example from the problem statement 

 

 Let’s make a weighted directed graph        in which nodes represent shelters, and for every 

non-empty shelter   there is an edge from it to every other shelter  .The weights of these edges are given 

by the following formula:          {                   } for every building   which has a worker in 

shelter  , and where           is the distance from building   to shelter  . This formula represents the 

minimal difference in the distances needed to transfer a worker from shelter   to shelter  . 

 

 
Figure 2.  Described graph in the example 
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Notice that an edge can be negative, which represents improvement. Now, it is easy to see that the only 

possible improvement is either a negative cycle in this graph or a negative path which ends in a shelter that 

is not full. A negative cycle/path is one for which the sum of all its edges is negative. We get the solution by 

rotating workers along the path/cycle that we have found. 

 

 
Figure 3. Solution for the example 

 

The easiest way of finding a negative cycle or path is the Bellman-Ford algorithm, which has complexity of 

         . Since the number of vertices is   and the number of edges is not bigger than   , the 

complexity of this algorithm is      . 

 

 

Solution by:  
Name:   Dušan Zdravković, Dimitrije Dimić, Stefan Stojanović 
School: “SvetozarMarkovid” High School,Niš 
E-mail:  zdravkovicdusan@hotmail.com, dimke92@yahoo.com, dolarlord@gmail.com 
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Problem R1 05: Bus Routes (ID: 1434) 

Time Limit: 3.0 second 

Memory Limit: 32 MB 

 

The Vasyuki University is holding an ACM contest. In order to help the participants make their stay in the 
town more comfortable, the organizers composed a scheme of Vasyuki's bus routes and attached it to the 
invitations together with other useful information. 
 
The Petyuki University is also presented at the contest, but the funding of its team is rather limited. For the 
sake of economy, the Petyuki students decided to travel between different locations in Vasyuki using the 
most economical itineraries. They know that buses are the only kind of public transportation in Vasyuki. 
The price of a ticket is the same for all routes and equals one rouble regardless of the number of stops on 
the way. If a passenger changes buses, then he or she must buy a new ticket. And the Petyuki students are 
too lazy to walk. Anyway, it easier for them to write one more program than to walk an extra kilometer. At 
least, it's quicker. 
 
And what about you? How long will it take you to write a program that determines the most economical 
itinerary between two bus stops? 
 
P.S. It takes approximately 12 minutes to walk one kilometer. 

 

Input 

The first input line contains two numbers: the number of bus routes in Vasyuki N and the total number of 

bus stops M. The bus stops are assigned numbers from 1 to M. The following N lines contain descriptions of 

the routes. Each of these lines starts with the number k of stops of the corresponding route, and then k 

numbers indicating the stops are given ( 1 ≤ N ≤ 1000, 1≤ M ≤ 105, there are in total not more than 200000 

numbers in the N lines describing the routes). In the N+2nd line, the numbers A and B of the first and the 

last stops of the required itinerary are given (numbers A and B are never equal). 

 

Output 

If it is impossible to travel from A to B, then output −1. Otherwise, in the first line you should output the 

minimal amount of money (in roubles) needed for a one-person travel from A to B, and in the second line 

you should describe one of the most economical routes giving the list of stops where a passenger should 

change buses (including the stops A and B). 

 

Sample 

input output 
3 10 

5 2 4 6 8 10 

3 3 6 9 

2 5 10 

5 9 

3 

5 10 6 9 
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Solution: 

 

This was a very interesting problem and proved to be one of the easiest. The problem can be approached in 

several ways – but they all contain a few graph search algorithms. The problem can be solved very 

elegantly, which will be shown here. 

 

 
Figure 1.  Example from the problem statement 

 

The question is how to find a path between two bus stops with the smallest number of bus changes. 

Denote with         graph with nodes corresponding to bus stops, and edges between consecutive bus 

stops in routes. We can look at bus routes as paths in graph  .  Now we can generate a graph with bus 

stops as nodes and find the minimal path using breadth-first search (BFS). This idea works, but the 

implementation can be a bit tricky, so we will try to implement it in a slightly different way. We are going to 

construct a new graph with vertices for both bus stops and routes. Now, for every route we are going to 

add edges to its stops. This is very cool, isn’t it? The corresponding graph would look like this: 

 

 
Figure 2.Generated graph for the example case 

 

As we can see, this graph is bipartite. It has one nice feature – the distance between any two bus stops on 

the same route is two edges, so we can just find the shortest path between two given bus stops and these 
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vertices are going to be bus stops where we have to change routes.  The easiest way to implement this is to 

store routes as nodes with indexes              .  

 

The number of edges in this graph is equal to the sum of lengths of all routes. The complexity of the BFS 

algorithm is linear on the number of edges, which brings us to the final complexity of 

                    , which is less than 200,000. 

 

 

Solution by:  
Name:   Andreja Ilić 
School: The Faculty of Mathematics and Sciences, Niš 
E-mail:  ilic_andrejko@yahoo.com 
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Problem R1 06: Brainfuck (ID: 1552) 

Time Limit: 2.0 second 

Memory Limit: 64 MB 

 

Chairman of "Horns and hoofs" company, Mr. Phunt, decided to start advertising campaign. First of all, he 
wants to install an indicator panel on the main square of the city that will show advertisements of the 
company. So he charged the manager of the company, Mr. Balaganov, to do this job. After analyzing offers 
of indicator panels, Balaganov ordered one at a price of only $19999.99. But when it was delivered, a little 
problem was found. The panel was programmable, but the instruction set of the processor was a subset of 
brainfuck language commands. The commands that processor was capable to execute were '>', '<', '+', '−' 
and '.', which are described in the table below. Moreover, this panel had very little memory for the 
program, so not every program typing a particular string will fit into memory. Now Balaganov wants to 
know the minimal program that will output the given string. But because he is not very good at 
programming, he asks you to solve this problem. The brainfuck program is a sequence of commands 
executed sequentially (there are some exceptions, but panel processor cannot execute such commands). 
The brainfuck machine has, besides the program, an array of 30000 byte cells initialized to zeros and a 
pointer into this array. The pointer is initialized to point to the leftmost byte of the array.  

  

Command Description 

> 
Increment the pointer (to point to the next cell to the right). If the pointer before increment points to the 
rightmost byte of the array, then after increment it points to the leftmost byte.  

< 
Decrement the pointer (to point to the next cell to the left). If the pointer before decrement points to the 
leftmost byte of the array, then after increment it points to the rightmost byte.  

+ 
Increment (increase by one) the byte at the pointer. If the value of the cell before increment is 255 then it 
becomes 0.  

− 
Decrement (decrease by one) the byte at the pointer. If the value of the cell before decrement is 0 then it 
becomes 255.  

. Output the value of the byte at the pointer.  

 

Input 

Input has one line containing the string brainfuck program must output. Every character of the string is a 

small English letter ('a'–'z'). The length of the string is not greater than 50. You may assume that optimal 

program will not have to modify more than four memory cells. 

 

Output 

Input has one line containing the string brainfuck program must output. Every character of the string is a 

small English letter ('a'–'z'). The length of the string is not greater than 50. You may assume that optimal 

program will not have to modify more than four memory cells. 

 

Sample 

input output 
a +++++++++++++++++++++++++++++++++++ 

+++++++++++++++++++++++++++++++++++ 

+++++++++++++++++++++++++++. 

 

Hint 

Please note that the sample output is divided into several lines only for convenience. In the real output 

whole program must be printed on a single line. 
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Solution: 

 

Beware of the Turing tar-pit in which everything is possible but nothing of interest is easy. 

(Alan Perlis, from Epigrams on Programming) 

 

If we look at the sentence in the task description, “You may assume that optimal program will not have to 

modify more than four memory cells”, we can conclude that these four cells are consecutive, and that the 

starting cell has to be one of them. That gives us four possibilities to begin with, and each of them is solved 

in the same fashion as follows. 

 

The solution uses dynamic programming. Every state can be described with six integers: values of the four 

“critical” cells, the number of the cell (0…3) the pointer is currently at, and the position of the letter in the 

string which is to be printed next. To reduce the number of states in the memory, we can make the 

following observations. First, the values of the four cells are either 0 or ASCII values of the letters ‘a’ – ‘z’ 

after each letter is printed; this reduces the number of possible values in each cell from 256 to 27. 

Furthermore, we do not need the number of the cell the pointer is currently at, because if we know which 

letter was printed last, we simply find the cell which has the value of that letter. Therefore, the total 

number of states reduces to                    , which is still much more than the number of states 

that can actually be reached. For this reason, to implement the dynamic programming approach we use 

recursion with memoization - in this way we will process only the states that we can get to. 

 

In the process of finding the best solution for a state in the recursion, our goal is to choose a cell which will 

contain the value of the next letter to be printed, so that the number of remaining brainfuck commands 

(moving the pointer to the chosen cell, changing the cell value and recursively solving the rest of the string 

from the obtained state) is minimal. In order to reconstruct the optimal sequence of commands, we can 

run a procedure which, knowing the minimal number of commands for each state (already calculated by 

the dynamic programming algorithm), simply finds this sequence. 

 

Note: 

The brainfuck programming language is an esoteric programming language (programming language 

designed as a test of the boundaries of computer programming language design, as a proof of concept, or 

as a joke) noted for its extreme minimalism. It is a Turing tar-pit, designed to challenge and amuse 

programmers, and is not suitable for practical use. 

 

 

Solution by:  
Name:   Adrian Satja Kurdija 
School:  5th High School, Zagreb; Faculty of Mathematics and Sciences, Zagreb 
E-mail:   askurdija@gmail.com 
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Problem R1 07: Dean’s Debts (ID: 1580) 

Time Limit: 2.0 second 

Memory Limit: 64 MB 

 

N students of one university took part in the Yekaterinozavodsk training camp. When they returned home, 

it turned out that they had spent much of their own money for the tickets to Yekaterinozavosk and back, 

for their lodgings, food and registration fees. The students came to the dean of their department and asked 

him to compensate the costs of the trip. The dean listened to them carefully and gave some amounts of 

money (possibly different) to all of them. The next day two of these students came to the dean and told 

that the two of them had been given A1 rubles less than they had spent jointly. On the next day, the 

situation repeated itself: a pair of students claimed that the dean owed them A2 rubles. The situation 

repeated itself for a few days more. Finally, on the M-th day a pair of students told the dean that they two 

had spent together AM rubles more than the dean had paid them. After that, the students lost any hope 

and stopped visiting the dean. Then the dean took the notes with the students' demands and decided to 

calculate how much he owed each of them. But it turned out to be not so easy! 

 

Input 

The first line contains integers N and M separated by a space (2 ≤ N ≤ 1000; 1 ≤ M ≤ 100000). The following 

M lines contain the demands of pairs of students who visited the dean. The (i + 1)-st line contains three 

integers separated by spaces: the numbers of two students who visited the dean on the i-th day and the 

amount of money Ai they asked for. The students are numbered from 1 to N. The number Ai is an integer in 

range from −10000 to 10000. A negative number means that the students got from the dean more that 

they spent. It is known that no pair of students visited the dean more than once. 

 

Output 

If the dean can determine uniquely how much money he owes each of the students, write these sums with 

two digits after the decimal point: in the i-th line output the amount he owes the i-th student. The numbers 

can be negative; this means that the student owes the dean (sometimes it happens!). If it is impossible to 

find these amounts, output “IMPOSSIBLE”. 

 

Sample 

input output 
3 3 

1 2 2 

2 3 4 

3 1 6 

2.00 

0.00 

4.00 

 

4 3 

1 2 2 

1 3 4 

1 4 6 

IMPOSSIBLE 
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Solution: 

 

The problem, in essence, asks of us to solve a system of linear equations and print the solution if it is 

unique. It is less general than that, however, because our equations have a rigidly defined shape - they all 

have the form of          . We will try to make use of that. 

 

Let’s start solving the system by hand. If we have (like in the example)        ,         and 

       , we can subtract the first equation from the second to get            . Then, adding the 

third equation to this, we get        , and it is easy to go further from there. 

 

Now we have to generalize this approach to get the solution. We will define a set of states (which represent 

equations) and rules for transitions between states (which simulate derivation). All equations we will need 

can be written as           . This can be represented by a state that specifies the left-hand side — the 

numbers   and   along with the coefficients in front of the variables, which are always    or    in this 

problem. Of course, the state will have the number     associated with it as well. We can also note that, 

since negating the whole equation does not change anything, it is safe to assume that the first coefficient 

(in front of   ) is always    and only remember the second one, halving the number of states. 

 

We get the starting set of states from the input. (We can add some trivial states to this set as well: 

        for all  ). If we are in a state corresponding to the equation         , the rules of transition 

are the following: 

- if         and       , we can calculate         

- if       ,       and      , we have reached a contradiction 

- if we have the value for one of    or   , we can get the other one using simple arithmetic 

- otherwise, for all  , if we have a state that corresponds, e.g., to the equation          , we 

can transition to the state             with the right-hand side      (and similarly for other 

possibilities – when    is the second variable, or    is the variable we need to eliminate) 

 

We can traverse the space of states using a variant of depth-first search, making sure to pass along all 

required values while we travel. We can get the following results: 

- a contradiction occurred somewhere: just print out “IMPOSSIBLE” 

- we got all the values: this is our solution, so print it out 

- we did not get the values of all   : since the search is exhaustive, there is no other way that can get 

the values of variables we did not get, therefore print out “IMPOSSIBLE” 

 

Since the number of states is limited to           , and we won’t visit any state more than once, it 

follows that we have more than enough time for the algorithm to finish. The implementation should be 

relatively straightforward. 

 

Solution by:  
Name:    Andrija Jovanović 
School:   School of Computing (RAF), Belgrade 
E-mail:   ja.andrija@gmail.com 
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Problem R1 08: Pharaohs’ Secrets (ID: 1584) 

Time Limit: 1.0 second 

Memory Limit: 64 MB 

 

When programmer Alex was in Egypt, he not only swam in the Red Sea and went sightseeing, but also 

studied history. When Alex visited the place where an archeological dig of an ancient temple was carried 

out, an excavation worker complained to him that they had to drag very heavy statues from place to place 

every day. This was because some Egyptologist had read in an ancient papyrus that if the statues were 

arranged in a special order, then some ancient hiding-place would open. When the temple had been dug 

out, these statues had stood as soldiers, forming a rectangle. Some statues were identical, so there were 

several types of statues. They were to be arranged into a rectangle of the same dimensions on the same 

place with all rows and columns symmetric with respect to their middles. This meant that the statues 

standing in the same row or column at equal distances to its ends had to be of the same type.  

 

Alex offered his help. He wants to find the way to transform the rectangle into a symmetric one by means 

of the minimal number of moves.  

 

Input 

The first line contains the dimensions of the rectangle n and m (2 ≤ n, m ≤ 20). These integers are even. 

Each of the next n lines contains m lowercase English letters. Each letter denotes the type of the statue that 

stands in the rectangle at this position. 

 

Output 

Output the minimal number of statues that should be moved in order to make a symmetric rectangle. It is 

guaranteed that this is possible. 

 

Sample 

input output 
4 4 

abxa 

xyyb 

xyyx 

abba 

2 

 

 

Hint 

 

The arrangement in the example can be transformed to a symmetric one in only two moves: first the statue 

of the type x from the upper row should be moved to the place in the rightmost column where there is the 

statue of the type b, and this statue then should moved to the place where the first statue stood. After all 

moves each place must be occupied by exactly one statue, but during the moving process there can be 

several statues at the same place. 
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Solution: 

 

Let us enumerate rows and columns of the given rectangle top-bottom from   to   and left-right from   to 

 , and denote by       the position at the intersection of  -th row and  -th column. Suppose that a statue   

is located at      ,      ,      . If this rectangle is symmetric, then, by applying symmetry on  -th row 

and  -th column, it follows that statues of the same type (   must be located at          and      

    . Applying symmetry once more, we get that location               must also contain a statue 

of type  . 

 

Now, denote with      {                                       }. By the above 

discussion, it can be easily proven that: 

 

An      rectangle is symmetric if and only if for all      ,      ,  

statues in      are of the same type. 

 

It follows that we need to put the statues of the same type in each of these 
  

 
  quadruplets of locations. 

But which type in which quadruplet?  Let’s divide    given statues in 
  

 
 quadruplets, so that each 

quadruplet contains the statues of the same type (there may be more quadruplets with the same type of 

statues). Denote the quadruplets with   ,         . Such division exists because it is guaranteed that 

solutions exist. If we decide to put the statues of type    on the locations     , we need to remove all the 

statues from these locations which are not of    type. This is the “cost” of our choice and we need to 

minimize the sum of costs for all quadruplets. Note that we only consider removal cost because when we 

bring statues to some quadruplet     , we are removing them from another quadruplet. 

 

Let’s transform this problem a bit. Denote by        the complete bipartite graph with partitions 

  {       
 

 
   

 

 
} and   {     

  

 
}. For each edge     between      and   , we assign it 

weight      to be the number of the statues on locations      which are not of type   . It is obvious that 

     is the above mentioned cost. Note that         
  

 
. In this notation, our goal is to find a 

maximum matching   in graph  , such that ∑         is minimized (notice that any perfect matching in   

uniquely defines an assignment of statues to quadruplets of locations).  

 

But this is the well-known minimum weighted matching in bipartite graph problem, which can be solved 

using the famous Hungarian algorithm. Complexity of this algorithm is      , in our case   (
  

 
)
 
 . 

 

 

Solution by:  
Name:   Nikola Milosavljević 
School:  The Faculty of Mathematics and Sciences, Niš 
E-mail:  nikola5000@gmail.com 
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Problem R1 09: Vasya Ferrari (ID: 1666) 

Time Limit: 0.5 second 

Memory Limit: 64 MB 

 

Vasya, nicknamed Ferrari, has to solve an equation of fourth degree with integer coefficients 

x4+ax3+bx2+cx+d = 0. Vasya wants to factorize the polynomial in the left part of this equation to the 

maximal possible number of multipliers with integer coefficients to reduce the problem to solving several 

equations of lower degree. 

 

Input 

4 integers: a, b, c, d — the coefficients of the polynomial, with absolute values not exceeding 20000. 

 

Output 

If the polynomial can't be factorized to multipliers with integer coefficients, you should output a single line 

“Irreducible”. In the other case output the factorization of the polynomial as a product of several 

polynomials with integer coefficients, enclosed in parentheses. You shouldn't delimit the multipliers with 

spaces and output monomials with zero coefficients. Coefficients and degrees equal to 1 should be 

omitted, except the monomial “1”. 

 

Sample 

input output 
0 0 0 0 (x)(x)(x)(x) 

-4 -3 24 45 (x2+3x+3)(x2-7x+15) 

1 1 1 1 Irreducible 
 

 

 

 

Solution: 

 

In this problem we have to reduce a fourth degree equation by factorizing the polynomial on the left-hand 

side to the largest number of factors with integer coefficients, so that the equation can be solved by solving 

two, three or more equations. The following quartic equation is given: 

                  

 

A polynomial of the fourth degree can be factorized in several ways: 

 the product of a third-degree polynomial with a first-degree polynomial 

 the product of two second-degree polynomials 

 the product of two first-degree polynomials and one second-degree 

 the product of four first-degree polynomials 

 

First of all, we will try to factorize our polynomial as a product of two quadratic polynomials. 

                                          

From this observation we get a system of equations: 
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We can transform them into the following: 

                   

     
              

It seems impossible to solve this directly. The easiest way to get around this, keeping in mind that we are 

only looking for integer solutions, would be to find all divisors of  , which is the set of all possible values for 

   and   , and iterate through them. Knowing    and    we can solve the quadratic equation for    and 

immediately obtain    through one of the above equations. 

 

So, if we have found a possible way to factorize our polynomial as a product of two quadratic polynomials, 

we are left with this equation: 

                          

Two quadratic equations follow: 

              

              

We will try to factorize them separately. (Maybe we will not be able to factorize one or both of them). In 

order to factorize one quadratic equation into a product of two linear equations, all we need to know are 

the roots of the given equation,    and   . By finding the roots we can write one of our quadratic equations 

as              . We still  mustn’t forget that we are only interested in the integer roots. 

 

We will stop here because the polynomial can't be factorized further. So far this solution seems OK, but 

sometimes our polynomial of the fourth degree can't be written as the product of two polynomials of the 

second degree. In this case we will try to factorize it as the product of polynomials of first and third degree. 

 

                                
          

        

          

          

       

 

We have a system of equations once again. And again, finding all divisors of   will help us to find the other 

variables. If we are successful, there is no need to go any further. Obviously, the linear polynomial can't be 

reduced, and if it were possible to factorize the third degree polynomial, it would reduce to the previous 

case - meaning that the original polynomial can be factorized into two quadratic polynomials, and we have 

already excluded that possibility. If we weren't able to factorize the polynomial in either of these ways, it is 

irreducible. There are some special cases when the constant term of our quartic equation is equal to zero 

(   ). 

 

 

Solution by: 
 Name:  Daniel Ferizović 
School: MSŠ Bosanski Petrovac 
 E-mail: dani.f@live.de 
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Problem R1 10: The Most Complex Number (ID: 1748) 

Time Limit: 1.0 second 

Memory Limit: 64 MB 

 

Let us define a complexity of an integer as the number of its divisors. Your task is to find the most complex 

integer in range from 1 to n. If there are many such integers, you should find the minimal one. 

 

Input 

The first line contains the number of testcases t (1 ≤ t ≤ 100). The i-th of the following t lines contains one 

integer ni (1 ≤ ni ≤ 1018). 

 

Output 

For each testcase output the answer on a separate line. The i-th line should contain the most complex 

integer in range from 1 to ni and its complexity, separated with space. 

 

Sample 

input output 
5 

1 

10 

100 

1000 

10000 

1 1 

6 4 

60 12 

840 32 

7560 64 

 
 

 

 

 

Solution: 

 

Statistically speaking, this problem was the easiest one in the qualification rounds (it was solved 54 times). 

This number theory problem is a very nice example for everyone who wants to try competing in 

programming. One of the reasons for this is that it can be solved in many ways. We are going to present 

three of them in brief here.  

 

Firstly, let’s try to formalize the problem a little bit. We have to find the minimal number from the segment 

      that has the maximal complexity – the number of its divisors. The Fundamental Theorem of 

Arithmetic tells us that we can write any integer (greater than  ) as a unique product (up to the ordering of 

the factors) of the prime numbers. The number          can be represented as 

    
    

     
   

where    are different prime numbers and    are nonnegative integer numbers. The nice thing 

about this representation is that the number   divides   if and only if in its 

representation   
    

     
    we have        for all  . Now, if we denote the complexity of the 

number   as       we have that the following property holds: 

 

                         

 

because every prime    from the factorization of   can be included  ,  ...    times.  
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From this we can see that values    of the prime divisors are not important for calculating the complexity – 

only the exponents   . We need the minimal number that has maximal complexity, so we can observe that 

the prime factors of this number are going to be        in order. If we skip a prime number, than we can 

replace the biggest prime with the skipped one and get a smaller number with the same complexity. This is 

very good, isn’t it? Also, from the same argument we conclude that the degrees of the primes are sorted in 

non-decreasing order          .  

 

What is the largest prime that we have to consider? If we start to multiply all primes in order, the first time 

we get a result larger than     is after multiplying by   . Therefore, only the first    prime numbers can 

appear in the factorization. We can similarly determine the maximal exponents for each prime factor. (Note 

that there are better bounds than these!)  

 

Prime numbers 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 

Maximal degree 59 37 25 21 17 16 14 14 13 12 12 11 11 11 10 

Table of the first 15 prime number and corresponding maximal degrees 

 

 

Now, we can solve the problem in many ways: 

 

 Backtrack 

 

We can backtrack through the set of all the numbers with the above characteristics. There are not 

more than       of them.  

 
==================================================================================== 

 Function: Solve 

 Input:   num – current generated number (passed by value) 

   index – current prime number 

   deg [] – current degrees (for num) 

 ------------------------------------------------------------------------- 

01 if index is bigger than 15 then 

02  return; 

03 if num is better than current solution 

04  update current solution; 

05 while (num <= n) and (deg [k] <= deg [k – 1]) 

06  solve (num, index + 1, deg); 

07  multiply num with index-th prime number; 

08  deg [k] = deg [k] + 1; 

09 deg [k] = 0; 

==================================================================================== 

Pseudo code for backtracking function 

 

 

 Pre-calculation 

 

The number of different possible solutions is very small, so another idea is to pre-calculate all 

possibilities — we don’t need to pay attention to how quick the algorithm is — and store them in arrays. 

After that we only need to traverse these arrays and fetch the solution. 
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long num[] = {1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 

221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880, 3603600, 4324320, 6486480, 7207200, 8648640, 10810800, 14414400, 17297280, 21621600, 

32432400, 36756720, 43243200, 61261200, 73513440, 110270160, 122522400, 147026880, 183783600, 245044800, 294053760, 367567200, 551350800, 698377680, 735134400, 1102701600, 

1396755360, 2095133040, 2205403200L, 2327925600L, 2793510720L, 3491888400L, 4655851200L, 5587021440L, 6983776800L, 10475665200L, 13967553600L, 20951330400L, 27935107200L, 

41902660800L, 48886437600L, 64250746560L, 73329656400L, 80313433200L, 97772875200L, 128501493120L, 146659312800L, 160626866400L, 240940299600L, 293318625600L, 

321253732800L, 481880599200L, 642507465600L, 963761198400L, 1124388064800L, 1606268664000L, 1686582097200L, 1927522396800L, 2248776129600L, 3212537328000L, 3373164194400L, 

4497552259200L, 6746328388800L, 8995104518400L, 9316358251200L, 13492656777600L, 18632716502400L, 26985313555200L, 27949074753600L, 32607253879200L, 46581791256000L, 

48910880818800L, 55898149507200L, 65214507758400L, 93163582512000L, 97821761637600L, 130429015516800L, 195643523275200L, 260858031033600L, 288807105787200L, 

391287046550400L, 577614211574400L, 782574093100800L, 866421317361600L, 1010824870255200L, 1444035528936000L, 1516237305382800L, 1732842634723200L, 2021649740510400L, 

2888071057872000L, 3032474610765600L, 4043299481020800L, 6064949221531200L, 8086598962041600L, 10108248702552000L, 12129898443062400L, 18194847664593600L, 

20216497405104000L, 24259796886124800L, 30324746107656000L, 36389695329187200L, 48519593772249600L, 60649492215312000L, 72779390658374400L, 74801040398884800L, 

106858629141264000L, 112201560598327200L, 149602080797769600L, 224403121196654400L, 299204161595539200L, 374005201994424000L, 448806242393308800L, 673209363589963200L, 

748010403988848000L, 897612484786617600L, 1000000000000000001L}; 

 

long com[] = {1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 64, 72, 80, 84, 90, 96, 100, 108, 120, 128, 144, 160, 168, 180, 192, 200, 216, 224, 240, 256, 288, 320, 336, 360, 384, 

400, 432, 448, 480, 504, 512, 576, 600, 640, 672, 720, 768, 800, 864, 896, 960, 1008, 1024, 1152, 1200, 1280, 1344, 1440, 1536, 1600, 1680, 1728, 1792, 1920, 2016, 2048, 2304, 2400, 2688, 2880, 

3072, 3360, 3456, 3584, 3600, 3840, 4032, 4096, 4320, 4608, 4800, 5040, 5376, 5760, 6144, 6720, 6912, 7168, 7200, 7680, 8064, 8192, 8640, 9216, 10080, 10368, 10752, 11520, 12288, 12960, 

13440, 13824, 14336, 14400, 15360, 16128, 16384, 17280, 18432, 20160, 20736, 21504, 23040, 24576, 25920, 26880, 27648, 28672, 28800, 30720, 32256, 32768, 34560, 36864, 40320, 41472, 

43008, 46080, 48384, 49152, 51840, 53760, 55296, 57600, 61440, 62208, 64512, 65536, 69120, 73728, 80640, 82944, 86016, 92160, 96768, 98304, 103680, 0}; 

 

 Dynamic programming  

 

We can define two lists as follows:  

 

                    list of all complexities for a number generated with  the first   prime numbers and 

smaller than      

             the list of the minimal numbers for corresponding complexities 

 

For the starting values we can use                { }and             { }. Now, we can get 

the values for other elements of these lists, going through already calculated elements. Of course, we have 

to sort these lists so we can quickly find the given complexity.  

 

 

Solution by:  
Name:   Andreja Ilić 
School: The Faculty of Mathematics and Sciences, Niš 
E-mail:  ilic_andrejko@yahoo.com 
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Problem R2 01: Cockroach Race (ID: 1369) 

Time Limit: 5.0 second 

Memory Limit: 32 MB 

 

At last, the spring came. Buds swell on the trees, the snow has almost thawn out. More and more often you 
can hear birds' sonorous twittering from the outside. Less and less students you can see at the USU math-
mech department. Even the cockroaches, usual inhabitants of the hostels, show up very rarely. 
 
What's the connection between these phenomena, you may ask. The answer is the Day of Mathematician 
and Mechanician celebration, which will begin really soon. At the same time, the traditional cockroach race 
will take place in the USU. That's what the students are occupied with now - they are training their pets. 
Everyone wants his pet to become the prize-winner and to receive the proud name of "Magaz". 
 
The race rules are somewhat unusual. Every round, some kind of sweets are placed in N points of the racing 
area. Together with sweets, M cockroaches are released. N cockroaches that reach these little delights of 
cockroaches' life, will make it to the next round. During the race all spectators have an unique opportunity 
to place bets and to win a lot of money. But the totalizator organizers are puzzled, they cannot understand 
how to calculate the probabilities of cockroaches' victories quickly and without mistakes. This is absolutely 
required to make the maximum profit out of their enterprise. Math-mech is rather big department and 
everyone here wants to participate. 
 
You are to determine, for each of N pieces of sweet, which of the cockroaches is closest to that piece. This 

will help to determine the race leaders. 

 

Input 

The first line of the input contains the number M (1 ≤ M ≤ 100000). M lines follow, containing 2 numbers 

each — these are coordinates of the cockroaches at the present moment. (M + 2)nd line of the input 

stream contains the number N (0 ≤ N ≤ 10000). N following lines contain coordinates of sweet pieces. All 

coordinates are floating point numbers (−10000.0 ≤ x, y ≤ 10000.0). The distance between any two 

cockroaches is not less than 10−3. Also the distance between any two sweets is not less than 10−3. 

 

Output 

For each piece of "Cockroach Sweets" you should output all cockroaches closest to that piece in ascending 

order of their numbers separated by spaces. 

 

Sample 

input output 
4 

0 0 

1 0 

0 1 

1 2 

2 

0 0 

0 2 

1 

3 4 
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Solution: 

 

This task is extremely difficult. Two most known approaches for spatial nearest neighbor search are 

Voronoi diagram and k-d trees. Other popular data structures are not good choice since they’re optimized 

for different things other than speed: R-trees are optimized for I/O operations and Quad-trees have 

advantage over k-d trees only by being able to parallelize better. Picking any of these structures, which are 

hard to implement on their own, will not fully solve the problem. In order to address all speed issues, a 

number of various specific tricks and optimizations need to be done. A good reference is a book The design 

and analysis of spatial data structures. 

 

The k-d tree is binary tree, usually balanced, in which every node is one point. Every node divides spatial 

region into two sub-spaces by line parallel to either   or   axis alternatively. Root for the tree is picked as 

median point when all points are sorted by   axis, and division line is parallel to   axis. Both of distinct 

regions are then recursively divided: roots for the sub-trees are medians when points are sorted by   axis, 

and both sub-spaces are further divided by lines parallel to   axis. 

 

A

B

C
D

E

F

G

A

B

ED

C

GF

 
Figure 1. Example of k-d tree 

 

 

Once the k-d tree is constructed from points representing positions of bugs, we need to search for nearest 

neighbor for each of points representing positions of sweets. Search of k-d tree is done in following way: 

 

- Starting from the root node, move down recursively to find the region where the point would 

belong if it were element of the tree. The last node visited determines the current best. 

 

- Moving upwards from the leaf node to the root node, check whether there’s a need to check points 

in other sub-regions (on the other side of the splitting line). 

o If the circle with the center with query point and radius of the current best intersects 

current splitting line, there’s a possibility that some points in the neighboring sub-region 

(corresponding to the sibling node) can have nearest neighbor candidates. Those regions 

should be processed in the same manner recursively. 

o If the circle does not intersect current splitting line, the entire branch corresponding to the 

sibling node is discarded. 
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At each point, current best is maintained. When root of the tree is reached, current best is final nearest 

neighbor. 

 

Construction of k-d tree construction can be done in           time. Queries could be done in 

         time on average and       in worst case.  

 

 

Solution by:  
Name:  Milan Novaković 
School: The Faculty of Electrical Engineering, Belgrade 
E-mail:  milan.novakovic@microsoft.com 
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Problem R2 02: Light (ID: 1464) 

Time Limit: 3.0 second 

Memory Limit: 32 MB 

 

Santa Claus Petrovich moved to a new hut. It consists of only one room. Its floor has the form of a simple 

polygon (not necessarily convex) with N vertices. It was dark in the hut at first, but then Petrovich hung a 

lamp at the point with projection (X0, Y0). Which area of the room is illuminated by the lamp? 

 

Input 

The first line contains the coordinates of the lamp (X0, Y0). You may regard the lamp as a material point. The 

second line contains the integer 3 ≤ N ≤ 50000. In the next N lines there are coordinates (Xi, Yi) of vertices of 

the N-gon. The vertices are given in the counter-clockwise order. All the coordinates are given as pairs of 

real numbers separated with a space, 0 ≤ Xi,Yi ≤ 1000. The coordinates contain not more than four 

fractional digits. It is guaranteed that the lamp is strictly inside the room. 

 

Output 

Output the area S of the illuminated part of the room. The area must be given with accuracy of at least two 

fractional digits. 

 

Sample 

input output 
1.0 1.0 

6 

0 0  

3 0 

3 2 

2 2 

2 3 

0 3 

8.00 

 

 

 

 

Solution: 

 

In problems like this, it could be very useful to find a way to break down the calculation on a single complex 

object into calculations on multiple simpler objects. For this problem, this means finding a way to calculate 

the lighted area. 

 

Let us try to calculate the lighted area within the given angle in the point        . There are a few major 

reasons why we should do that: 

(a) the way the light lights in the circle around         is just a special case of an angle, 

(b) any circle can be divided into a finite number of non-overlapping angles, 

(c) if the light within given angle lights only one edge, then calculating lighted area is quite simple - 

it is just a triangle. 

 

Comparing (a) and (c), it is obvious that such calculation in some cases can be complicated, but in other 

cases it is very straightforward. As mentioned at the beginning we will try to separate the part (a) into (c)-s 



Qualifications 

MDCS – Bubble Cup 2010 
 

68 

in the following way: 

Suppose we have divided the circle in some way (doing (b)) so far. Take any angle, and consider the 

following two possibilities: 

(1) the light within the angle lights only one edge (Figure 1), 

(2) the light within the angle lights at least two edges (Figure 2). 

 

 
Figure 1. The light within the angle lights only one edge  

Figure 2. The light within the angle lights at least two edges 

 

We have already mentioned that (1) is a simple case, so let us play with (2). If the light within the angle 

lights at least two edges   and   , then there exists a point   over which light passes from    before 

switching to   . We separate the angle by line           and replace the current angle with two just 

obtained (smaller) angles and continue the procedure. Such a point P we will call "switching point". This 

procedure raises two very important questions:  how can we find a switching point, and is the described 

procedure finite? 

 

Instead of asking "how we can find", let us ask "when we are sure" there is no switching point in the given 

angle. A switching point can occur as an intersection of two edges or as a vertex of an edge. The first is 

impossible by conditions of the problem statement, so a switching point can only be a vertex. Considering 

the fact that whenever a switching point occurs it has to be a vertex of an edge, we immediately give the 

answer to the second question - the described procedure is finite, because we have at most     vertices. 

 

Now we can come up with an easy procedure for choosing the angle which does not contain any point 

within it, except maybe at the lines of the angle. The following pseudo-code describes this procedure: 

 
================================================================================== 

01  for each vertex V 

02   let angle(V) be angle between line V-(X0, Y0) and x-axis 

03  let A be array of sorted vertices in ascending order by their angle(V) value 

04  make A to be a circular array 

05  for each two (V1, V2) adjacent vertices in A 

06    angle V1-(X0, Y0)-V2 is angle which does not contain switching point 
================================================================================== 

 

Note that in this way we got angles described by case(b), and each of those angles is of type (1). Calculating 

lighted area within any angle                  of type (1) can be done in the following way: 
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================================================================================== 

01  doublelightedArea(vertex V1, vertex V2) 

02    Xs = (V1.x + V2.x) / 2 

03    Ys = (V1.y + V2.y) / 2 

04    let A be array of edges. A contains an edge e only iff interior of  

angle V1-(X0, Y0)-V2 contains at least one point of e 

05    for each edge e in A 

06     let dist(e) be a distance from (X0, Y0) and intersection point between e and line 

(Xs, Ys)-(X0, Y0) 

07    sort A in ascending order according by dist(e) value 

08    let minE be the first edge of A 

09    let (XV1, YV1) be the intersection point between minE 

and line (V1.x, V1.y)-(X0, Y0) 

10    let (XV2, YV2) be the intersection point between minE 

and line (V2.x, V2.y)-(X0, Y0) 

11    return areOfTriangle(X0, Y0, XV1, YV1) 
================================================================================== 

 

Note that if there exists at least one point of an edge e in the interior of an angle, like mentioned on the 

line 4, then the interior of the angle does not contain vertex of e. On the contrary, the angle will contain a 

switch point and it would not be of type (1). Also, note that once we have chosen minimal edge on the line 

8, we have chosen the only edge lighted within the angle. By contrast, if we suppose there exists another 

edge   , different than  , lighted within the same angle it would mean    and   intersect, which is 

impossible. 

 

Let us summarize what we have concluded so far - for each angle, and there are exactly   of them, we can 

in            steps decide lighted area within it. We need            steps per one angle because of 

sorting method on the line 07. So, using described methods we obtained an algorithm with time complexity 

          . Well, taking into account time limit, such algorithm is slow. 

 

Now we will go a few steps back and consider again the point of what is the main difference between 

asking "how we can find" and "when we are sure" there is no switching point in the given angle. Let us take 

a look and see in which way these questions affect simple test case. In the Figure 3 is shown what algorithm 

should detect if we ask the first question, and in the Figure 4 what the algorithm is supposed to find if we 

have asked the second question. Although we have less area calculations once we give answer to the first 

question, it shows that asking the latter question is more efficient. We simplified the question, in some 

cases got a few more area calculations, but got a lot easier method for deciding whether there is or not a 

switch point. 

 

 
Figure 3. What should algorithm detect if we ask the first question 

 
Figure 4. What algorithm is supposed to find if we have asked the 

second question 

 

Let us move on and conclude how we can make a more efficient algorithm. We are going to analyze lines 04 

and 07, and what we have said about them. Obviously, no matter which angle and which type of it we have 

chosen, and no matter which two edges    and    we have chosen, as long as    nor    make a switch point 
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within the angle, once    is greater (line 07) than    it will always be greater than   . This is a very 

important observation. To explain it, we will choose three consecutive vertices   ,    and   , and consider 

two edges    and    which both have at least one point in interior of the angles                  and 

                . A call of the function lightedArea(  ,   ) will compare edge    against   , and call 

lightedArea(  ,   ) will also compare    against   . The latter one is unnecessary; we already know what is 

greater from the previous step. This is the key of the optimization. Instead of sorting edges over and over, 

we should update structure of sorted edges. Note that the suitable structure we need does not have to 

answer what is i-th ordered element; we need only minimal/maximal element (the line 08). The structure 

should be dynamic because we will possibly add new edges to it, when parameter    is equal to the starting 

vertex of the edge, or remove some edges from it, when parameter    is equal to the end vertex of some 

edge. The structure that fulfills those requests is a heap. 

 

By using the heap, lines 05, 06 and 07 are replaced by maintaining edges that should be removed or added 

as described -- according to their end/start points and the parameters   and   . During sweep through all 

angles each edge will be added and removed exactly once. Adding to the heap or removing an element 

from the heap is done in                     . The size of the heap is at most  , so for sure we do not 

need more then          operations for adding or removing. Operation on the line 08 is executed in     . 

Just to remind ourselves, we sweep over   angles and sort   vertices. Overall time complexity of this 

approach is           . Finally, we designed an efficient algorithm that runs in time. 

In the end, take a look at an example - how we make the angles and light them. 

 

 
Figure 5. Example of cutting a polygon into angles. 

 

 

Solution by: 
Name:  Slobodan Mitrović 
School: The Faculty of Mathematics and Sciences, Novi Sad 
E-mail:  boba5555@gmail.com 
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Problem R2 03: Fat Hobbits (ID: 1533) 

Time Limit: 1.0 second 

Memory Limit: 64 MB 

 

None of the hobbits can fight Mordor's army on his own. Gandalf have chosen N hobbits from Shire to form 

a platoon that will go on a new campaign against Mordor. But some of the hobbits refuse to go because 

they are afraid that other hobbits in the platoon will call them fat. More exactly, each hobbit refuses to go 

on the campaign if there will be at least one hobbit with smaller weight in the platoon. Fortunately, hobbits 

don't know their exact weights. They can only compare their weights using a pan balance, and there is only 

one pan balance in Shire. Some pairs of hobbits used it to determine which of them was heavier. All hobbits 

know the results of all weighings. Gandalf is sure that there are no two hobbits with the same weight. Help 

Gandalf to choose from the N hobbits as many hobbits as possible provided that they will agree to go on 

the campaign together. Remember that hobbits are clever creatures and know that if, for example, Sam is 

heavier than Pippin and Pippin is heavier than Frodo, then Sam is heavier than Frodo. 

 

Input 

The first line contains the number N of hobbits which were primarily chosen by Gandalf (2 ≤ N ≤ 100). The 

hobbits are numbered from 1 to N. In the next N lines there is a matrix N × N, which shows the results of 

weighings. If hobbits with numbers i and j weighed themselves against each other and it turned out that 

hobbit i was heavier, then there is 1 at the intersection of row i and column j. All other elements are zeros. 

 

Output 

In the first line output the maximal number of hobbits in the platoon. In the second line, give their 

numbers. 

 

Sample 

input output 
2 

0 1 

0 0 

1 

2 

 

3 

0 0 0 

0 0 0 

0 0 0 

3 

1 2 3 

 

 

 

 

Solution: 

 

To solve this problem, we can use some ideas from the graph theory. We can represent hobbits as nodes 

with an edge from node   to node   if and only if hobbit   knows he is heavier than hobbit  . We are 

asked to find the maximum independent set (MIS) in such a graph. This is an NP-hard problem in general, 

but this graph has a special structure: 

1) There are no cycles (antisymmetry) 

2) If there is an edge from node   to node   and from node   to node   then there is an edge from 

node   to node   (transitivity) 
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This graph, therefore, corresponds to a partial order relation. 

 

Dilworth’s theorem states that cardinality of the maximum antichain in a partially ordered set is equal to 

the minimum number of chains. 

 

In this case, the maximum antichain is the maximum clique in the complemented graph, which is equal to 

maximum independent set in the original graph, and the minimum number of chains is the minimum 

number of paths that cover the entire graph. 

 

In order to find these paths, we can build a bipartite graph with hobbits on both the left and the right side. 

There is an edge between node   (a node on the left side) and node   (a node on the right side) if and only 

if hobbit   knows he is heavier than hobbit  . This graph contains duplicate nodes from the original graph 

on both sides and edges are directed according to the partial order relation defined among hobbits. Max-

flow min-cut theorem states that the set of edges with flow is equal to matching because this is a bipartite 

graph. 

 

Once we have the appropriate matching, we need to find the nodes that are in MIS, which can be done by 

using Konig’s theorem. 

 

This procedure can be implemented in       with 50-60 lines of code, but there is a faster algorithm which 

runs in        √   where   is the number of nodes and   is the number of edges in the graph. 

 

Outline of the       complexity algorithm: 

1) Find transitive closure using the Floyd-Warshall algorithm in       

2) Duplicate nodes and create bipartite graph 

3) Find matching in       

4) Find MIS 

 

Outline of the        √   complexity algorithm: 

1) Find transitive closure in       – hint: this graph is acyclic 

2) Duplicate nodes and create bipartite graph 

3) Find matching using Hopcroft-Karp in    √   

4) Find MIS 

 

 

Solution by: 
Name:    Boris Grubić 
School:  “Jovan Jovanovid Zmaj” Grammar School  

 E-mail:   borisgrubic@gmail.com 
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Problem R2 04: Aztec Treasure (ID: 1594) 

Time Limit: 1.0 second 

Memory Limit: 64 MB 

 

During the recent excavations in Teotihuacan archeologists found a strange casket, the contents of which 

was probably used during the legendary corbans held by Montezuma, and a lot of equal rectangular bone 

pieces of size 1 × 2. 

 

Archeologists found out that in order to open the casket you should tile the rectangular covering of this 

casket with bone pieces in a specific way. Pieces cannot overlap and intersect the border of the covering. 

Archeologists are afraid to break the casket, so they just want to try all possible ways of tiling. Your task is 

to calculate the number of such ways. 

 

Input 

The only line of the input contains two space-separated integers l and w, the length and the width of the 

casket's covering (1 ≤ l, w ≤ 100). 

 

Output 

Output the number of ways of tiling modulo 109 + 7. 

 

Sample 

input output 
3 4 11 

 

 

 

 

Solution: 

 

The problem is to calculate the number of ways to cover a rectangular board of dimensions     with 

domino tiles of size    . The solution is more complex than the mere description of the problem 

suggests! Temperley & Fisher (1961) and Kasteleyn (1961) independently came to the closed form of the 

problem solution (1). 

 

 
∏∏(     

   

   
      

   

   
)
    

   

 

   

 
(1) 

 

However, computing the solution using the previous formula requires the work with high-precision floating-

point numbers, and circumvents the intuitive combinatorial approach. The following description of the 

solution is not based on a direct evaluation of the previous formula, but on graph theory and matrix 

algebra. 
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Representation of the board with planar graph and perfect matching 

 

 
Figure 1. Representation of the board with the planar graph and perfect matching 

 

If the board is turned into a graph (Figure 1.) by replacing the squares with vertices and putting an edge 

between adjacent squares, the required number of possible tilings is the number of perfect matchings in 

the resulting graph. Particularly, putting dominoes on the board corresponds to selecting edges from the 

graph such that no two edges share a vertex (i.e. domino tiles do not overlap). A matching in the graph is a 

set of pairwise non-adjacent edges. Matching is said to be perfect if every vertex of the graph is included in 

it. Of course, the graph can only have a perfect matching if the number of vertices is even. It follows that 

the product of the board dimensions must be even, that is, the dimensions should not both be odd 

(otherwise there is no complete covering). 

 

Although there is a polynomial algorithm to determine the perfect matching of an arbitrary graph, counting 

the number of perfect matchings in a general graph has been shown to be #P-complete (much harder than 

NP-complete). Nevertheless, for certain special cases, among which are the planar graphs, there are 

efficient algorithms. A graph is said to be planar if it can be placed in the 2D plane in such a way that its 

edges do not intersect. 

 

Counting perfect matchings in the planar graphs 

 

(Those less keen on mathematics can skip the following paragraph) 

Let        be a graph on   vertices, where   is even. The following definitions are introduced: 

      – the adjacency matrix of G (                               ). 

       - set of all partitions of   elements into pairs without regard to the order. Each element of 

      can be thought of as a permutation of the integers between   and   (where edges are 

represented by consecutive pairs of two numbers), and gives a potential perfect matching of  . 

      ∑ ∏                   - the number of perfect matchings. As each element   of the set 

   is a permutation, each vertex appears exactly once, which is a necessary condition for a 

perfect matching. However, in order for the condition to be sufficient, it is necessary that graph 

contains each edge comprised in the particular element  . If any edge does not exist, associated 

    element will be zero and the entire product will be zero which will not affect the sum. If all 

edges exist, the product will be 1 and the sum will be increased accordingly. Since the set    

contains all the necessary permutations (permutations regardless to order of the elements within 

pairs), all the perfect matchings will be counted. 

         ∑       ∏                    - the Pfaffian of a matrix    where        is the sign 

of   as a permutation of   elements (depending on the parity of number of equivalent 

transpositions). If the signs of adjacency matrix   are adapted forming new matrix   so that 
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       ∏   
                 holds,    is said to be a Pfaffian orientation of G, and 

            holds. 

 According to the theorem (Kasteleyn, 1963), every planar graph has a Pfaffian orientation that 

can be found in polynomial time. Let   be a planar graph. Then   can be oriented efficiently so 

that each face has an odd number of lines oriented clockwise, and this is a Pfaffian orientation of 

 . 

 According to the theorem (Muir, 1882), for skew-symmetric matrices (          ) the formula  

                holds. 

 

In the previous paragraph it was shown that the number of perfect matchings can be computed as the 

square root of the determinant if the graph can be represented by a corresponding skew-symmetric 

adjacency matrix in a Pfaffian orientation. Skew-symmetry is achieved by a systematic  orientation of edges 

so that for edge       element         and       . The lattice graph can be trivially oriented into a 

Pfaffian orientation as shown in figure 2. 

 

 

 
Figure 2. Pfaffian orientation of a lattice graph 

 
Problems with direct implementation 

 

It is easy to see that the direct implementation of the previous results is not efficient enough. Specifically, 

the resulting graph has     vertices, and computing the determinant of a generic matrix is       which 

gives the overall complexity of        . Furthermore, the problem arises in extracting the square root of 

the  determinant, because of the inability to determine the root sign, which apparently prevents the use of 

the modulo arithmetic. For example:                        , √                     , 

√                      . Knowing the            ,  without whole results (      and      ), it 

is not possible to determine which is the correct positive root (  or   ) since both       and     

           . The inability to use the modulo arithmetic requires to use big numbers, which makes 

procedure more computationally complex. 

 

Reducing the complexity by studying the structural properties of the adjacency matrix 

 

By studying the structural properties of the adjacency matrix (Figure 3.) several things can be noticed. One 

of the most important properties is that it is a tridiagonal block matrix consisting of     submatrices of 

size    . In further calculations, all the elements are previously mentioned submatrices of size    , 

and the corresponding complexity of the operations over them is      . Furthermore, as will be shown 

later, it is advisable to swap   and   if necessary, so that   is smaller! The determinant of the tridiagonal 

matrix can be calculated in      where   is the dimension of the matrix, which gives the overall complexity 

of        . The determinant is calculated by reducing the matrix to a triangular one and multiplying the 
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diagonal elements (Figure 4.). 

 
Figure 3. Skew-symmetric adjacency matrix for     board 

  

[
 
 
 
 

     
      
      
     
      ]

 
 
 
 

 

Structure of submatrix   
 

 
Figure 4. Tridiagonal matrix 

 

 

The diagonal elements of the triangular matrix are calculated recursively by the relations (2) and (3). It is 

clear that the elements on the three diagonals are equal (               ), and for further 

structural properties the expression        
      can be replaced with     

  , which produces the relation 

(4). 

       (2) 
              

      (3) 
          

   (4) 
 

The final determinant is equal to the determinant of the element    which is determined by the relations 

(5) and (6). Further rearranging gives the relation (7). 

 

         (5) 
            (6) 
                (7) 
 

The recursive relation (7) can be efficiently solved by a matrix exponentiation (8), (9) and (10). Complexity 

of this approach is            . 
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By further exploiting the structural properties, the complexity can be additionally improved by a constant 

factor. The matrix    consists of 4 submatrices (Figure 5. and 6.) which are (anti)symmetrical about the 

major and minor diagonal. Furthermore, half the elements of the submatrices are zero, and two 

submatrices are equal (up to sign). Knowing the properties, it is sufficient to calculate asymptotically less 

than a tenth of the elements (
 

 
 

 

 
 

 

 
 

 

  
), which is equivalent to tenfold speedup! 

 

 
Figure 5. Matrix    for         

 
Figure 6. Matrix    for even   

 

Note: These structural properties are valid only for even powers of  , but this is easy to overcome by 

powering the square of the matrix  , and finally, if necessary make one additional matrix multiplication 

(               , where         ). All these structural properties and preservation of them 

can be proved by mathematical induction. 

 

Extracting the square root of determinant in modulo arithmetic 

 

Although there are algorithms for extracting the square root in modulo arithmetic (Cipolla, Pocklington, 

Tonelli–Shanks), in this case they can be avoided due to the structural properties of diagonal elements. By 

an intuitive inspection the following can be observed: When calculating the determinant of the element   , 

if, instead of all, only every second diagonal element is taken into product, the result obtained is exactly the 

square root of the determinant! 

 

For example, by performing Gaussian eliminations on the matrix in figure 5, the following diagonal 

elements are obtained: {                          }                . Product of every second 

element is:                   or                    which is precisely the square root of 

the determinant. For     and     the diagonal elements are 

{                                                        }                . Product of 

every second element is:                                                

                 . 

 

It still remains to determine the sign of the root. As in the previous step, by observation it can be concluded 

that the sign depends on the remainder of division of   and   by 4. The exact expression is given in the 

source code. 
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Curiosities 

 

 
Figure 7. Aztec diamond of order 4, and the augmented Aztec diamond 

 

The number of tilings of a region is very sensitive to boundary conditions, and can change dramatically with 

apparently insignificant changes in the shape of the region. This is illustrated by the number of tilings of an 

Aztec diamond of order  , where the number of tilings is          . If this is replaced by the "augmented 

Aztec diamond" of order   with 3 long rows in the middle rather than 2, the number of tilings drops to the 

much smaller number       , a Delannoy number, which has only exponential rather than super-

exponential growth in  . For the "reduced Aztec diamond" of order   with only one long middle row, there 

is only one tiling. Asymptotically, an     board has about         tilings. 

 

 

Solution by:  
Name:  Ognjen Dragoljević 
School: The Faculty of Electrical Engineering and Computing, University of Zagreb 
E-mail:  ognjen.dragoljevic@gmail.com 
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Problem R2 05: Abstractionism to the People (ID: 1649) 

Time Limit: 1.0 second 

Memory Limit: 64 MB 

 

 

I will never paint again,” Dunno answered. “I paint and paint, 
and nobody is ever thankful. Everybody keeps scolding me.” 

 
The great abstractionist artist Herman Brooks invented a new style in painting—bactorgaphy. Of course, 
you want to know what kind of a style it is. That's simple: every painting is live, quite literally. Herman 
paints with bacteria.  
 
Such a painting is a real work of art. It's a sight worth seeing—the fascinating canvas plays with two or 
three hundred different shades. But how could this wonder be shown to the people? Photography or video 
just can't convey the entire range of colors, and Herman still doesn't have a museum (modern art 
custodians don't like innovative ideas, and there's no point arguing with them). In addition, the painting can 
be seen in detail only under a microscope. Finally, it was decided to make several thousand copies of the 
best paintings and sell them as souvenirs. However, there is a problem. Herman, as a real creator, doesn't 
want to make copies himself, and the hired bioengineers unanimously claim that a copy can only be made if 
the exact sequence of populating the canvas with bacteria is known. Your task is to restore this sequence.  
 
To help you fulfill the task, the bioengineers provided you with the following information.  

 A finished painting is a rectangular canvas divided into equal square cells with bacteria.  
 Before the process of painting is started, the canvas is thoroughly disinfected. All its cells are empty 

and contain no bacteria.  
 In each cell of the canvas there can be at most four bacteria.  
 The painting process consists in settling successively one bacterium into a free cell of the canvas. 

When the bioengineers do this, the numbers of bacteria in the adjacent (top, bottom, left, and 
right) populated cells increase by one. If the number of bacteria in a certain cell becomes 5, then 4 
of them die because of overcrowding.  

 It is impossible to settle a bacterium into a cell that is already populated, because it leads to an 
unpredictable reaction that can damage the whole painting.  

 

Input 

The first line contains the dimensions of the canvas n and m (1 ≤ n, m ≤ 20). The description of the painting 

follows in the form of the table with n lines containing m integers each. In every cell of this table the 

number of bacteria in the corresponding cell of the painting is written. These numbers range from 1 to 4. 

 

Output 

If it is impossible to obtain the described painting by means of the procedure available to the bioengineers, 

output “No”. If you managed to find a sequence that makes it possible to create a copy of Herman's 

masterpiece, output “Yes” in the first line, and in the following lines give this sequence. Each of these lines 

must contain two integers, which are the number of line and number of column of the next cell to be 

populated. 
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Sample 

input output 
3 3 

2 2 1 

3 1 3 

1 2 2 

 

Yes 

2 2 

2 1 

1 1 

1 2 

2 3 

1 3 

3 3 

3 2 

3 1 
 

 

 

 

Solution: 

 

Denote the original matrix with        . The values of the fields of matrix   are in the range           

 , but they can also take the value   at some points.  

 

Let                     denote the number of neighbors of the field       (two for corners, three for 

edges and four for all other fields). Next, let’s create a new matrix of the size     and call it       . At 

any moment,              represents the number of neighbors of the field         not equal to zero at that 

time (we will call them current neighbors). 

 

An easy thing to notice is that the value of the element in the matrix that was filled last has to be 1. This 

leads us to the idea to try finding a field       where           and                                 . If 

                     , we can safely conclude that this   was obtained by filling the field after filling 

all its neighbors. Then we can set         to   and decrease the values of all its neighbors by one (if some of 

these values were  , they become  ) and update all corresponding fields in the matrix       . However, if 

                     , there is another possibility -       could have been filled before its neighbors, 

increasing four times to go back to 1. How do we get around this? 

 

Unfortunately, in the general case, we can’t conclude locally (using just data from an area around this field) 

which of these two options is the correct one. So backtrack is a good way to go. We can try one possibility, 

and if we get stuck, then try the other one. 

 

We have already described what we have to do if   was obtained by filling that field after filling its 

neighbors. For the second option, we set         to   and update all neighboring fields in       , but we 

don’t decrease the values in its neighboring fields. Note that both options represent simulating a step of 

the matrix-filling process, but the first choice represents a “backward” step in time, while the second one is 

a step in the same direction in which the matrix was originally filled. We can keep all “forward” (first) steps 

and “backward” (last) steps we have made in separate lists, and use these lists to reconstruct the filling 

order in the end. 

 

This is a valid solution, but it can be too slow for this problem. So we can notice some other properties of 

the matrix: if there are positions       for which                       , the field       is filled before 

all its current neighbors and we can make a forward step by filling      . Further, if 
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          and               , the field       was filled after all its current neighbors and we can make 

a backwards step by filling it. This considerably reduces the number of choices we will have to make. 

If during the execution of the algorithm the matrix   becomes a zero matrix, we have reached our goal, we 

output “Yes“ and the filling sequence. On the other hand, if we are in a situation where we cannot make 

further progress by applying any of the described operations, the output is     . 

 

The time complexity of the algorithm is exponential. The memory complexity is      .  

 

 

Solution by:  
Name:  Mladen Radojevic 
School: The Faculty of Electrical Engineering, University of Belgrade 
E-mail:  mladen0211@yahoo.com 
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Problem R2 06: The Hobbit or There and Back Again 2 (ID: 1663) 

Time Limit: 0.5 second 

Memory Limit: 64 MB 

 

Old Bilbo collects songs and sagas of all races of Middle-earth. Every twenty years he leaves Rivendell for a 

year to travel through N cities of the Middle-earth, numbered from 1 to N (Rivendell has number 1), and 

comes back at the end of the journey. Nineteen years have passed since Bilbo's last journey, so he started 

to prepare for travelling. From his last journey Bilbo remembers that there is a warder at the entrance to 

each city. He asks the travelers what city they came from and requires an entrance fare depending on that. 

Time passed, and the entrance fee has changed since the last journey. From the King of Elves Elrond Bilbo 

has learnt that, if a traveler arrives to a city with number A from a city with number B, the warder will 

require exactly PA·[1000/PB] gold coins, where Pi is the population of city with number i and [X] denotes the 

floor of X. Officials think that it will stimulate the population outflow from the bigger cities to the smaller 

ones. Bilbo knows a population of all cities of Middle-earth and supposes that it will not change during the 

year of his journey. As usual, before the journey he would like to know the order of visiting the cities which 

will minimize the total amount of money paid. 

 

Input 

The first line contains an integer N. 2 ≤ N ≤ 1000. The second line contains N integers P1, …, PN, delimited 

with spaces — the populations of the cities of Middle-earth. All Pi lie in range from 1 to 1000. 

 

Output 

Output N integers — order of visiting N cities which minimizes the total entrance fee. Remember that Bilbo 

starts his travel from the city with number 1, visits each city exactly once and returns to the city with 

number 1 only in the end. If there are several solutions, you may output any one of them. 

 

Sample 

input output 
4 

10 3 5 4 

1 4 2 3 

 
 

 

 

 

Solution: 

 

The problem of finding an optimal route that goes through every city exactly once and returns to the 

starting city is known as The Traveling Salesman Problem (TSP). It is known that TSP is an NP-complete 

problem, which means that it is unlikely to have a solution of polynomial time complexity. However, if we 

know some details about the input, we could use them to design an efficient (polynomial) solution. So, 

what do we know about the input graph? We know it is a complete graph with   vertices (cities), and we 

know that the edge weights have an additional property – they are calculated from weights of endpoint 

vertices (weight of city   is    .  
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Figure 1. Traveling Salesman Problem comics 

Taken from xkcd.com – A web comic of Romance, Sarcasm, Math, and Language 

 

Since the route we are looking for is a cycle, we can choose any city to be the starting one. Let it be the city 

with the smallest weight (let’s call it city  , and the one with the highest weight city  ). We can separate 

this cycle into two vertex disjoint paths (except for starting and ending vertex) – path from   to  , and path 

from   to  . Let’s take a closer look at the path from   to  ,                   . The cost 

of this path is ∑     ⌊
    

  
⌋   

   . The crucial observation here is that the optimal path that goes from   to  , 

through the cities             , is the one in which cities are visited in increasing order according to their 

weights. We will now give a sketch of the proof. 

 

Let            be the order of the cities            according to their weights. We would like to show 

that among all the permutations   of {     }, the one for which the sum   ∑      ⌊
    

  
⌋   

    is smallest 

is the permutation         . Without loss of generality, let’s suppose that in the optimal permutation 

(the one for which the summation achieves the minimum),          . Since   is a permutation, there 

must exist some   such that       . If we swap these two values,        and        , new 

summation will obviously be at least as small as summation  . By repeating this swapping for every    such 

that         , we eventually get the desired permutation as the optimal one. Note that during this 

process we might encounter some permutations for which the summation does not correspond to any 

ordering of the cities or corresponds to ordering of the cities which does not end in city  . This is, however, 

not the problem because we have actually proved a stronger statement than needed. 

 

It is straightforward now to translate this observation into a dynamic programming solution. We will add 

one city at a time, in the order of increasing weights, and keep track of the last city added to both paths 

(this is the only information we need, because of the proven observation). This way we will also keep these 

two paths vertex-disjoint, and every city will be added exactly once. Since there are at most    possible 

states, and every state needs constant computing time, the time complexity is      . 

 

 

Solution by:  
Name:  Rajko Nenadov 
School: The Faculty of Mathematics and Sciences, Novi Sad 
E-mail:  rajkon@gmail.com 

 

  



Qualifications 

MDCS – Bubble Cup 2010 
 

84 

Problem R2 07: Asterisk (ID: 1670) 

Time Limit: 0.5 second 

Memory Limit: 64 MB 

 

Recently Cuckooland mathematicians have invented a new binary operation “asterisk”, which uses 
sequences as its arguments. Operation just appends the first sequence to the second. For example (2, 4) * 
(1, 3) = (1, 3, 2, 4). “Asterisk” operations in one expression are performed in order from the leftmost to the 
rightmost, but this order can be changed with brackets (operations in brackets are performed earlier). E. g. 
(3) * ((1, 5) * (2, 7)) = (2, 7, 1, 5, 3). Notice that if a sequence element is represented by an expression, then 
this expression is calculated first and then all nested brackets in this sequence are removed. For example, 
(1, ((2) * (3)), 4) = (1, (3, 2), 4) = (1, 3, 2, 4). 
 
Now cuckoolanders want to use this operation for generating permutations. More precisely, they want to 
obtain a given permutation from permutation (1, 2, …, N) by adding brackets, commas and asterisks and 
evaluating the resulting expression. 
 
The formal definition of expression follows. 

<expression> ::= <sequence>[*<sequence>…] 

<sequence> ::= (<sequence element>[,<sequence element>…]) 

<sequence element> ::= <number> | <expression> 

<number> ::= 1|2|…|N 
 

Input 

The first line contains an integer N (1 ≤ N ≤ 10000). The second line contains a permutation of numbers 

from 1 to N. These numbers are separated by spaces. 

 

Output 

Output a single line — correct expression, the result of which is the given permutation. Numbers from 1 to 

N should appear in ascending order. The length of the expression should not exceed 100000 symbols. In 

case there is no such expression output “IMPOSSIBLE”. Note that expression must not contain spaces and 

all sequences must be enclosed in brackets. 

 

Sample 

input output 
4 

3 4 2 1 

(1)*(2)*(3,4) 

 

6 

5 1 2 6 4 3 

IMPOSSIBLE 

 
 

 

 

 

Solution: 

 

This task can be viewed as a dynamic programming problem. Before discussing the algorithm, one can 

make a few useful observations. First of all, applying asterisk operation changes the order of the 

arguments. Let us assume that we have a correct expression. The order of applying asterisk operations can 

be changed using brackets, but one can always find the first asterisk that should be applied except when 

there exists none. In other words, correct expression has one of the following two forms: 
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a)             

b)             

 

The first form is trivial and essentially nothing needs to be done, but the second form requires some 

analysis. After applying the asterisk operation, arguments   and   are going to change order, so the second 

part of the final permutation has to match part  , and the first part with part  . The key observation is that 

both of these parts are segments of natural numbers. The same principle can be applied to both of these 

parts recursively. Similarly, one can analyze behavior when applying the comma separator. In this case, part 

  matches the first part of the permutation, and part   the second one. 

 

 
Figure 1. Matching parts after asterisk operation 

 

One can define                to be      if             can be transformed into                      , 

where   is the given permutation, and       otherwise. This is a large matrix to initialize, but another key 

observation is that it can be computed using greedy approach. In other words, if               is      then 

there is a split of segment       with asterisk operation in any two parts that are valid. Parts are valid if 

corresponding parts (permutation – segments) represent the same elements (up to the ordering). As can be 

seen in Figure 1, one only has to check if                   is a permutation of numbers in segment 

         . Since the elements are different, this is reduced to checking that minimum is equal to 

      and maximum to  . Similar principle can be applied in the case where comma separator is 

applied, but parts do not change places.  

 

Because of the greedy approach, there is no need to compute or store the whole matrix  . Instead, 

recursion can be used with break condition a  . First, it should be checked whether segment        can 

be split in parts like in Figure 1. If not, it should be checked whether comma separator can be applied. If any 

of these attempts is successful, the same principle needs to be applied recursively to the two parts. If 

neither can be applied, then there is no correct expression for the given permutation. 

 
====================================================================================== 

 Function: Solve (simulates d [i][j][a][b]) 

 Input:   i, j – segment from permutation p [i],… ,p [j] 

   a, b – segment [a,b] that has to match to p [i],… ,p [j] 

 ----------------------------------------------------------------------- 

02 if (i == j) 

03  return true; 

 

// Asterisk operator 

03 minP = maxP = p [i]; 

04 for k = 1 to j – I do 

05  update minP and maxP with p [k]; 

06  if (minP = b – k + 1) and (maxP = b) 

07   if (solve (i + k, j, a, b – k) && solve (i, i + k – 1, b – k + 1, b)) 

08    return true; 
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09   else 

10    return false; 

 

 // Comma operator 

11 minP = maxP = p [i]; 

12 for k = 1 to j – I do 

13  update minP and maxP with p [k]; 

14  if (minP = a) and (maxP = a + k - 1) 

15   if (solve (i, i + k - 1, a, a + k - 1) && solve (i + 1, j, a + k, b)) 

16    return true; 

17   else 

18    return false; 

 

19 return false; 

===================================================================================== 

 

The reconstruction of the correct expression can be made using the same principle. Once it is determined 

that asterisk or comma can be applied (lines 08 and 16), it is pushed to stack. Another way is to have a 

similar function like the one above, which will print the solution during construction (of course, one must 

know that a solution exists).  

 

 

Solution by:  
Name:  Andreja Ilić 
School: The Faculty of Mathematics and Sciences, Niš 
E-mail:  ilic_andrejko@yahoo.com 
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Problem R2 08: Mortal Kombat (ID: 1676) 

Time Limit: 1.0 second 

Memory Limit: 64 MB 

 

Once every generation, there is a tournament known as Mortal Kombat, which was designed by the Elder 

Gods for the main purpose to save Earthrealm from the dark forces of Outworld. If the forces of Outworld 

win the tournament ten consecutive times, the Emperor will be able to invade and conquer Earthrealm. 

Thus far, Outworld has won nine straight victories, making the upcoming tournament the tenth, and 

possibly final one, for the Earthrealm.  

From Wikipedia, the free encyclopedia 

 

There are N monsters and M best human fighters participating in the Mortal Kombat. According to the 

tournament rules, each monster should fight one of the humans (different monsters should fight different 

humans). If at least one monster wins, the Eathrealm will be conquered by the Emperor of the Outworld. 

However, the humans can choose the competitors and the order of battles.  

 

The thunder god Raiden, protector of the Earthrealm, should choose the fighters in such a way that all 

Earth warriors will win their battles. For each monster and each Earth warrior it is known whether the Earth 

warrior can win the monster. First of all, the fighters for the first battle should be chosen. 

 

For example, suppose that Liu Kang wants to fight Goro, but he is the only warrior able to defeat Shang 

Tsung, while Goro can be defeated by other warriors, such as Johnny Cage. So, even if Liu Kang will defeat 

Goro in the first battle, it will inevitably lead to the conquest of the Earth, because later Shang Tsung will 

defeat his opponent. This means that the pair Liu Kang vs. Goro should not be selected for the first fight. 

 

Find out which pairs cannot be chosen by Raiden if he wants to save the freedom of humanity. 

 

Input 

The first line contains integers N and M (1 ≤ N ≤ 300; N ≤ M ≤ 1500). Next lines contain the binary matrix A 

with N rows and M columns. Aij = 1 if and only if j-th Earth warrior can defeat i-th monster. 

 

Output 

Output matrix B with N rows and M columns. Bij should be equal to one if the first battle cannot be held 

between i-th monster and j-th human, and zero otherwise. 

 

Sample 

input output 
4 4 

1111 

1000 

1111 

1111 

1000 

0111 

1000 

1000 

 

4 5 

10000 

10000 

10000 

10000 

11111 

11111 

11111 

11111 
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Solution: 

 

It is quite obvious that this problem is a variation of the bipartite matching problem, which can be solved 

using a standard augmenting-path algorithm. 

 

Denote with   and   number of monsters and fighters, respectively. Now we can construct a bipartite 

graph        with partitions  (monsters) and  (fighters), where an edge exists between the nodes     

and     if fighter   can defeat monster  . We can consider any schedule of the battles as a matching in 

 . Now the problem is to check for every edge      if there exists a perfect matching in   with respect 

to   (i.e. matching of size  ) such that    belongs to that matching. 

 

The easiest (and obvious) way to do that is to simply loop over all the edges in    and for every edge 

remove its two vertices and check if the remaining graph has the matching of size     by applying a 

maximum matching algorithm. The complexity of this approach is                        , which is 

not good enough for this problem. The key idea is to change the approach and not try to find perfect 

matching for every edge, but, instead, try to change some fixed perfect matching   so that the observed 

edge becomes part of it. Let’s explain how. 

 

Let   be an arbitrary matching of size   in our graph  . Denote by    an oriented graph obtained from    

in which every edge      is directed from partition   to partition    if     , and directed in opposite 

direction otherwise. Note that any path in    contains edges from   and     alternatively. Next theorem 

gives us a way to efficiently implement our approach (all notations are from our graph  ): 

 

Theorem:  Let              be an arbitrary edge in   and let   be an arbitrary matching of size   in  . 

Then there exists a perfect matching in   with respect to   which contains    if and only if at least one of 

the following statements is true: 

i)   There exists a path in    from vertex   to vertex  ; 

ii)  There exists a path in    from vertex   to some vertex which does not belong to   (free 

vertex). 

 

Proof:      Suppose there exists a perfect matching    in   which contains   . Then it is obvious that we 

can obtain    from M  by changing some (possibly all) matching pairs of vertices from   (ie. by doing some 

reconnections). Since the order of reconnection is irrelevant, we can choose this one: First, put    in 

 (reconnect  ). If      for some    , then we must reconnect   (to appropriate pair   as in  ). If 

     for some      we must reconnect   and so on.    exists, which means that this alternating path 

of ours must end somewhere and the only possibilities for end vertices are   (to make cycle) or some free 

vertex (no need for new reconnection). It is not hard to see that this implies i) or ii). 

 

    If there exists a path   from   to   in    (and    ), then      form an alternating cycle 

of even length. If we “invert” the edges on this cycle, in a way that we use all the edges that have not been 

in matching for a new matching and throw out the old ones, we get the valid matching of size   which 

contains   . By analogy, if ii) holds, we have an alternating path of even length, and after we inverse that 

path and change match-pair of   to be vertex  , we get the requested matching.   □ 
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Notice that cases when      or when   is a free vertex are covered by i) and ii). Suppose now that there 

exists    , such that     . It is easy to see that, instead of checking for i) or ii), it suffices to check if 

there is a path between   and   or   and some free vertex (because    is the only outgoing edge from  ). 

Can we efficiently check if there is a path between any two nodes in  in  ? The answer is yes, that is 

precisely what Transitive Closure algorithm does (it works just like Floyd-Warshall, but is only interested in 

path existence, not its length). If we denote all free vertex in   by   (we consider that set as one vertex), 

then after calculating transitive closure for vertex set    , we can answer the main question for any edge 

   in      time, as shown in the next (C++ like) pseudo-code (           denotes existence of path in  ): 

 
bool check( int a, int b) 

{ 

 if (     or   is a free vertex)  

return true; 

   = neighbor of   such that       

 if (           ||           ) 

return true; 

 return false; 

} 

 

The complexity for finding arbitrary maximum matching    is       if the standard augmenting-path 

based algorithm is used. It is easy to prove that the complexity for our graph   is      , since we are 

interested only in the size  . For transitive closure, we need preprocessing to determine direct neighbors 

between vertices in   (in our case, neighbors at distance 2, since   is bipartite). It can be done in      by 

looping over all edges, because for every    , there is at most one outgoing edge in    with   as start 

vertex. It follows that time complexity for transitive closure is         . After all this pre-calculation, 

the complexity for checking edges is linear on the number of edges, thus overall complexity of our 

algorithm is         . 

 

 

Solution by:  
Name: Nikola Milosavljević 
School: Faculty of Mathematics and Sciences, Niš 
E-mail: nikola5000@gmail.com 
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Problem R2 09: Sniper Shot (ID: 1697) 

Time Limit: 1.0 second 

Memory Limit: 16 MB 

 

There is a sniper at point S. His mission is to eliminate an enemy of the state, who rides his bicycle along a 

straight line from point A to point B. The bullet flies along a striaght line with infinite speed. There are n 

rectangular parallelepiped-shaped skyscrapers in the city. The bullet can't fly through the skyscraper but 

can touch its border. Of course, the sniper will make a deadly shot as soon as possible. Your task is to 

calculate the coordinates of the enemy at the moment of the shot. 

 

Input 

The first line contains space-separated coordinates of S: sx, sy, sz (sz ≥ 0). The second line contains space-

separated coordinates of points A and B: ax, ay, bx, by. The enemy of the state moves on the surface of 

earth, so his z-coordinate is always equal to zero. The third line containts an integer n (0 ≤ n ≤ 100). Each of 

the following n lines contains space-separated numbers lx, ly, rx, ry, h (lx < rx; ly < ry; h > 0)—coordinates of 

the opposite corners of the bottom of the current skyscraper and its height. The sides of the skyscrapers 

are parallel to the corrdinate axes. All coordinates and heights are integers and don't exceed 100 by their 

absolute values. It is guaranteed that no two skyscrapers have common points, the point S doesn't lie inside 

or on the border of the skyscraper and the segment AB doesn't have common points with any of the 

skyscrapers. 

 

Output 

If the enemy of the state cannot be eliminated, output “Impossible”. In the other case output the 

coordinates of the enemy of the state precise up to 10−7. 

 

Sample 

input output 
0 0 2 

-4 4 4 4 

2 

-3 2 -1 3 10 

1 -1 4 2 20 

-1.3333333333 4.0000000000 

 

0 0 2 

4 1 4 -1 

1 

1 -1 3 1 10 

Impossible 

 

 

 

 

 

Solution: 

 

We have to find the point on the line segment AB closest to A which is not sheltered by a skyscraper. First, 

we will find all points sheltered by a skyscraper. 

 

 Let’s note a few things about the problem:  

 The bullet will fly in the plane defined by points A, B and S. We denote the plane by π. 

 Every side of skyscraper shelters is an (possibly empty) interval of points on the line 
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segment AB.  

 Instead of a skyscraper as a whole we can observe its four vertical sides independently.  

 If both upper corners of a skyscraper side are placed “below” π plane, the skyscraper side 

doesn’t shelter any point of the line AB and we can remove it from the observations 

 If only one upper corner of the skyscraper side is “below” π plane, then the line connecting 

those two corners intersects π. We can observe only the part of the skyscraper side from 

the corner that is “above” plane π to the intersection. 

 

After removing all skyscraper sides (and the parts of skyscraper sides) “below” π, we can move problem to 

2D by projecting the skyscraper sides and the sniper point to xy plane. Every skyscraper side is now 

represented by a line segment, say PiRi. For every line segment we find the intersection of lines      and 

     with the line    (where    is the   -plane projection of  ). If the points    and    are between    and 

the corresponding intersection, then the interval between the two intersections is sheltered by the 

corresponding skyscraper side. The union of all such intervals gives us all sheltered points on the line AB 

and now it’s easy to find the solution. 

 

Note: however, after finding the union of the intervals we have to take into consideration to which 

skyscraper a skyscraper side belongs. We will denote a position on the line AB by a parameter. When two 

sides shelter parameter intervals       and       then the point at the parameter value   is also 

sheltered if both lines belong to the same skyscraper. 

 

The described algorithm requires:  

 Finding a plane given by 3 points 

 Determining whether a point is “above” or “below” given plane 

 Finding a line given by 2 points in 3D 

 Intersecting plane and a line in 3D 

 Finding a line given by 2 points in 2D 

 Intersecting two lines in 2D 

 Determining the middle of 3 collinear points in 2D 

 Finding union of intervals  

 

 

Solution by:  
Name:  Luka Donđivić 
School: The Faculty of Electrical Engineering and Computing, Zagreb 
E-mail: ldondjivic@yahoo.com 
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Problem R2 10: Periodic Sum (ID: 1749) 

Time Limit: 1.0 second 

Memory Limit: 64 MB 

 

Let S(t) be the sum of integers represented by all substrings of the decimal representation of t. For 

example, S(1205) = 1 + 2 + 0 + 5 + 12 + 20 + 05 + 120 + 205 + 1205 = 1575. Note that some substrings can 

have leading zeros. Let F(t, k) be the number which decimal representation is obtained by repeating the 

decimal representation of t k times. For example, F(1205, 3) = 120512051205. Given numbers p, k and m, 

calculate S(F(p, k)) modulo m. 

 

Input 

The first line contains one integer p (1 ≤ p < 10100000). The second line contains two space-separated integers 

k and m (1 ≤ k, m ≤ 109). 

 

Output 

Output the answer on a single line. 

 

Sample 

input output 
1205 

3 999999999 

847123538 

 
 

 

 

 

Solution: 

 

This is medium number theory problem. The main idea is to apply several times efficient algorithm for 

calculating the exponent na . 

 
================================================================================ 

 Function: Modular_Power 

 Input:   a – the base 

   n – exponent 

   m – modulo 

 ------------------------------------------------------------------- 

04 result = 1; 

02 while (n > 0) 

03  result = (result * result) mod m; 

04  if (n mod 2 = 1) then 

05   result = (result * a) mod m; 

06  n = n div 2; 

09 return (result); 

================================================================================ 

Pseudo code for exponent calculation 

 

The complexity of above algorithm is ).(log nO  
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For saaan ...21  we have 

ssss aaaaaaaaaaaanS ......)...()...()( 211322121    








 


s

i

is

i

s

i

is

i iaianS
1

1

1

2

9

110
)10...10101()( . 

In order to calculate )),(( nxFS  modulo m , we will need two additional arrays for prefix and suffix sums: 




 


s

i

is

is aaaaaaaaaanSP
1

1

21321211
9

110
......)(  






 
s

i

is

isssssss iaaaaaaaaaanSS
1

21121 10......)( . 

 

For integer n , let || n  denotes the number of digits in decimal representation of n . The following 

recurrent formulas for ),( nxF  and )1,( nxF  hold: 












 1

9

110
))1,(()(|)1,(|)())1,(()),((

||x

nxFSSxSPnxFxSnxFSnxFS  












 1

9

110
)1,()())1,(()),((

||x

nxFxSSnxFSSnxFSP  

)1,(||10)())1,(()),(( |)1,(|   nxFxxSSnxFSSnxFSS nxF  

xnxFnxF x  )1,(10),( || . 

 

Similarly, for the double values )2,( nxF  and ),( nxF  we have:  












 1

9

110
)),(()),((|),(|)),((2))2,((

|),(| nxF

nxFSSnxFSPnxFnxFSnxFS  












 1

9

110
),()),((2))2,((

|),(| nxF

nxFnxFSPnxFSP  

|),(|),()110))(,(()),(( |),(| nxFnxFnxFSSnxFSS nxF   

)110(),()2,( |),(|  nxFnxFnxF . 

 

Using these recurrent formulas one can design )log(log kpO   solution. Division by 9 can be handled by 

considering three cases concerning the greatest common divisor of m  and 9, or by establishing another 

recurrent formula.  

 

The second solution is based on the fast matrix exponential calculation. For given linear recursive 

homogeneous sequence dnndndn TcTcTcT   02211 ... , let C  be the following matrix 



























1210

1000

0100

0010

dcccc

C











. 



Qualifications 

MDCS – Bubble Cup 2010 
 

94 

By simple induction there holds: 















































1

1

0

1

1

d

n

dn

n

n

T

T

T

C

T

T

T


. 

 

For saaax ...21  let 

kkkkk aaaaaaS ...... 211   . 

With the starting value 11 aS  , the following recurrent formula holds 

kkk akSS  110 . 

Let kB  be the sum of all numbers from ),( kxF  that end with the last digit (the sum of all suffixes). 

Similarly as in the first solution, we have sSB 1  and 

)1(10 1   ksxBSB k

s

sk . 

Let kk BBBA  ...21 . Using kkk BAA 1  and 11   kkk BAA , we get the following: 

)1()(10 11   ksxAASAA kk

s

skk  

))1((10)101( 11   ksxSAAA sk

s

k

s

k  

By writing the same relation for kA  and subtraction, we get fourth-order homogeneous recurrent relation 

for kA  

))2((10)101( 21   ksxSAAA sk

s

k

s

k  

sxAAAAAA k

s

k

s

k

s

k

s

kk   2111 10)101(10)101(  

sxAAAA k

s

k

s

k

s

k   211 10)1021()102(  

sxAAAA k

s

k

s

k

s

k   321 10)1021()102(  

321211 10)1021()102(10)1021()102(   k

s

k

s

k

s

k

s

k

s

k

s

kk AAAAAAAA

 3211 10)1031()1033()103(   k

s

k

s

k

s

k

s

k AAAAA . 

 

Furthermore, let i

kC  be the sum of all numbers from ),( kxF  that end with ))1(( isk  -th digit. 

Similarly, we have )(1 xSC i

i   and 

)1(10 1   ksxBSC ik

i

i

i

k , 

where ii aaax ...21 . Next, we set 

 




 


s

i

i

s

i

i

k

s

i

s

i

i

i

kk xksBSCC
11

1

1 1

)1(10 . 

The sums 



s

i

iSD
1

1 , 



s

i

iD
1

2 10  and 



s

i

ixsD
1

3  can be calculated iteratively, and therefore 

3211 )1( DkDBDC kk   . Therefore,  
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)1()),((
1

3

1

121

1









k

i

k

i

i

k

i

i iDBDDkCkxFS  

2

)1(
)),(( 3121


 

kk
DADDkkxFS k . 

To summarize, first we need to calculate the sums 321 ,, DDD  iteratively and value of s10 , 

together with the first four values 4321 ,,, BBBB . Then apply the fast matrix exponential to find the value 

of 1kA  and finally compute )),(( kxFS . 

 

 

Solution by:  
Name: Andreja Ilić 
School: Faculty of Mathematics and Sciences, Niš 
E-mail: ilic_andrejko@yahoo.com 
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Fasten your seatbelts, the adventure continues… 

See you next year! 

 

Bubble Cup Crew 

 


