

BUBBLE CUP 2010

Student programming contest

Microsoft Development Center Serbia

Tasks and Solutions

Belgrade, 2010

Authors:

 Milan Novakovid

Milan Vugdelija

 Andreja Ilid

 Andrija Jovanovid

Mladen Radojevid

 Dimitrije Filipovid

 Nikola Mihajlovid

Cover:

 Sava Čajetinac

Typesetting:

 Andreja Ilid

Proofreader:

 Slobodanka Jovanovid

Volume editor:

 Dragan Tomid

Contents

Preface .. 6

About Bubble Cup and MDCS .. 7

Finals ... 9

The final scoreboard ... 10

Statistics .. 11

Problem A: Brackets ... 12

Problem B: Cutting ... 15

Problem C: Extrema .. 19

Problem D: Interval Graph .. 21

Problem E: Nice Subsequence ... 24

Buxkdop F: Panuql .. 26

Problem G: Operations ... 29

Problem H: Travel ‘n’ sleep ... 31

Problem I: Queen ... 34

Qualifications ... 36

Problem R1 01: Like Comparisons (ID: 1177) .. 38

Problem R1 02: Mouse (ID: 1199) .. 40

Problem R1 03: Asteroid Landing (ID: 1232)... 43

Problem R1 04: Evacuation Plan (ID: 1237) .. 46

Problem R1 05: Bus Routes (ID: 1434) ... 50

Problem R1 06: Brainfuck (ID: 1552) .. 53

Problem R1 07: Dean’s Debts (ID: 1580) .. 55

Problem R1 08: Pharaohs’ Secrets (ID: 1584) ... 57

Problem R1 09: Vasya Ferrari (ID: 1666) .. 59

Problem R1 10: The Most Complex Number (ID: 1748) .. 61

Problem R2 01: Cockroach Race (ID: 1369) .. 64

Problem R2 02: Light (ID: 1464) ... 67

Problem R2 03: Fat Hobbits (ID: 1533) ... 71

Problem R2 04: Aztec Treasure (ID: 1594) .. 73

Problem R2 05: Abstractionism to the People (ID: 1649) .. 79

Problem R2 06: The Hobbit or There and Back Again 2 (ID: 1663) ... 82

Problem R2 07: Asterisk (ID: 1670) .. 84

Problem R2 08: Mortal Kombat (ID: 1676) ... 87

Problem R2 09: Sniper Shot (ID: 1697) ... 90

Problem R2 10: Periodic Sum (ID: 1749) .. 92

MDCS – Bubble Cup 2010

6

Preface

Greetings, fellow contestants!

It is my great pleasure to express our warm welcome to all of you and thank you for coming and taking part

in the third edition of the Bubble Cup in Belgrade, Serbia.

Our team at Microsoft Development Center Serbia (MDCS) is composed of many contestants in various

disciplines over the last 10 to 20 years. Solving difficult problems is part of our DNA. As soon as the MDCS

team had grown to a respectable size we looked for an opportunity to give back to our community. Our

members are folks like YOU who spend countless hours reading, learning, practicing and improving

algorithms.

We live in the information age. The applications of computer science have changed the world, and they will

continue to do so. Some of you are rising stars who will transform the world and we are happy to

accompany you on this tiny part of your journey.

Today, we are in the 3rd edition of Bubble Cup. Initially, this was a local contest, but over the last two years

it has become a regional event. I hope that Bubble Cup will continue to develop and grow and that the

competition level will further increase in the future.

In addition to competing hard, I hope that you will have fun and come back to Belgrade for more editions of

BubbleCup in the future.

Sincerely,

Dragan Tomic

Group Manager - MDCS

MDCS – Bubble Cup 2010

7

About Bubble Cup and MDCS

Microsoft Development Center Serbia (MDCS) has been working for 5 years on various Microsoft products

and services. Around 40 core staff (developers, testers and program managers) have been working to

investigate, design and implement solutions which are be used throughout the world. MDCS was founded

by Bodin Dreševid in Belgrade and is currently led by Dragan Tomid. Divided into small teams, people in

MDCS worked on projects for Windows, Office, SQL Server, Live Labs and Bing groups and impacted many

products such as Windows 7, Office 14 and SQL Server 2008. The key values MDCS shows throughout the

work are strong applied math knowledge, machine learning expertise and core understanding of relational

database systems. The mission for MDCS is to lead the development of new technologies and to help the

region to do the same.

 Bubble Cup is a student programming contest originally designed as a training for the ACM ICPC. The goal

is to help young people perfect their coding skills and prepare them for the world-wide competition. Bubble

Cup started in 2008 and now, two years later, it increased its reach to regional countries with stronger than

ever teams from Croatia, Romania and Serbia. The competition was organized into 2 online qualification

rounds and a final round, which takes place in Belgrade, Serbia every year. The official website of the

competition is www.bubblecup.org, and it includes rules, details, problem sets, information about

competitors and organizers and an archive of previous competitions.

I’m a BubbleCupper… what about you?

MDCS – Bubble Cup 2010

8

Tasks and Solution

from Finals and Qualifications

Bubble Cup 2010 Finals

MDCS – Bubble Cup 2010

9

Finals

The finals of the third Bubble Cup were held on 11 September 2010 at the School of Electrical Engineering

in Belgrade. Fifteen teams competed in solving nine problems. The competition lasted five hours, and the

goal was to solve as many problems as possible, but also as quickly as possible – if two or more teams

solved the same number of problems, the one who needed the least time was ranked best. Additionally,

teams received bonus points depending on their qualification results, but for each problem there were time

penalties if a team had incorrect submissions before managing to solve it.

The problems were of varying difficulty – on one end, one problem was solved by every team, while on the

other there were two problems that no team managed to solve (and for one of those no one even

attempted to submit a solution!).

Team mljivo (members: Tomislav Grbin, Luka Dondjivid and Davor Jerbid, all from the faculty FER Zagreb)

won the competition. They managed to solve five problems and edged out Suit Up! (Ivan Katanid, Marin

Smiljanid and Stjepan Glavina, all high school students), who also had five solved problems but a larger time

penalty. The third place went to Prongrammers (Slobodan Mitrovid, Rajko Nenadov and Nemanja Škorid,

from PMF Novi Sad), who were the quicker of the two teams with four solved problems.

Bubble Cup 2010 Finals

MDCS – Bubble Cup 2010

10

The final scoreboard

Rank Team name Team crew Points Penalty

01 Mljivo Tomislav Grbin
Luka Dondivic
Davor Jerbid

5 392

02 Suit Up! Ivan Katanic
Marin Smiljanic
Stjepan Glavina

5 876

03 Prongrammers Slobodan Mitrovic
Rajko Nenadov
Nemanja Skoric

4 623

04 I like it RAF Vanja Petrovic Tankovic
Nenad Božidarevid
Milan Tomid

4 863

05 The Ninjas Nikola Milosavljevic
Aleksandar Trokicic
Marko Djikic

3 210

06 Rivals Aren’t Frightened (yet) Maja Kabiljo
Igor Kabiljo
Milos Stankovic

3 300

07 ZBrains Mircea Dima
Flaviu Pepelea
Duta Vlad

3 740

08 ššuga Anton Grbin
Viktor Braut
Vjekoslav Giacometti

2 245

09 S-Force Dusan Zdravkovic
Stefan Stojanovic
Dimitrije Dimic

2 247

10 Eštaf Matija Osrečki
Ognjen Dragoljevic
Goran Gasic

2 280

11 NS Boys Demjan Grubic
Boris Grubic
Mario Cekic

2 517

12 Burek Frane Kurtovid
Adrian Satja Kurdija
Tomislav Gudlek

1 -19

13 Nameless Nemanja Marsenic
Nikola Trkulja
Mikloš Kalozi

1 3

14 Strawhats Damir Ferizovic
Daniel Ferizovic
Dominik Gleich

1 70

15 Seek & Destroy Predrag Ilkic
Aleksandar Milovanovic
Dejan Pekter

1 82

Bubble Cup 2010 Finals

MDCS – Bubble Cup 2010

11

Statistics

ID Problem name
Number of teams with

correct solutions
Number of teams with at least

one submission attempt
Total percentage of

accepted submissions

A Brackets 6 14 12%

B Cutting 1 1 100%

C Extrema 0 0 /

D Interval Graph 6 12 10%

E Nice Subsequence 9 15 13%

F Panuql 3 7 15%

G Operations 0 4 0%

H Travel 'n' Sleep 1 3 7%

I Queen 15 15 55%

0

2

4

6

8

10

12

14

16

Number of correct solutions per problem

Problem A: Brackets

MDCS – Bubble Cup 2010

12

Problem A: Brackets

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija

Statement:

You are given an array of strings, and each string contains only open and closed brackets.

Find out if those strings can be sorted in such a way that after the concatenation of all strings, a valid

arrangement of brackets is achieved (like as in a math expression after removing all other characters).

Input:

The first line contains the positive integer (), the number of strings. Each of the next

lines contains a sequence of ‘(‘ and ‘)’ characters, up to the end of the line.

Total number of all characters in all strings does not exceed (ten millions).

Output:

The output consists of one word:

- “yes” (without quotes) if the required arrangement of strings exists

- “no” if it doesn’t exist

Example input: Example output:
3
(()
(
))

yes

Time and memory limit: 3s / 64MB

Solution and analysis:

In this problem each string is equivalent to a string starting with zero or more closed brackets, followed by

zero or more open brackets. For example, underlined brackets are matching and can be removed from the

string: “ ())((())(”, reducing it to: “)((”. So, each string is completely characterized with two integer

attributes: the number of unmatched closed brackets at the beginning of a string and the number of

unmatched open brackets at the end of a string.

Let’s introduce the following notation:

 – Number of unmatched open brackets at the end of -th string;

 – Number of unmatched open brackets at the beginning of -th string;

 – – Bracket balance of -th string, which can also be negative.

In the previous example .

Problem A: Brackets

MDCS – Bubble Cup 2010

13

If ∑
 , it is clearly impossible to arrange the strings as required.

Otherwise (if ∑
), we can first sort the strings according to the following criteria:

- First we put all strings with positive (i.e. non-negative) balance, and then all strings with

negative balance.

- should be increasing among strings with positive balance, and should be decreasing

among strings with negative balance.

- If two strings with positive balance have the same (or two strings with negative balance

have the same), we first put the one with higher .

For the global string (obtained by concatenation of given strings), we want to check that at each point the

number of closed brackets does not exceed the number of open brackets, i.e. that balance at each position

is non-negative.

It is not difficult to prove that for any two consecutive strings the suggested order maximizes the lowest

balance over all positions in the global string. Consequently, if a solution exists, it can be obtained by

sorting as described. Let’s prove this.

We can look at the string as an ordered triple . Let’s assume that these strings are

arranged in correct form. In other words:

 , for

First, let us prove that a nonnegative balanced string can be moved in front of negative ones. The necessary

and sufficient condition for this is to prove that, if we have two successive strings with indexes and

where and , we can swap them. Denote as . Now from

 and we have that and

 because is negative and is nonnegative. Of course, because

this is a successive string, described transformation does not affect the rest of strings. With this operation

we only increase the required differences.

Figure 1. We can look at the arrangement as Dyck lattice path with

 and as jups.

Now we can look at the strings with positive balance and the strings with negative balance as two sub-

problems for sorting. For strings with positive balances, if we swap successive strings so that one with

Problem A: Brackets

MDCS – Bubble Cup 2010

14

smaller goes first, again we have only strengthened the inequalities. On the other hand, for negative

ones this is not so obvious. But if we put this ‘on paper’ we get this (again for successive strings):

 , because

Using the above transformation over successive strings, starting from a proper arrangement we can

generate a new proper arrangement – which is also the output of our sort with the above criteria.

Therefore, it is enough to check strings in described order. If for this order balance stays non-negative (and

is zero at the end), the answer is “yes”, but otherwise “no”.

Implementation:

- Read the strings and sort them as described,

- Check whether balance is non-negative at all points in concatenated string and zero at the end.

Complexity

Time complexity is obviously , where is the total number of characters in all given

strings. Memory complexity is .

Problem B: Cutting

MDCS – Bubble Cup 2010

15

Problem B: Cutting

Author: Andreja Ilić Implementation and analysis: Andreja Ilić

Statement:

Given an integer and an integer sequence a of length , you have to split the given sequence into

consecutive subsequences. The sum of elements in any subsequence must be less than or equal to . Let

 be the sum of maximal elements of the subsequences. Your task is to find the split that minimizes .

Figure 1. One possible cutting for the given example bellow

Input:

The first line contains two positive integers and (and), where is the

number of elements in the given sequence and is the maximal allowed sum of elements in a

subsequence. The following line contains integers – elements of the sequence. All elements are in the

range .

Output:

The output consists of one integer:

- “-1” (without quotes) if a solution does not exist

- otherwise, the minimal sum of maximal elements for any split()

Example input: Example output:
7 14
1 1 1 6 2 6 14

21

Time and memory limit: 1s / 64MB

Solution and analysis:

Firstly, we can see that a cutting exists if all elements of the given sequence are smaller than or equal to .

This is the first thing that we are going to check. From now on, we are assuming that all elements are not

greater than .

Let’s start thinking backwards – not from the sequence itself but from the subsequences. If we denote

subsequence as , then in the final cutting the last subsequence has the form for

some . Now we can say that the final solution is { } , where

Problem B: Cutting

MDCS – Bubble Cup 2010

16

 is the optimal cutting for the first elements of . This cutting has to be optimal, because

otherwise the cutting for the whole sequence would not be optimal either.

This smells like dynamic programming. Let’s define array of length as:

 optimal value of cutting sequence]

We have the following recurrent relation between the elements of :

 { { }},

where is the minimal index such that the sum of elements of is less than or equal

to . In other words, if the element is the right boundary of some subsequence, then its left boundary

has to be in the above segment. For the base of the dynamic programming algorithm, we can define

 and . The final solution is stored in the element .

Implementation:

The tricky part of this problem was implementation. Let’s see how we can initialize bounds fast. Array

 is non-decreasing (). When we want to initialize the element ,

we only have to look in the segment . If we accumulate the current sum in this segment,

the initialization of the whole array can be implemented in linear time.

==

01 bound [1] = 1;

02 currentSum = a [1];

03 for k = 2 to n do

04 bound [k] = bound [k – 1];

05 currentSum = currentSum + a [k];

06 while (currentSum> m)

07 currentSum = currentSum – a [bound [i]];

08 bound [i] = bound [i] + 1;

==

Algorithm for bound initialization

What about array ? Naive implementation of the above recurrent relation leads to time complexity of

 , which is very slow for our constraints. The key observation is that we do not need all indices from

the segment when we want to find a minimum. We only need indices from the set

 { } { }

Therefore, we have to check for boundaries and only for elements that are strictly greater than ones before

them. This is intuitively clear, because if we have some maximum in a subsequence we want to stretch to

the left as long as we can.

We can store these indices in a list. When we move from -th to -th element, we remove only some

elements from the head and some elements from the tail of this list. From the beginning we are going to

remove indices that are smaller than . Since every index in the list represents an element

Problem B: Cutting

MDCS – Bubble Cup 2010

17

that is greater than the ones before, from the end of the list we are going to remove indices if the

corresponding elements are less than or equal to . After that we are going to add new element

at the end of the list. All of this is possible because both the indices in the list and their corresponding

elements are sorted in a strictly increasing order.

And what about the minimum of these elements? Theoretically, this list can be very long. Well, we are

going to store values { } in a heap structure (all of them except for boundaries). When

we move to a new element, as we remove something from the list, we remove the corresponding element

from the heap. In the end, only for the last element of the list, which had the value {

 } before adding the new one, is going to change – it becomes { }.

==

01 d [0] = 0 and d [1] = a [1];

02 add in heap (1, a [1]); // index and value

03 add in list 1; // index of elements in heap

04 for k = 2 to n do

05 while first index in list is less than bound [k]

06 remove it from heap;

07 remove it from list;

08 while last element in list is less than or equal to a [k]

09 remove it from heap;

10 remove it from list;

11 if (heap is not empty)

12 remove last element lastElement from heap;

13 add inheap(lastElement, d [lastElement] + a [k]);

14 maxInBound = max (a [k], a [firstElementInList]);

15 d [k] = max (a [k] + d [k – 1],

d [bound [k] – 1] + maxInBound,

min in heap);

16 add in heap (k, d [k]);

17 add in list (k);

==

Pseudo-code for described algorithm

Complexity:

Initialization of bounds is linear (as we have seen). Every element from the sequence is going to be added

to the heap (and list) only once and removed from it at most once. Initialization of elements requires

one call for finding a minimum in the heap. This leads us to total time complexity of .

Memory complexity is , because we must store information of positions in heap

structure. Also, we have to pay attention to cumulative sums and use int64 for storing this information.

Test data:

Test corpus for this problem contains 30 test cases. Short description of test cases is given in Table 1.

Num maximal Solution Desciption

01 10 20 15 37 By hand

02 20 1000 46 46 You don't need to cut

Problem B: Cutting

MDCS – Bubble Cup 2010

18

03 100 10000 978 5621 Random

04 1000 100000 32746 -1 -1

05 100 1000 452 452 Sum is equal to M

06 10000 100000 100000 834993296 Every element is one subsequence

07 50000 100000000 132767 7830539 ~ 50 subsequences of 1.000 elements

08 99999 100000000 132867 15540259 ~ 100 subsequences of 10.00 elements

09 99999 98765432 19753 296266 ~ 10 subsequences of 10.000 elements

10 99999 99999999 40007 1159863 ~ 10 subsequences of 10.000 elements

11 99999 99999999 32768 556893 Random

12 99999 99999999 532767 273208529 ~ 1000 subsequences of 100 elements

13 99999 99999999 32768 556910 changing big - small subsequence

14 100000 7654321 123456 12345600000 Every element is equal to M

15 1 100 50 50 One element

16 100000 98765432 999987 479320035 Random monotonic subsequences

17 99999 100000000 9999 9999 Many zeros

18 100000 10000 9999 999900000 Monotonic down subsequences

19 99999 67834589 987655 -1 One element M + 1 and all ones

20 80000 100000000 532767 221021568 ~ 10 subsequences of 10.000 elements

21 90000 10000 6012 92936424 Monotonic up subsequences

22 999999 9999999 999998 4064318963217351 Monotonic down subsequences

23 80000 100000000 999982 306422910 Random monotonic subsequences

24 80000 100000000 100 100 Random small

25 80000 100000000 49999 1449530 ~ 20 subsequences of 10.000 elements

26 30000 100 0 0 All zeros

27 10000 1000 999 9990000 All equal to M – 1

28 100000 100000000 999996 355237902 Random monotonic subsequences

29 100000 100000000 504243 528239 ~ 3 subsequences of 30.000 elements

30 100000 100000000 532767 275873972 ~ 1000 subsequences of 1000 elements

Problem C: Extrema

MDCS – Bubble Cup 2010

19

Problem C: Extrema

Author: Andreja Ilić Implementation and analysis: Nikola Mihajlović
 Andreja Ilić

Statement:

Let’s define a function as ∑

 , where and ∑

 .

Given two points and from and value , find minimum and maximum value for .

Input:

The first line of input contains the number (. The second line contains numbers

 separated by a space. The third line contains . The final line contains the number . It is

guaranteed that there will always be coefficients for which satisfying the above conditions.

Output:

The first line of output should contain minimum value for rounded to two decimal places, and the

second line should contain the maximum value for , also rounded to two decimal places.

Example input: Example output:
3
0 2 1
0 0 1
0.75

0.00
0.75

Time and memory limit: 1s / 64MB

Solution and analysis:

This problem requires some math skills. At first sight, it seems to be a kind of linear programming problem,

but it can be solved quite elegantly.

We have a function and we know that it has the form ∑

 , where and

∑
 . The coefficients satisfying these conditions are called barycentric. We can easily spot the

following property in one-dimensional space: given and , { } { } there exists a

function as defined above such that ∑

 . It is enough to vary coefficients for

minimum and maximum of , the rest can be 0. Now we know that must be between these two values.

Extending this to the two-dimensional case is harder. This is stated by the following theorem.

Theorem: Given points and from , are in the convex hull of

 iff there exists a function as defined above such that , where

 and .

Problem C: Extrema

MDCS – Bubble Cup 2010

20

Again, we can accomplish this by varying just the coefficients for points which are vertices of the convex

hull, the rest can be 0.

From the theorem, we conclude that the possible values for are just projections of the points which

belong to the convex hull to the -axis. The additional constraint restricts the set of possible

points to the ones which lie on the intersection of the convex hull and the line . This intersection is a

segment (or just a point in extreme case), so the final solution will be the boundaries of this segment.

Figure 1. Point and corresponding convex hull for points

 and and value

Implementation and complexities

The described idea can be implemented easily: find the convex hull for the given points and find where the

line intersects it. Finding the convex hull has the complexity of . Finding the intersections

is linear, because we only need to check for consecutive vertices of the convex hull. This leads to the final

complexity of .

Problem D: Interval Graph

MDCS – Bubble Cup 2010

21

Problem D: Interval Graph

Author: Andreja Ilić Implementation and analysis: Milan Novaković

Statement:

For a set of closed intervals on real line, one the can construct an interval graph. Represent each interval

with a different graph vertex and connect two vertices if and only if two corresponding intervals have

common points.

Does a the given tree represent an interval graph for some set of intervals?

Input:

The first line contains positive integer () — the number of nodes in a tree. The nodes

are numbered by IDs: . The node is the root node of the tree.

The next lines describe children for all nodes.

Line (each od n lines) lists all children of the node with ID .

The first integer in the line is , the number of child nodes of node . The next integers in the same line

are IDs of those child nodes.

Output:

The output consists of one line:

- “yes” (without quotes) if the given tree represents an interval graph

- “no” if it doesn’t

Example input: Example output:
3
1 2
0
1 1

yes

Example input: Example output:
7
31 2 3
14
15
16
0
0
0

no

Time and memory limit: 3s / 64MB

Problem D: Interval Graph

MDCS – Bubble Cup 2010

22

Solution and analysis:

First, note that no three intervals can have a common point. If that were the case, the interval graph would

have a triangle and wouldn’t be a tree.

Now consider one interval and all intervals that have common points with it.

The intervals that are nested in that interval cannot therefore have any more common points with other

intervals. They generate only one edge in the interval graph.

Intervals that are not nested contain one or both end points of the interval we are considering, therefore

we can have no more than two intervals that have common points with considered interval and are not

nested in it.

So, if we prune all one-edge sub-graphs corresponding to nested intervals, each vertex in the remaining

graph can have at most degree two. In other words, the graph on Figure 1. can’t be a sub-graph of the

pruned graph.

Figure 1. Forbidden structure for interval tree

We can see that if the tree satisfies this property, it is an interval graph. In the pruned graph every edge has

degree one or two (if the graph is connected), therefore it is just a sequence of edges. We can therefore

construct a sequence of intervals that correspond to this graph, and include nested intervals for additional

one-edge sub-graphs that were pruned.

Conclusion is that not having the graph on Figure 1. for a sub-graph is a necessary and sufficient condition

for the tree to be an interval graph.

Interval trees are a very important subclass of intersection graphs and perfect graphs. The generalization of

above statement is a famous result of Lekkerkerker and Boland given below:

Theorem. A graph is an interval graph if and only if it contains none of the graphs shown in Figure 2. as an

induced sub-graph.

Figure 2. Forbidden structures for interval graphs

Problem D: Interval Graph

MDCS – Bubble Cup 2010

23

Implementation:

For the nodes on the first two levels, the described condition is equivalent to not having more than two

sub-trees of depth one or more.

For nodes on deeper levels, the described condition is equivalent to not having more than one sub-tree of

depth one or more.

This check could be easily done by depth-first search in linear time.

For simplicity, this could be broken into the following steps:

- Traverse tree and for each node calculate maximal depth of the sub-tree under it;

- Traverse tree and for each node calculate the number of children sub-trees with depth one or

more;

- Traverse tree and for each node, check the condition taking in consideration the level of the

node.

These steps could be done in one tree traversal.

Since depth of the tree can be up to 1,000,000, recursive DFS cannot be used due to stack limitations.

Iterative DFS is not much harder to implement. For techniques on how to refactor recursion to iteration, a

good resource is The Art of Computer Programming.

Complexity

Time and memory complexity for DFS are and respectively, but storing the tree structure

requires memory. Overall, both memory and time complexity are linear: .

Problem E: Nice Subsequence

MDCS – Bubble Cup 2010

24

Problem E: Nice Subsequence

Author: Andreja Ilić Implementation and analysis: Dimitrije Filipović
 Andrija Jovanović

Statement:

Given an array of integers, find the longest nice subsequence of consecutive elements.

The subsequence , , is nice if

a)
b) , for all

Input:

First line contains one positive integer (), where is the number of elements in the

given array. Each of the next lines contains one integer which represents an element of the array.

Elements are in range .

Output:

The output consists of one integer number:

- “-1” (without quotes) if nice subsequence doesn’t exist
- Length of the longest nice subsequence

Example input: Example output:
6
1
3
4
2
5
0

5

Time and memory limit: 3s / 64MB

Implementation and analysis:

First, we can see that a nice subsequence doesn’t exist if the array is monotonically decreasing.

A naïve solution would be to find the longest nice subsequence ending with each index and then find the
longest of those, but that’s too slow. We need to somehow use the information we have already obtained
to speed up the search. For that purpose we will create a stack of nice subsequences we have obtained (we
will call it). It will initially be empty.

Problem E: Nice Subsequence

MDCS – Bubble Cup 2010

25

We traverse the array, starting from the right. We want to keep some properties of invariant:

 All subsequences on the stack will either be nice, or have length 1.

 The subsequences on the stack will always be sorted so that their left boundary values
(minimums) are decreasing (the largest value is at the top), and their right boundary values
(maximums) are increasing (the smallest value is at the top).

 The subsequences will be sorted by their left boundary and they will not overlap each other.

We will always keep a “current” monotone subsequence, which we will denote , and as we traverse the
array from end to beginning, as long as the values of the elements are decreasing we can keep adding them
to . When we arrive to an element that breaks monotonicity (it is larger than its neighbor on the right), we
want to push to the stack (monotone sequences are nice by definition) - but first we have to perform
some operations in order to ensure that will continue to have the desired properties. Namely:

If and , the subsequence which spans from the left
boundary of to the right boundary of is also nice, so we can expand to match this subsequence
and pop from .

If , we can discard , because it means that any subsequence we find in the
future cannot be nice if it stretches further than the right boundary of .

Either of these steps can be repeated several times. Finally, when and
 , we push to the stack and continue the traversal.

It is not hard to check that the properties of we have highlighted will continue to hold after any of these
steps are performed. Of course, we will keep a variable holding the best result we have found so far, and if
we come across a nice subsequence longer than that value during any of these steps, we update the result.

Let’s now try to sketch a proof that, after the entire array is processed, we will have found the correct
result. We are only looking at subsequences on the stack, and we know that they will always be nice, so we
will obviously never return a result larger than the correct one. What remains to be shown is that the
longest subsequence will always be found by this algorithm.

If the longest nice subsequence is the subsequence , we know that (or is the first
element) and (or is the last element). So, both and will cause breaks in
monotonicity, although in general they won’t be in the same monotone subsequence. This means that we
need to make sure that the sequence starting with () will eventually merge with the sequence ending
with (). But that is simple: because otherwise would not be nice at all, so

the subsequences between and on the stack will either get merged into or be discarded. Finally,

when becomes the top of , will merge with it, because, again, being nice implies that

 . This means that will definitely be processed at some point, which means that the proof is

finished.

Complexity:

Since the number of monotone subsequences in the array cannot be larger than , the main part of the
algorithm essentially consists of “push” and “pop” operations on the stack, making the overall
time complexity of the solution linear.

Problem F: Matrix

MDCS – Bubble Cup 2010

26

Buxkdop F: Panuql

Authors: Milan Novaković,
 Andreja Ilić

Implementation and analysis: Milan Novaković

Tnanopozn:

A boufoin panuql qt a panuql jqnc qznomou odopoznt qz jcqic oaic njx zoqmckxuqzm odopoznt auo

uodanqyodw buqpo (ix-buqpo), azv nco aktxdrno yadro xf oaic odopozn qt muoanou ncaz xzo. Oaic

odopozn cat rb nx fxru zoqmckxut.

Wxr auo mqyoz a panuql jqnc qznomou odopoznt

Icoie qf ncouo olqtnt a boufoin panuql jcouo vqyqvot fxu oyouw .

Qzbrn:

Nco fqutn dqzo ixznaqzt bxtqnqyo qznomout () — nco vqpoztqxzt xf nco panuql .

Oaic xf nco zoln dqzot ixznaqzt a tohrozio xf qznomout tobauanov kw tbaiot, uobuotoznqzm odopoznt

 (| | xf nco panuql .

Xrnbrn:

Xrnbrn ixztqtnt xf xzo vqmqn: :

- “1” (jqncxrn hrxnot) qf a boufoin panuql olqtnt

- “0” qf qn vxotz’n olqtn

Olapbdo qzbrn: Olapbdo xrnbrn:
2 2
6 4
10 9

1

Olapbdo qzbrn: Olapbdo xrnbrn:
1 3
4 6 9

0

DON’T PANIC 

Nqpo azv popxuw dqpqn: 0.5t / 64PK

Solution and analysis:

The statement of this problem was put through a cipher and presented to the competitors in encrypted

form, which they had to decipher before they could start solving the actual problem.

Problem F: Matrix

MDCS – Bubble Cup 2010

27

Since the other eight problems were unencrypted and the texts had the same basic shape, starting by

trying to compare the ciphertext with them was a good idea. It is noticeable that certain words repeat

multiple times, and looking at the other problems reveals that they probably correspond to certain

important phrases, for example "input", "output", "integer", with unchanged number of letters in a word.

This implies that the cipher is a simple substitution cipher, and also reveals the encrypted values for many

of the letters.

Going in this direction starts producing text that is already somewhat intelligible, so we are encouraged to

continue: we know where keywords such as "statement" and "problem" are located, and we can guess the

remaining letters in frequently occurring words: "the", "line". The rest is easy: most words will have only

one of two letters left encrypted, and simple common sense should be enough to finish the job. Also, a cool

thing is that when you translate “DON’T PANIC” you get “LET’ MATCH”.

Translated problem looks like this:

Statement:

A perfect matrix is a matrix with integer elements in which each two neighboring elements are relatively prime (co-

prime), and the absolute value of each element is greater than one. Each element has up to four neighbors.

You are given a matrix with integer elements

Check if there exists a perfect matrix where divides for every .

Input:

The first line contains positive integers () — the dimensions of the matrix . Each of the next

 lines contains a sequence of integers separated by spaces, representing elements (| | of the

matrix .

Output:

Output consists of one digit:

- “1” (without quotes) if a perfect matrix exists

- “0” if it doesn’t exist

The condition that neighboring elements are relatively prime can be stated in the form that neighboring

elements cannot have the same prime factors. Since divides , candidates for prime factors for are

prime factors of . Clearly, if there exists a perfect matrix, we can transform it to another perfect matrix

where all are prime numbers, by omitting all but one prime factors of . Resulting perfect matrix has

all prime elements and neighboring elements are different. Therefore, it is sufficient to check if a perfect

matrix with prime elements and described properties exists to get the final answer.

In view of these conclusions, problem can be restated in the following way: For every element in the

original matrix , pick one of its prime factors, so that two neighboring elements have different factors

picked. This is closely related to the graph coloring problem, which is NP, so backtrack is the way to go.

Problem F: Matrix

MDCS – Bubble Cup 2010

28

Implementation:

The most naive backtrack implementation is too slow. A few improvements can be made. Prime numbers

up to 1,000 can be pre-computed and included in the source file.

All numbers up to 1,000 can also be factored to prime factors offline and included in the source file. If some

element has a unique prime divisor among its neighbors, this prime divisor can be picked for the perfect

matrix.

If some element has only one prime divisor, this prime divisor cannot be picked from its neighbors.

The last observation is the crucial one for speeding up the backtrack algorithm. What should be noted here

is that once a prime divisor is removed from the list of possible primes for all neighboring elements, the

process can continue if one of the neighboring elements is left with only one prime divisor. This can

propagate as long as there are changes made.

Complexity:

Time complexity is exponential. Memory complexity in most implementations shouldn’t be larger than

 where is the number of different prime factors.

Problem G: Operations

MDCS – Bubble Cup 2010

29

Problem G: Operations

Author: Mladen Radojević Implementation and analysis: Mladen Radojević

Statement:

You are given an array of characters in the form of (is odd) where {‘0’...’9’- and

S ,‘+’,’-‘,’=’,’>’,’<’-.

Find out the maximal number of non-overlapping correct expressions (a correct expression is a substring of

the given string which starts and ends with a digit, has exactly one comparison operator (’=’ or ’>’ or ’<’),

and is mathematically correct).

Input:

The first line contains a positive integer (is odd, and). The next line consists of

characters in the form described above (without any spaces between characters).

Output:

The output consists of the integer number which represents the maximal number of non overlapping

correct expressions.

Example input: Example output:
7
7-5<3=5

1

Example input: Example output:
11
2+5<6-4<5=3

2

Time and memory limit: 3s / 64MB

Implementation and analysis:

It is not hard to check that the maximal number of correct expressions can be achieved using the following

algorithm (Greedy algorithm):

 Find the first comparison operator for which we can obtain the correct expression, take the correct

expression which contains that comparison operator and for which the rightmost character has the

smallest index in the original array.

 Start looking for new correct expression from the position of first digit after the previously found

correct expression.

Checking if it exists and finding the optimal correct expression (optimal in the meaning described above)

that contains some fixed comparison operator and that starts from some particular position (on the left

Problem G: Operations

MDCS – Bubble Cup 2010

30

side of comparison operator) can be done in the following way:

First we calculate all possible values on the left side of the comparison operator. Then we scan digit by digit

on the right side of the comparison operator, calculating the value of the expression on the right side by

considering the digit and checking if that value, with the comparison operator and any value from the left

side, gives a true statement.

Checking if a value from right side, the comparison operator and any value from the left give a true

statement can be done by sorting values from the left side in non-decreasing order. Then, if the comparison

operator is ‘=’, use binary search to check if that value exists in a set from left. If the comparison operator is

‘<’, check if the value from the right is greater than the first value from left in the sorted array, and in case

when the comparison operator is ‘>’, check if the value from the right is less than the last value from the

left in the sorted array. Alternatively, since the minimal possible value on the left is and the

maximal is , another approach would be to have an array of elements, so that

for each value calculated on the left we join one element of the array, and while filling that array we can

calculate the minimal and maximal value from all those that we were using in filling, so we can easily check

if a value from the right exists on the left, just by looking in the corresponding place in the new array. If the

value from the right is greater than some value from the left we can check using min, and whether the

value from the right is less than some value from left we can check using max. We can also use min and

max for initializing array for each new comparison operator.

Example: 3+8-6=2+4<3+2

First we calculate values on the left side of ‘=’. These are 6,2,5. Then we go from ‘=’ to the right. The first

potential value is 2. Check if it is found in the set from the left. If it is, meaning that we found one correct

expression, start looking for a new one from ‘4’. The next comparison operator is ‘<’. The only value on its

left side is 4. The first digit on the right is 3. Considering that 3 is not greater than any value from the left (in

this case just 4) we continue. The next digit is 2, so the next potential value is 5. Since 5 is greater than 4,

we do have a new correct expression. We get to the end of the array, so the maximal number of non-

overlapping correct expressions is two.

Complexity:

It is obvious that the complexity of the solution which uses a sorted array is and that the

complexity of the second solution is .

Memory complexity is in either case.

Problem H: Travel ‘n’ sleep

MDCS – Bubble Cup 2010

31

Problem H: Travel ‘n’ sleep

Author: Milan Novaković Implementation and analysis: Andrija Jovanović

Statement:

You are the manager of a company and you want to send some of your employees to a big company

meeting, which starts days from now. The city where the meeting will be held is very far away from your

headquarters, so they will have to travel for a couple of days, passing through some other cities and making

pauses to sleep and rest during the journey. You have a map that assigns numbers between 1 and to the

cities and shows which of these cities have direct routes between each other. All the employees start from

your headquarters (city 1) on the first day. On any given day, each employee can choose either to travel

between two connected cities or to stay where he is and rest, and they all have to reach the meeting place

(city) and must not be late for the meeting.

There is just one small problem: your employees hate each other, so you can never allow two or more of

them to be in the same city at the same time (except at the start and the end of their journeys, of course).

It is allowed for someone to enter a city on the same day when someone else is leaving, however. You kind

of hate all of them too, so you don’t want to allow anyone to stay in your headquarters or to return there

during the journey.

The meeting is quite important, so you would like to send as many people there as possible, and now you

want to calculate exactly how many is that.

Input:

The first line contains three numbers, (), () and (). Each of the

following lines contains two different integers, the numbers of connected towns. All routes are two-way.

Output:

The output consists of exactly one non-negative integer, the maximal number of people that can reach

town from town 1 in or less days.

Example input: Example output:
4 2 4
1 2
1 3
2 4
3 4

2

Explanation:

On the first day, the first person can go to city 2 and the second can go to city 3, and they will both reach

city 4 on the second day.

Time and memory limit: 1s / 64MB

Problem H: Travel ‘n’ sleep

MDCS – Bubble Cup 2010

32

Implementation and analysis:

Looking at the problem statement carefully, it is noticeable that this problem is fairly similar to the problem

of finding maximum flow in a graph. There are a few difficulties, however. Paths in our graph depend on a

time component, while maximum flow assumes that edges have constant capacities. Also, we need to

make sure that only one path can include any single vertex at a point in time. So what we need to do is try

to find a way to transform our graph into one that is more suited to the max-flow constraints.

First, we will transform every vertex of the original graph (except one!) into vertices of the form ,

with the idea that one vertex of the new graph will represent a single point in space and time. With this,

the original graph is turned into a graph in which we always know whether a particular route is available or

not. To be more precise, for each edge in the original graph, the new graph will have directed edges

from vertex to and from to for between 0 and . We also have to

account for the possibility of staying in the same city on a particular day, so every vertex should also

have an edge towards for We will not do this for city , however, in order to eliminate

staying in this city or returning to it later.

Figure 1. Vertex transformation with time parameter

Now we have a graph we can traverse without paying special attention to the time component. The other

problem is ensuring that no two people can be in the same city on the same day, and we can do this using

another easy trick to transform the graph: we split every vertex into an “in” vertex and an

“out” vertex , and add an edge of capacity 1 from to . All edges that went to should be

redirected to , while all edges that went out from should now start from .

The only thing remaining is to define the starting and the finishing vertex (the source and the sink) for the

flow in our new graph. The source is easy: it is the out vertex corresponding to city 1, where everyone has

to start. We do not have a single finishing vertex, however - all vertices corresponding to city are valid

finishing points. We will get around this by adding yet another (!) vertex, and adding edges of

unlimited capacity from all vertices to . (If “unlimited” is a problem for the computer to

understand, any relatively large number will do.) It is now ensured that the solution to the problem is the

maximum flow of the transformed graph.

Problem H: Travel ‘n’ sleep

MDCS – Bubble Cup 2010

33

Complexity:

The constraints are such that most standard algorithms for finding maximum flow will work, so feel free to

pick your favorite one. For example, the Edmonds–Karp algorithm is relatively easy to implement, and its

complexity is for a graph with vertices and edges. The number of vertices in the transformed

graph is approximately , while the number of edges is approximately . This looks

like bad news, but a closer look at the algorithm reveals that it consists of iterating breadth-first searches

(time), and that each iteration augments the flow. In the general case the number of iterations can be

 , but here it is easy to see that the flow can never be larger than , since only people

have a city to go to on any given day. This means that the overall time complexity is actually ,

which reduces to and that should be well within the time limit. The space complexity primarily

depends on the size of the transformed graph, which, if we use lists of edges for storage, is

 ()

Problem I: Queen

MDCS – Bubble Cup 2010

34

Problem I: Queen

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija

Statement:

Compute how many squares on average does a queen attack on a generalized chess board .

The queen attacks a square if it is on the same row, column or diagonal. For example, the queen denoted

by the letter Q in the image bellow attacks 17 squares marked with dots:

 ◦ ◦

◦ ◦ ◦

◦ Q ◦ ◦ ◦ ◦

◦ ◦ ◦

 ◦ ◦

 ◦ ◦

Input:

The first line contains positive integer (), the number of lines and columns of a board.

Output:

The output consists of one real number rounded to exactly three decimal places, the average number of

fields attacked by a queen.

Example input: Example output:
3 6.222

Time and memory limit: 0.5s / 64MB

Solution and analysis:

From each of fields, a queen attacks fields in its row, and in its column.
Let’s now count the fields on the same up-left to down-right diagonal. Counting diagonal by diagonal, we
get

Problem I: Queen

MDCS – Bubble Cup 2010

35

For up-right to down-left diagonals we obviously obtain the same result. This gives the total number of
fields that are attacked from all positions of the queen:

After summation, we obtain

and the average number of attacked fields is

Summation can be done by using math, or a computer program. In the latter case, time complexity will be

linear (instead of constant) and care should be taken of overflow / precision.

Implementation:

Trivial: just read and write

 .

Complexity

As mentioned before, time complexity is if computation is done mathematically, and if

computation is done programmatically.

Memory complexity is in any case.

Test data:

The case is an interesting example, so it should be included. Other tests should include odd and even
numbers, as well as small and big numbers, to check different cases, time complexity and computation
accuracy.

Qualifications

MDCS – Bubble Cup 2010

36

Qualifications

BubbleCup continued to increase in popularity in this year’s edition. A total of 44 teams were involved and

solved at least one problem, representing the highest turnout in its brief history. The tournament

continued on the path of slowly becoming genuinely international, with multiple teams from Serbia,

Croatia, Bosnia and Herzegovina, Macedonia and Romania all involved. The majority of teams consisted of

university students but many younger teams competed as well, and some of them achieved very good

results - six high school teams managed to pass through to the finals.

The qualifications were split into two rounds, with ten problems in each round and 25 days for the

contestants to solve them. The first round lasted throughout April, and teams earned one point for each

successfully solved problem. The second round was in May, and problems in this round were worth two

points each (a rule change from the previous years).

The problems for both rounds were chosen from the publicly available archives at the Timus Online Judge

site (acm.timus.ru). The first round is designed to be easier, and numbers confirm that - the most difficult

problem according to the statistics (Mouse) was solved 17 times, and only one other problem was solved

less than 30 times. The second round increased the difficulty considerably, resulting in one problem that no

team managed to solve (Cockroach Race), while four other problems were solved 10 times or less.

Num Problem name ID Accepted solutions

01 Like Comparisons 1177 32

02 Mouse 1199 17

03 Asteroid Landing 1232 29

04 Evacuation Plan 1237 33

05 Bus Routes 1434 46

06 Brainfuck 1552 34

07 Dean’s debts 1580 44

08 Pharaohs’ Secrets 1584 31

09 Vasya Ferrari 1666 45

10 The Most Complex Number 1748 54

Table 1. Statistics for Round 1

Num Problem name ID Accepted solutions

01 Cockroach Race 1369 00

02 Lights 1464 10

03 Fat hobbits 1533 21

04 Aztec Treasure 1594 10

05 Abstractionism to the People 1649 04

06 The Hobbit or Three and Back Again 2 1663 16

07 Asterisk 1670 22

08 Mortal Kombat 1676 22

09 Sniper shot 1697 09

10 Periodic sum 1749 25

Table 2. Statistics for Round 2

Qualifications

MDCS – Bubble Cup 2010

37

The fifteen teams with the highest number of points qualified for the finals. In another rule change from

the previous contests, the results in the qualifications continue to matter - each team gets bonus time

points in the finals based on their number of points in the qualifying rounds.

The explanations of the solutions for all 20 problems are provided in this booklet. They were written by a

number of different people, some by contestants and some by MDCS BubbleTeam, and you should note

that they are not official - we cannot guarantee that all of them are accurate in general. (Still, a correct

implementation should pass all of the test cases on the Timus site.) Important algorithms and data

structures are marked bold. It is assumed that you are familiar with them - if you are not, you can easily

find information about them in literature or on the Internet.

The organizers would like to express their gratitude to everyone who participated in writing the

solutions.

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Team results chart [overall]

Qualifications

MDCS – Bubble Cup 2010

38

Problem R1 01: Like Comparisons (ID: 1177)

Time Limit: 1.0 second

Memory Limit: 16 MB

Development team of new DBMS asks you to write subroutine for the ‘like’ operator.

‘Like’ operator works as following. It returns true if text string matches specified template. Template is a

text string containing any symbols or following special sequences:

% matches any number of any characters

_ matches any single character

[с1-с2] matches any single character in the range c1-c2

[c1c2c3…cN] matches any single character of the set {c1,c2,c3,…,cN}

[^с1-с2] matches any single character not in the range c1-c2

[^c1c2c3…cN] matches any single character not in the set {c1,c2,c3,…,cN}

Input

First line contains number of tests N ≤ 1000. Next N lines contain comparisons in the following format:

'string' like 'template'

String or template may contain any symbols with ASCII codes 32-255. Inner entrance of apostrophe symbol

(ASCII 39) into string or template is encoded by double apostrophe symbol. Maximal length of string or

template is symbols.

Output

For each of N comparisons output single 'YES' or 'NO' at a line.

Sample

input output
15

'abcde' like 'a'

'abcde' like 'a%'

'abcde' like '%a'

'abcde' like 'b'

'abcde' like 'b%'

'abcde' like '%b'

'25%' like '_5[%]'

'_52' like '[_]5%'

'ab' like 'a[a-cdf]'

'ad' like 'a[a-cdf]'

'ab' like 'a[-acdf]'

'a-' like 'a[-acdf]'

'[]' like '[[]]'

'''''' like '_'''

'U' like '[^a-zA-Z0-9]'

NO

YES

NO

NO

NO

NO

YES

YES

YES

YES

NO

YES

YES

YES

NO

Qualifications

MDCS – Bubble Cup 2010

39

Solution:

The key to this problem lies in the fact that both strings which should be compared are short (up to 100

symbols). Therefore we can use dynamic programming to solve this problem. We will create the matrix m,

the size of which can be up to 100x100B = 10kB. By ‘character’ we are going to imply the character for the

given string or special sequence which is described with a symbol at position in the second string. Matrix

element will indicate if the first characters of the first string are ‘like’ the first characters of the

second string (template). Having this in mind we can create the recurrent relation to populate the entire

matrix. The recurrent relation is presented below:

 , and
 , (or and (
 , and
 , and (or or)
 , in all other cases

The explanation for this formula is the following: if the character is equal to the character , and if

the first characters of the string A are ‘like’ the first characters of the string , then the first

characters of the string are ‘like’ the first characters of the string . If a character is equal to ,

there are three different cases: , and . The factor

 is there because the character can match any character, including ; is there because

the character can be substituted with zero characters; finally, is there because the character

 is already included in substitution of the character so the character B can also

substitute the character A . The element will show if the string is ‘like’

the string .

The function checks if two given special sequences can produce/cover at least one common

character. Since the strings can contain only ASCII characters with codes in range 32-255, this function can

be implemented by producing the two character sets (up to 255 characters each), which are defined by the

given special sequences, and check if these character sets have an intersection. During the implementation

of this function, we should pay attention to the possibility that a special sequence can be defined

recursively (like ‘**++’, or ‘*%+’).

The function checks if the given special sequences can produce/cover exactly the same character

sets. For example, % is equivalent to [%] or [_%].

The time complexity of this algorithm is .

Solution by:
Name: Miloš Milovanović
School: The Faculty of Electrical Engineering, Belgrade
E-mail: milmil@microsoft.com

Qualifications

MDCS – Bubble Cup 2010

40

Problem R1 02: Mouse (ID: 1199)

Time Limit: 2.0 second

Memory Limit: 16 MB

In the kitchen lives a mouse. There are also a cat and a piece of cheese in the kitchen. The coordinates of

the cheese and the mouse are known, and the cat is sleeping. Finally, there is some furniture in the kitchen.

The furniture is a set of convex polygons. The mouse wants to get to the cheese unnoticed. A point of the

route is called dangerous if the distance to the nearest piece of furniture is greater than 10 cm. It is

required to find the least dangerous route for the mouse, i.e., the route in which the sum of the lengths of

dangerous segments is minimal.

Input

In the first line there are four numbers xm, ym, xc, yc separated with a space. They are the coordinates of the

mouse (xm, ym) and of the cheese (xc, yc). In the second line there is the number of pieces of furniture N

(0 ≤ N ≤ 100). The next N lines describe these pieces. Each description starts with the number of vertices of

the corresponding polygon K (3 ≤ K ≤ 10), given in a separate line. Each of the next K lines contains two

numbers, which are the coordinates of the corresponding vertex. It is known that the distance between any

two points of different polygons is greater than 20 cm (so that it would be easier for the cat to catch the

mouse). Neither the mouse nor the cheese are inside any of the polygons. All the coordinates are given in

meters and have no more than three fractional digits. The absolute values of coordinates do not exceed

105.

Output

You should give the mouse’s route in the form of a broken line. In the first line output the number of its

vertices (including the initial and final ones). Then give the coordinates of the vertices, two numbers per

line, accurate to 10-4. Each segment of the broken line must be either entirely dangerous or entirely safe

(with the possible exception of its endpoints). The broken line must contain no more than 1000 vertices.

Sample

input output
1.0 1.5 0.0 1.5

1

4

0.0 0.0

0.0 1.0

1.0 1.0

1.0 0.0

4

1.0 1.5

1.0 1.1

0.0 1.1

0.0 1.5

Solution:

The idea is basically simple (like most geometric problems), but problems may arise in the implementation

of which special care should be taken. The solution consists of three steps:

1. Determination of the shortest distance between any two polygons;

2. Finding the shortest path in a graph;

3. Reconstruction of line segments of the final path.

Qualifications

MDCS – Bubble Cup 2010

41

The first step consists solely of geometry. It is convenient to define a class of two-dimensional vector to

simplify implementation of the further calculations, whereby the points can be represented as radius-

vectors from the origin. It provides easy manipulation of points, calculation of distances, application of

operators such as cross and dot product, etc.

When determining the shortest distance between two polygons, it is necessary to determine the distance

from a point (the polygon vertex) to the given line segment (the other polygon edge). For final path

reconstruction, it is also necessary to determine the point on the line segment that is closest to a given

point. Figure 1 shows (in two cases) the shortest distance from the point and line segment , and the

point on line segment, closest to the point . (Shown distance is also the shortest distance of those two

polygons.)

Figure 1. The shortest distance from a point to the line segment

The shortest distance between two polygons can be trivially determined by taking the minimum distance

between all pairs (the first polygon vertex, the other polygon edge) and vice versa. The complexity of this

approach is , where and are the numbers of vertices of the first and second polygon,

respectively. For this task, this is good enough. By using a somewhat more sophisticated algorithm (e.g.

rotating calipers), the complexity of this step can be reduced to .

The second step involves graph theory. Each polygon is represented by a vertex of a complete weighted

graph, where edge weights correspond to the shortest distances between the two polygons. For simplicity,

the mouse and the cheese can also be treated as polygons (composed of only one point, or degenerate

triangle with three equal vertices, or alike). In addition, the correction of edge weights is performed in a

way to subtract for each edge side associated with actual polygon (subtraction is not performed for

the mouse and the cheese). The shortest path in this graph is also the requested path with a minimal length

of the "dangerous" route. A typical algorithm for determining the shortest path in a graph is Dijkstra's

algorithm.

A

B

C

P d

A

B

C

P

d

Qualifications

MDCS – Bubble Cup 2010

42

Figure 2. The final path reconstruction

Finally, the third step performs the reconstruction of linear segments of the required path (Figure 2). Based

on the shortest path in the graph, the polygon traversal sequence is known. The specified path consists of

the line segments along the edges of polygons, and the line segments that connect two polygons by the

shortest route. It is necessary to make sure that the line segment which connects two polygons is broken

down into three parts: two "safe" of length from the edge of each polygon, and a "dangerous" one,

which connects the previous two.

Solution by:
Name: Ognjen Dragoljević
School: The Faculty of Electrical Engineering and Computing, University of Zagreb
E-mail: ognjen.dragoljevic@gmail.com

V1

V2

V3

V4

w23 w34

w12

Qualifications

MDCS – Bubble Cup 2010

43

Problem R1 03: Asteroid Landing (ID: 1232)

Time Limit: 1.0 second

Memory Limit: 16 MB

A guided probe is launched from the space station located at the
distance of h from the surface of a large asteroid. The probe must land at
the asteroid. The probe moves straight forward for a fixed distance d,
after that it receives a new command from the station. The command
defines the new direction for the movement. Each movement of the
probe must help it to get closer to the surface. The control signals from
the station are transmitted only within a cone having a vertex angle of α.

So, the trajectory of the probe is a broken line with segments of equal
length, which is lying inside the cone described above. The last segment
of the trajectory must also be of length d, lie inside the transmission
cone and end at the surface of the asteroid.

Your task is to determine if it is possible to perform the landing of the probe taking into consideration the
above conditions. If the landing is possible, then find the trajectory of minimal length including the
coordinates of the ends of each segment. The landing point must be found, too.

The coordinates of the points are Cartesian. Ox and Oy lie on the surface of the asteroid, and Oz passes

through the space station.

Input

h (0 < h < 100), d (h/1000 ≤ d ≤ 10*h), α (the angle is in radians, 0.1 ≤ α ≤ 3). All numbers are float.

Output

n — the number of segments in the trajectory, or −1, if landing is impossible

x1 y1 z1

x2 y2 z2

…

xn yn zn — the coordinates of the points where the probe receives control signals, and the landing point. All

coordinates must be calculated to within 0.0001.

Sample

input output
11 5 2

3

0 3 7

3 3 3

3 –1 0

Qualifications

MDCS – Bubble Cup 2010

44

Solution:

The distance of the asteroid from the surface can be written as

where is a nonnegative integer. If , the asteroid can land on the surface in movements

by just moving down, i.e. in the direction of the surface. Otherwise, it will need movements.

Let’s find the maximum possible distance from the surface after movements — for every . We

can see that maximal distance is achieved if the asteroid is moving as in Figure 1. Note that we are moving

only in the plane, so is always .

Figure 1. Asteroid moving

We know that , and – . Observe the (isosceles) triangle formed by

two consecutive movements and lateral surface of the cone (figures below show first two such triangles).

It can be shown that -th such triangle has base angle of size , and therefore the size of its base side is:

 .

Knowing that, we can compute :

 – .

If (the sum of angles in a triangle), then such triangle is not formed and

for such .

Having determined we can find coordinates of points where the probe receives the control signal.

If then the solution does not exist.

If then all coordinates will equal .

Else find such that and . First points will

C A

B

α α

d d

D B

C

2α 2α

α

d d

Qualifications

MDCS – Bubble Cup 2010

45

have coordinate equal , and the rest will have (–) (the probe is moving down

vertically in that part).

Having found coordinates, we can find coordinates.

 –

 coordinates are changing in alternating directions:

 is always zero as mentioned, so we have found our solution.

Solution by:
Name: Luka Donđivić
School: The Faculty of Electrical Engineering and Computing, Zagreb
E-mail: ldondjivic@yahoo.com

Qualifications

MDCS – Bubble Cup 2010

46

Problem R1 04: Evacuation Plan (ID: 1237)

Time Limit: 1.0 second

Memory Limit: 16 MB

The City has a number of municipal buildings and a number of fallout
shelters that were build specially to hide municipal workers in case
of a nuclear war. Each fallout shelter has a limited capacity in terms
of a number of people it can accommodate, and there's almost no
excess capacity in The City's fallout shelters. Ideally, all workers from
a given municipal building shall run to the nearest fallout shelter.
However, this will lead to overcrowding of some fallout shelters,
while others will be half-empty at the same time.

To address this problem, The City Council has developed a special
evacuation plan. Instead of assigning every worker to a fallout
shelter individually (which will be a huge amount of information to
keep), they allocated fallout shelters to municipal buildings, listing
the number of workers from every building that shall use a given
fallout shelter, and left the task of individual assignments to the
buildings' management. The plan takes into account a number of workers in every building - all of them are
assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned
to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to
reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the
worker's municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim
and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that
the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with
the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by

a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer

numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the

location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

Input

The input consists of The City description and the evacuation plan description. The first line consists of two

numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all

municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City

(all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi
separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi
(1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line
contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are

Qualifications

MDCS – Bubble Cup 2010

47

the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council's evacuation plan follows on the next N lines. Each line represents an
evacuation plan for a single building (in the order they are given in The City description). The evacuation
plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a
number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.
The plan is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that
are actually working in any given municipal building according to The City description and does not exceed
the capacity of any given fallout shelter.

Output

If The City Council's plan is optimal, then write the single word OPTIMAL. Otherwise, write the word

SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the

input. Your plan need not be optimal itself, but must be valid and better than The City Council's one.

Sample

input output
3 4

-3 3 5

-2 -2 6

2 2 5

-1 1 3

1 1 4

-2 -2 7

0 -1 3

3 1 1 0

0 0 6 0

0 3 0 2

SUBOPTIMAL

3 0 1 1

0 0 6 0

0 4 0 1

3 4

-3 3 5

-2 -2 6

2 2 5

-1 1 3

1 1 4

-2 -2 7

0 -1 3

3 0 1 1

0 0 6 0

0 4 0 1

OPTIMAL

Solution:

This is another interesting graph theory problem. The question is how to send workers from buildings to

shelters and make a better solution than the one given in the task (the new plan does not need to be

optimal, but it must be valid).

We see that there are two types of shelters, the ones that are not completely filled up with workers and

the ones that are. For the second type it is important that if we want to move a worker into the shelter,

first we have to move one out.

Qualifications

MDCS – Bubble Cup 2010

48

Figure 1. Example from the problem statement

 Let’s make a weighted directed graph in which nodes represent shelters, and for every

non-empty shelter there is an edge from it to every other shelter .The weights of these edges are given

by the following formula: { } for every building which has a worker in

shelter , and where is the distance from building to shelter . This formula represents the

minimal difference in the distances needed to transfer a worker from shelter to shelter .

Figure 2. Described graph in the example

Qualifications

MDCS – Bubble Cup 2010

49

Notice that an edge can be negative, which represents improvement. Now, it is easy to see that the only

possible improvement is either a negative cycle in this graph or a negative path which ends in a shelter that

is not full. A negative cycle/path is one for which the sum of all its edges is negative. We get the solution by

rotating workers along the path/cycle that we have found.

Figure 3. Solution for the example

The easiest way of finding a negative cycle or path is the Bellman-Ford algorithm, which has complexity of

 . Since the number of vertices is and the number of edges is not bigger than , the

complexity of this algorithm is .

Solution by:
Name: Dušan Zdravković, Dimitrije Dimić, Stefan Stojanović
School: “SvetozarMarkovid” High School,Niš
E-mail: zdravkovicdusan@hotmail.com, dimke92@yahoo.com, dolarlord@gmail.com

Qualifications

MDCS – Bubble Cup 2010

50

Problem R1 05: Bus Routes (ID: 1434)

Time Limit: 3.0 second

Memory Limit: 32 MB

The Vasyuki University is holding an ACM contest. In order to help the participants make their stay in the
town more comfortable, the organizers composed a scheme of Vasyuki's bus routes and attached it to the
invitations together with other useful information.

The Petyuki University is also presented at the contest, but the funding of its team is rather limited. For the
sake of economy, the Petyuki students decided to travel between different locations in Vasyuki using the
most economical itineraries. They know that buses are the only kind of public transportation in Vasyuki.
The price of a ticket is the same for all routes and equals one rouble regardless of the number of stops on
the way. If a passenger changes buses, then he or she must buy a new ticket. And the Petyuki students are
too lazy to walk. Anyway, it easier for them to write one more program than to walk an extra kilometer. At
least, it's quicker.

And what about you? How long will it take you to write a program that determines the most economical
itinerary between two bus stops?

P.S. It takes approximately 12 minutes to walk one kilometer.

Input

The first input line contains two numbers: the number of bus routes in Vasyuki N and the total number of

bus stops M. The bus stops are assigned numbers from 1 to M. The following N lines contain descriptions of

the routes. Each of these lines starts with the number k of stops of the corresponding route, and then k

numbers indicating the stops are given (1 ≤ N ≤ 1000, 1≤ M ≤ 105, there are in total not more than 200000

numbers in the N lines describing the routes). In the N+2nd line, the numbers A and B of the first and the

last stops of the required itinerary are given (numbers A and B are never equal).

Output

If it is impossible to travel from A to B, then output −1. Otherwise, in the first line you should output the

minimal amount of money (in roubles) needed for a one-person travel from A to B, and in the second line

you should describe one of the most economical routes giving the list of stops where a passenger should

change buses (including the stops A and B).

Sample

input output
3 10

5 2 4 6 8 10

3 3 6 9

2 5 10

5 9

3

5 10 6 9

Qualifications

MDCS – Bubble Cup 2010

51

Solution:

This was a very interesting problem and proved to be one of the easiest. The problem can be approached in

several ways – but they all contain a few graph search algorithms. The problem can be solved very

elegantly, which will be shown here.

Figure 1. Example from the problem statement

The question is how to find a path between two bus stops with the smallest number of bus changes.

Denote with graph with nodes corresponding to bus stops, and edges between consecutive bus

stops in routes. We can look at bus routes as paths in graph . Now we can generate a graph with bus

stops as nodes and find the minimal path using breadth-first search (BFS). This idea works, but the

implementation can be a bit tricky, so we will try to implement it in a slightly different way. We are going to

construct a new graph with vertices for both bus stops and routes. Now, for every route we are going to

add edges to its stops. This is very cool, isn’t it? The corresponding graph would look like this:

Figure 2.Generated graph for the example case

As we can see, this graph is bipartite. It has one nice feature – the distance between any two bus stops on

the same route is two edges, so we can just find the shortest path between two given bus stops and these

Qualifications

MDCS – Bubble Cup 2010

52

vertices are going to be bus stops where we have to change routes. The easiest way to implement this is to

store routes as nodes with indexes .

The number of edges in this graph is equal to the sum of lengths of all routes. The complexity of the BFS

algorithm is linear on the number of edges, which brings us to the final complexity of

 , which is less than 200,000.

Solution by:
Name: Andreja Ilić
School: The Faculty of Mathematics and Sciences, Niš
E-mail: ilic_andrejko@yahoo.com

Qualifications

MDCS – Bubble Cup 2010

53

Problem R1 06: Brainfuck (ID: 1552)

Time Limit: 2.0 second

Memory Limit: 64 MB

Chairman of "Horns and hoofs" company, Mr. Phunt, decided to start advertising campaign. First of all, he
wants to install an indicator panel on the main square of the city that will show advertisements of the
company. So he charged the manager of the company, Mr. Balaganov, to do this job. After analyzing offers
of indicator panels, Balaganov ordered one at a price of only $19999.99. But when it was delivered, a little
problem was found. The panel was programmable, but the instruction set of the processor was a subset of
brainfuck language commands. The commands that processor was capable to execute were '>', '<', '+', '−'
and '.', which are described in the table below. Moreover, this panel had very little memory for the
program, so not every program typing a particular string will fit into memory. Now Balaganov wants to
know the minimal program that will output the given string. But because he is not very good at
programming, he asks you to solve this problem. The brainfuck program is a sequence of commands
executed sequentially (there are some exceptions, but panel processor cannot execute such commands).
The brainfuck machine has, besides the program, an array of 30000 byte cells initialized to zeros and a
pointer into this array. The pointer is initialized to point to the leftmost byte of the array.

Command Description

>
Increment the pointer (to point to the next cell to the right). If the pointer before increment points to the
rightmost byte of the array, then after increment it points to the leftmost byte.

<
Decrement the pointer (to point to the next cell to the left). If the pointer before decrement points to the
leftmost byte of the array, then after increment it points to the rightmost byte.

+
Increment (increase by one) the byte at the pointer. If the value of the cell before increment is 255 then it
becomes 0.

−
Decrement (decrease by one) the byte at the pointer. If the value of the cell before decrement is 0 then it
becomes 255.

. Output the value of the byte at the pointer.

Input

Input has one line containing the string brainfuck program must output. Every character of the string is a

small English letter ('a'–'z'). The length of the string is not greater than 50. You may assume that optimal

program will not have to modify more than four memory cells.

Output

Input has one line containing the string brainfuck program must output. Every character of the string is a

small English letter ('a'–'z'). The length of the string is not greater than 50. You may assume that optimal

program will not have to modify more than four memory cells.

Sample

input output
a +++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++.

Hint

Please note that the sample output is divided into several lines only for convenience. In the real output

whole program must be printed on a single line.

Qualifications

MDCS – Bubble Cup 2010

54

Solution:

Beware of the Turing tar-pit in which everything is possible but nothing of interest is easy.

(Alan Perlis, from Epigrams on Programming)

If we look at the sentence in the task description, “You may assume that optimal program will not have to

modify more than four memory cells”, we can conclude that these four cells are consecutive, and that the

starting cell has to be one of them. That gives us four possibilities to begin with, and each of them is solved

in the same fashion as follows.

The solution uses dynamic programming. Every state can be described with six integers: values of the four

“critical” cells, the number of the cell (0…3) the pointer is currently at, and the position of the letter in the

string which is to be printed next. To reduce the number of states in the memory, we can make the

following observations. First, the values of the four cells are either 0 or ASCII values of the letters ‘a’ – ‘z’

after each letter is printed; this reduces the number of possible values in each cell from 256 to 27.

Furthermore, we do not need the number of the cell the pointer is currently at, because if we know which

letter was printed last, we simply find the cell which has the value of that letter. Therefore, the total

number of states reduces to , which is still much more than the number of states

that can actually be reached. For this reason, to implement the dynamic programming approach we use

recursion with memoization - in this way we will process only the states that we can get to.

In the process of finding the best solution for a state in the recursion, our goal is to choose a cell which will

contain the value of the next letter to be printed, so that the number of remaining brainfuck commands

(moving the pointer to the chosen cell, changing the cell value and recursively solving the rest of the string

from the obtained state) is minimal. In order to reconstruct the optimal sequence of commands, we can

run a procedure which, knowing the minimal number of commands for each state (already calculated by

the dynamic programming algorithm), simply finds this sequence.

Note:

The brainfuck programming language is an esoteric programming language (programming language

designed as a test of the boundaries of computer programming language design, as a proof of concept, or

as a joke) noted for its extreme minimalism. It is a Turing tar-pit, designed to challenge and amuse

programmers, and is not suitable for practical use.

Solution by:
Name: Adrian Satja Kurdija
School: 5th High School, Zagreb; Faculty of Mathematics and Sciences, Zagreb
E-mail: askurdija@gmail.com

Qualifications

MDCS – Bubble Cup 2010

55

Problem R1 07: Dean’s Debts (ID: 1580)

Time Limit: 2.0 second

Memory Limit: 64 MB

N students of one university took part in the Yekaterinozavodsk training camp. When they returned home,

it turned out that they had spent much of their own money for the tickets to Yekaterinozavosk and back,

for their lodgings, food and registration fees. The students came to the dean of their department and asked

him to compensate the costs of the trip. The dean listened to them carefully and gave some amounts of

money (possibly different) to all of them. The next day two of these students came to the dean and told

that the two of them had been given A1 rubles less than they had spent jointly. On the next day, the

situation repeated itself: a pair of students claimed that the dean owed them A2 rubles. The situation

repeated itself for a few days more. Finally, on the M-th day a pair of students told the dean that they two

had spent together AM rubles more than the dean had paid them. After that, the students lost any hope

and stopped visiting the dean. Then the dean took the notes with the students' demands and decided to

calculate how much he owed each of them. But it turned out to be not so easy!

Input

The first line contains integers N and M separated by a space (2 ≤ N ≤ 1000; 1 ≤ M ≤ 100000). The following

M lines contain the demands of pairs of students who visited the dean. The (i + 1)-st line contains three

integers separated by spaces: the numbers of two students who visited the dean on the i-th day and the

amount of money Ai they asked for. The students are numbered from 1 to N. The number Ai is an integer in

range from −10000 to 10000. A negative number means that the students got from the dean more that

they spent. It is known that no pair of students visited the dean more than once.

Output

If the dean can determine uniquely how much money he owes each of the students, write these sums with

two digits after the decimal point: in the i-th line output the amount he owes the i-th student. The numbers

can be negative; this means that the student owes the dean (sometimes it happens!). If it is impossible to

find these amounts, output “IMPOSSIBLE”.

Sample

input output
3 3

1 2 2

2 3 4

3 1 6

2.00

0.00

4.00

4 3

1 2 2

1 3 4

1 4 6

IMPOSSIBLE

Qualifications

MDCS – Bubble Cup 2010

56

Solution:

The problem, in essence, asks of us to solve a system of linear equations and print the solution if it is

unique. It is less general than that, however, because our equations have a rigidly defined shape - they all

have the form of . We will try to make use of that.

Let’s start solving the system by hand. If we have (like in the example) , and

 , we can subtract the first equation from the second to get . Then, adding the

third equation to this, we get , and it is easy to go further from there.

Now we have to generalize this approach to get the solution. We will define a set of states (which represent

equations) and rules for transitions between states (which simulate derivation). All equations we will need

can be written as . This can be represented by a state that specifies the left-hand side — the

numbers and along with the coefficients in front of the variables, which are always or in this

problem. Of course, the state will have the number associated with it as well. We can also note that,

since negating the whole equation does not change anything, it is safe to assume that the first coefficient

(in front of) is always and only remember the second one, halving the number of states.

We get the starting set of states from the input. (We can add some trivial states to this set as well:

 for all). If we are in a state corresponding to the equation , the rules of transition

are the following:

- if and , we can calculate

- if , and , we have reached a contradiction

- if we have the value for one of or , we can get the other one using simple arithmetic

- otherwise, for all , if we have a state that corresponds, e.g., to the equation , we

can transition to the state with the right-hand side (and similarly for other

possibilities – when is the second variable, or is the variable we need to eliminate)

We can traverse the space of states using a variant of depth-first search, making sure to pass along all

required values while we travel. We can get the following results:

- a contradiction occurred somewhere: just print out “IMPOSSIBLE”

- we got all the values: this is our solution, so print it out

- we did not get the values of all : since the search is exhaustive, there is no other way that can get

the values of variables we did not get, therefore print out “IMPOSSIBLE”

Since the number of states is limited to , and we won’t visit any state more than once, it

follows that we have more than enough time for the algorithm to finish. The implementation should be

relatively straightforward.

Solution by:
Name: Andrija Jovanović
School: School of Computing (RAF), Belgrade
E-mail: ja.andrija@gmail.com

Qualifications

MDCS – Bubble Cup 2010

57

Problem R1 08: Pharaohs’ Secrets (ID: 1584)

Time Limit: 1.0 second

Memory Limit: 64 MB

When programmer Alex was in Egypt, he not only swam in the Red Sea and went sightseeing, but also

studied history. When Alex visited the place where an archeological dig of an ancient temple was carried

out, an excavation worker complained to him that they had to drag very heavy statues from place to place

every day. This was because some Egyptologist had read in an ancient papyrus that if the statues were

arranged in a special order, then some ancient hiding-place would open. When the temple had been dug

out, these statues had stood as soldiers, forming a rectangle. Some statues were identical, so there were

several types of statues. They were to be arranged into a rectangle of the same dimensions on the same

place with all rows and columns symmetric with respect to their middles. This meant that the statues

standing in the same row or column at equal distances to its ends had to be of the same type.

Alex offered his help. He wants to find the way to transform the rectangle into a symmetric one by means

of the minimal number of moves.

Input

The first line contains the dimensions of the rectangle n and m (2 ≤ n, m ≤ 20). These integers are even.

Each of the next n lines contains m lowercase English letters. Each letter denotes the type of the statue that

stands in the rectangle at this position.

Output

Output the minimal number of statues that should be moved in order to make a symmetric rectangle. It is

guaranteed that this is possible.

Sample

input output
4 4

abxa

xyyb

xyyx

abba

2

Hint

The arrangement in the example can be transformed to a symmetric one in only two moves: first the statue

of the type x from the upper row should be moved to the place in the rightmost column where there is the

statue of the type b, and this statue then should moved to the place where the first statue stood. After all

moves each place must be occupied by exactly one statue, but during the moving process there can be

several statues at the same place.

Qualifications

MDCS – Bubble Cup 2010

58

Solution:

Let us enumerate rows and columns of the given rectangle top-bottom from to and left-right from to

 , and denote by the position at the intersection of -th row and -th column. Suppose that a statue

is located at , , . If this rectangle is symmetric, then, by applying symmetry on -th row

and -th column, it follows that statues of the same type (must be located at and

 . Applying symmetry once more, we get that location must also contain a statue

of type .

Now, denote with { }. By the above

discussion, it can be easily proven that:

An rectangle is symmetric if and only if for all , ,

statues in are of the same type.

It follows that we need to put the statues of the same type in each of these

 quadruplets of locations.

But which type in which quadruplet? Let’s divide given statues in

 quadruplets, so that each

quadruplet contains the statues of the same type (there may be more quadruplets with the same type of

statues). Denote the quadruplets with , . Such division exists because it is guaranteed that

solutions exist. If we decide to put the statues of type on the locations , we need to remove all the

statues from these locations which are not of type. This is the “cost” of our choice and we need to

minimize the sum of costs for all quadruplets. Note that we only consider removal cost because when we

bring statues to some quadruplet , we are removing them from another quadruplet.

Let’s transform this problem a bit. Denote by the complete bipartite graph with partitions

 {

} and {

}. For each edge between and , we assign it

weight to be the number of the statues on locations which are not of type . It is obvious that

 is the above mentioned cost. Note that

. In this notation, our goal is to find a

maximum matching in graph , such that ∑ is minimized (notice that any perfect matching in

uniquely defines an assignment of statues to quadruplets of locations).

But this is the well-known minimum weighted matching in bipartite graph problem, which can be solved

using the famous Hungarian algorithm. Complexity of this algorithm is , in our case (

)

 .

Solution by:
Name: Nikola Milosavljević
School: The Faculty of Mathematics and Sciences, Niš
E-mail: nikola5000@gmail.com

Qualifications

MDCS – Bubble Cup 2010

59

Problem R1 09: Vasya Ferrari (ID: 1666)

Time Limit: 0.5 second

Memory Limit: 64 MB

Vasya, nicknamed Ferrari, has to solve an equation of fourth degree with integer coefficients

x4+ax3+bx2+cx+d = 0. Vasya wants to factorize the polynomial in the left part of this equation to the

maximal possible number of multipliers with integer coefficients to reduce the problem to solving several

equations of lower degree.

Input

4 integers: a, b, c, d — the coefficients of the polynomial, with absolute values not exceeding 20000.

Output

If the polynomial can't be factorized to multipliers with integer coefficients, you should output a single line

“Irreducible”. In the other case output the factorization of the polynomial as a product of several

polynomials with integer coefficients, enclosed in parentheses. You shouldn't delimit the multipliers with

spaces and output monomials with zero coefficients. Coefficients and degrees equal to 1 should be

omitted, except the monomial “1”.

Sample

input output
0 0 0 0 (x)(x)(x)(x)

-4 -3 24 45 (x2+3x+3)(x2-7x+15)

1 1 1 1 Irreducible

Solution:

In this problem we have to reduce a fourth degree equation by factorizing the polynomial on the left-hand

side to the largest number of factors with integer coefficients, so that the equation can be solved by solving

two, three or more equations. The following quartic equation is given:

A polynomial of the fourth degree can be factorized in several ways:

 the product of a third-degree polynomial with a first-degree polynomial

 the product of two second-degree polynomials

 the product of two first-degree polynomials and one second-degree

 the product of four first-degree polynomials

First of all, we will try to factorize our polynomial as a product of two quadratic polynomials.

From this observation we get a system of equations:

Qualifications

MDCS – Bubble Cup 2010

60

We can transform them into the following:

It seems impossible to solve this directly. The easiest way to get around this, keeping in mind that we are

only looking for integer solutions, would be to find all divisors of , which is the set of all possible values for

 and , and iterate through them. Knowing and we can solve the quadratic equation for and

immediately obtain through one of the above equations.

So, if we have found a possible way to factorize our polynomial as a product of two quadratic polynomials,

we are left with this equation:

Two quadratic equations follow:

We will try to factorize them separately. (Maybe we will not be able to factorize one or both of them). In

order to factorize one quadratic equation into a product of two linear equations, all we need to know are

the roots of the given equation, and . By finding the roots we can write one of our quadratic equations

as . We still mustn’t forget that we are only interested in the integer roots.

We will stop here because the polynomial can't be factorized further. So far this solution seems OK, but

sometimes our polynomial of the fourth degree can't be written as the product of two polynomials of the

second degree. In this case we will try to factorize it as the product of polynomials of first and third degree.

We have a system of equations once again. And again, finding all divisors of will help us to find the other

variables. If we are successful, there is no need to go any further. Obviously, the linear polynomial can't be

reduced, and if it were possible to factorize the third degree polynomial, it would reduce to the previous

case - meaning that the original polynomial can be factorized into two quadratic polynomials, and we have

already excluded that possibility. If we weren't able to factorize the polynomial in either of these ways, it is

irreducible. There are some special cases when the constant term of our quartic equation is equal to zero

().

Solution by:
 Name: Daniel Ferizović
School: MSŠ Bosanski Petrovac
 E-mail: dani.f@live.de

Qualifications

MDCS – Bubble Cup 2010

61

Problem R1 10: The Most Complex Number (ID: 1748)

Time Limit: 1.0 second

Memory Limit: 64 MB

Let us define a complexity of an integer as the number of its divisors. Your task is to find the most complex

integer in range from 1 to n. If there are many such integers, you should find the minimal one.

Input

The first line contains the number of testcases t (1 ≤ t ≤ 100). The i-th of the following t lines contains one

integer ni (1 ≤ ni ≤ 1018).

Output

For each testcase output the answer on a separate line. The i-th line should contain the most complex

integer in range from 1 to ni and its complexity, separated with space.

Sample

input output
5

1

10

100

1000

10000

1 1

6 4

60 12

840 32

7560 64

Solution:

Statistically speaking, this problem was the easiest one in the qualification rounds (it was solved 54 times).

This number theory problem is a very nice example for everyone who wants to try competing in

programming. One of the reasons for this is that it can be solved in many ways. We are going to present

three of them in brief here.

Firstly, let’s try to formalize the problem a little bit. We have to find the minimal number from the segment

 that has the maximal complexity – the number of its divisors. The Fundamental Theorem of

Arithmetic tells us that we can write any integer (greater than) as a unique product (up to the ordering of

the factors) of the prime numbers. The number can be represented as

where are different prime numbers and are nonnegative integer numbers. The nice thing

about this representation is that the number divides if and only if in its

representation

 we have for all . Now, if we denote the complexity of the

number as we have that the following property holds:

because every prime from the factorization of can be included , ... times.

Qualifications

MDCS – Bubble Cup 2010

62

From this we can see that values of the prime divisors are not important for calculating the complexity –

only the exponents . We need the minimal number that has maximal complexity, so we can observe that

the prime factors of this number are going to be in order. If we skip a prime number, than we can

replace the biggest prime with the skipped one and get a smaller number with the same complexity. This is

very good, isn’t it? Also, from the same argument we conclude that the degrees of the primes are sorted in

non-decreasing order .

What is the largest prime that we have to consider? If we start to multiply all primes in order, the first time

we get a result larger than is after multiplying by . Therefore, only the first prime numbers can

appear in the factorization. We can similarly determine the maximal exponents for each prime factor. (Note

that there are better bounds than these!)

Prime numbers 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Maximal degree 59 37 25 21 17 16 14 14 13 12 12 11 11 11 10

Table of the first 15 prime number and corresponding maximal degrees

Now, we can solve the problem in many ways:

 Backtrack

We can backtrack through the set of all the numbers with the above characteristics. There are not

more than of them.

==

 Function: Solve

 Input: num – current generated number (passed by value)

 index – current prime number

 deg [] – current degrees (for num)

01 if index is bigger than 15 then

02 return;

03 if num is better than current solution

04 update current solution;

05 while (num <= n) and (deg [k] <= deg [k – 1])

06 solve (num, index + 1, deg);

07 multiply num with index-th prime number;

08 deg [k] = deg [k] + 1;

09 deg [k] = 0;

==

Pseudo code for backtracking function

 Pre-calculation

The number of different possible solutions is very small, so another idea is to pre-calculate all

possibilities — we don’t need to pay attention to how quick the algorithm is — and store them in arrays.

After that we only need to traverse these arrays and fetch the solution.

Qualifications

MDCS – Bubble Cup 2010

63

long num[] = {1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320,

221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880, 3603600, 4324320, 6486480, 7207200, 8648640, 10810800, 14414400, 17297280, 21621600,

32432400, 36756720, 43243200, 61261200, 73513440, 110270160, 122522400, 147026880, 183783600, 245044800, 294053760, 367567200, 551350800, 698377680, 735134400, 1102701600,

1396755360, 2095133040, 2205403200L, 2327925600L, 2793510720L, 3491888400L, 4655851200L, 5587021440L, 6983776800L, 10475665200L, 13967553600L, 20951330400L, 27935107200L,

41902660800L, 48886437600L, 64250746560L, 73329656400L, 80313433200L, 97772875200L, 128501493120L, 146659312800L, 160626866400L, 240940299600L, 293318625600L,

321253732800L, 481880599200L, 642507465600L, 963761198400L, 1124388064800L, 1606268664000L, 1686582097200L, 1927522396800L, 2248776129600L, 3212537328000L, 3373164194400L,

4497552259200L, 6746328388800L, 8995104518400L, 9316358251200L, 13492656777600L, 18632716502400L, 26985313555200L, 27949074753600L, 32607253879200L, 46581791256000L,

48910880818800L, 55898149507200L, 65214507758400L, 93163582512000L, 97821761637600L, 130429015516800L, 195643523275200L, 260858031033600L, 288807105787200L,

391287046550400L, 577614211574400L, 782574093100800L, 866421317361600L, 1010824870255200L, 1444035528936000L, 1516237305382800L, 1732842634723200L, 2021649740510400L,

2888071057872000L, 3032474610765600L, 4043299481020800L, 6064949221531200L, 8086598962041600L, 10108248702552000L, 12129898443062400L, 18194847664593600L,

20216497405104000L, 24259796886124800L, 30324746107656000L, 36389695329187200L, 48519593772249600L, 60649492215312000L, 72779390658374400L, 74801040398884800L,

106858629141264000L, 112201560598327200L, 149602080797769600L, 224403121196654400L, 299204161595539200L, 374005201994424000L, 448806242393308800L, 673209363589963200L,

748010403988848000L, 897612484786617600L, 1000000000000000001L};

long com[] = {1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 64, 72, 80, 84, 90, 96, 100, 108, 120, 128, 144, 160, 168, 180, 192, 200, 216, 224, 240, 256, 288, 320, 336, 360, 384,

400, 432, 448, 480, 504, 512, 576, 600, 640, 672, 720, 768, 800, 864, 896, 960, 1008, 1024, 1152, 1200, 1280, 1344, 1440, 1536, 1600, 1680, 1728, 1792, 1920, 2016, 2048, 2304, 2400, 2688, 2880,

3072, 3360, 3456, 3584, 3600, 3840, 4032, 4096, 4320, 4608, 4800, 5040, 5376, 5760, 6144, 6720, 6912, 7168, 7200, 7680, 8064, 8192, 8640, 9216, 10080, 10368, 10752, 11520, 12288, 12960,

13440, 13824, 14336, 14400, 15360, 16128, 16384, 17280, 18432, 20160, 20736, 21504, 23040, 24576, 25920, 26880, 27648, 28672, 28800, 30720, 32256, 32768, 34560, 36864, 40320, 41472,

43008, 46080, 48384, 49152, 51840, 53760, 55296, 57600, 61440, 62208, 64512, 65536, 69120, 73728, 80640, 82944, 86016, 92160, 96768, 98304, 103680, 0};

 Dynamic programming

We can define two lists as follows:

 list of all complexities for a number generated with the first prime numbers and

smaller than

 the list of the minimal numbers for corresponding complexities

For the starting values we can use { }and { }. Now, we can get

the values for other elements of these lists, going through already calculated elements. Of course, we have

to sort these lists so we can quickly find the given complexity.

Solution by:
Name: Andreja Ilić
School: The Faculty of Mathematics and Sciences, Niš
E-mail: ilic_andrejko@yahoo.com

Qualifications

MDCS – Bubble Cup 2010

64

Problem R2 01: Cockroach Race (ID: 1369)

Time Limit: 5.0 second

Memory Limit: 32 MB

At last, the spring came. Buds swell on the trees, the snow has almost thawn out. More and more often you
can hear birds' sonorous twittering from the outside. Less and less students you can see at the USU math-
mech department. Even the cockroaches, usual inhabitants of the hostels, show up very rarely.

What's the connection between these phenomena, you may ask. The answer is the Day of Mathematician
and Mechanician celebration, which will begin really soon. At the same time, the traditional cockroach race
will take place in the USU. That's what the students are occupied with now - they are training their pets.
Everyone wants his pet to become the prize-winner and to receive the proud name of "Magaz".

The race rules are somewhat unusual. Every round, some kind of sweets are placed in N points of the racing
area. Together with sweets, M cockroaches are released. N cockroaches that reach these little delights of
cockroaches' life, will make it to the next round. During the race all spectators have an unique opportunity
to place bets and to win a lot of money. But the totalizator organizers are puzzled, they cannot understand
how to calculate the probabilities of cockroaches' victories quickly and without mistakes. This is absolutely
required to make the maximum profit out of their enterprise. Math-mech is rather big department and
everyone here wants to participate.

You are to determine, for each of N pieces of sweet, which of the cockroaches is closest to that piece. This

will help to determine the race leaders.

Input

The first line of the input contains the number M (1 ≤ M ≤ 100000). M lines follow, containing 2 numbers

each — these are coordinates of the cockroaches at the present moment. (M + 2)nd line of the input

stream contains the number N (0 ≤ N ≤ 10000). N following lines contain coordinates of sweet pieces. All

coordinates are floating point numbers (−10000.0 ≤ x, y ≤ 10000.0). The distance between any two

cockroaches is not less than 10−3. Also the distance between any two sweets is not less than 10−3.

Output

For each piece of "Cockroach Sweets" you should output all cockroaches closest to that piece in ascending

order of their numbers separated by spaces.

Sample

input output
4

0 0

1 0

0 1

1 2

2

0 0

0 2

1

3 4

Qualifications

MDCS – Bubble Cup 2010

65

Solution:

This task is extremely difficult. Two most known approaches for spatial nearest neighbor search are

Voronoi diagram and k-d trees. Other popular data structures are not good choice since they’re optimized

for different things other than speed: R-trees are optimized for I/O operations and Quad-trees have

advantage over k-d trees only by being able to parallelize better. Picking any of these structures, which are

hard to implement on their own, will not fully solve the problem. In order to address all speed issues, a

number of various specific tricks and optimizations need to be done. A good reference is a book The design

and analysis of spatial data structures.

The k-d tree is binary tree, usually balanced, in which every node is one point. Every node divides spatial

region into two sub-spaces by line parallel to either or axis alternatively. Root for the tree is picked as

median point when all points are sorted by axis, and division line is parallel to axis. Both of distinct

regions are then recursively divided: roots for the sub-trees are medians when points are sorted by axis,

and both sub-spaces are further divided by lines parallel to axis.

A

B

C
D

E

F

G

A

B

ED

C

GF

Figure 1. Example of k-d tree

Once the k-d tree is constructed from points representing positions of bugs, we need to search for nearest

neighbor for each of points representing positions of sweets. Search of k-d tree is done in following way:

- Starting from the root node, move down recursively to find the region where the point would

belong if it were element of the tree. The last node visited determines the current best.

- Moving upwards from the leaf node to the root node, check whether there’s a need to check points

in other sub-regions (on the other side of the splitting line).

o If the circle with the center with query point and radius of the current best intersects

current splitting line, there’s a possibility that some points in the neighboring sub-region

(corresponding to the sibling node) can have nearest neighbor candidates. Those regions

should be processed in the same manner recursively.

o If the circle does not intersect current splitting line, the entire branch corresponding to the

sibling node is discarded.

Qualifications

MDCS – Bubble Cup 2010

66

At each point, current best is maintained. When root of the tree is reached, current best is final nearest

neighbor.

Construction of k-d tree construction can be done in time. Queries could be done in

 time on average and in worst case.

Solution by:
Name: Milan Novaković
School: The Faculty of Electrical Engineering, Belgrade
E-mail: milan.novakovic@microsoft.com

Qualifications

MDCS – Bubble Cup 2010

67

Problem R2 02: Light (ID: 1464)

Time Limit: 3.0 second

Memory Limit: 32 MB

Santa Claus Petrovich moved to a new hut. It consists of only one room. Its floor has the form of a simple

polygon (not necessarily convex) with N vertices. It was dark in the hut at first, but then Petrovich hung a

lamp at the point with projection (X0, Y0). Which area of the room is illuminated by the lamp?

Input

The first line contains the coordinates of the lamp (X0, Y0). You may regard the lamp as a material point. The

second line contains the integer 3 ≤ N ≤ 50000. In the next N lines there are coordinates (Xi, Yi) of vertices of

the N-gon. The vertices are given in the counter-clockwise order. All the coordinates are given as pairs of

real numbers separated with a space, 0 ≤ Xi,Yi ≤ 1000. The coordinates contain not more than four

fractional digits. It is guaranteed that the lamp is strictly inside the room.

Output

Output the area S of the illuminated part of the room. The area must be given with accuracy of at least two

fractional digits.

Sample

input output
1.0 1.0

6

0 0

3 0

3 2

2 2

2 3

0 3

8.00

Solution:

In problems like this, it could be very useful to find a way to break down the calculation on a single complex

object into calculations on multiple simpler objects. For this problem, this means finding a way to calculate

the lighted area.

Let us try to calculate the lighted area within the given angle in the point . There are a few major

reasons why we should do that:

(a) the way the light lights in the circle around is just a special case of an angle,

(b) any circle can be divided into a finite number of non-overlapping angles,

(c) if the light within given angle lights only one edge, then calculating lighted area is quite simple -

it is just a triangle.

Comparing (a) and (c), it is obvious that such calculation in some cases can be complicated, but in other

cases it is very straightforward. As mentioned at the beginning we will try to separate the part (a) into (c)-s

Qualifications

MDCS – Bubble Cup 2010

68

in the following way:

Suppose we have divided the circle in some way (doing (b)) so far. Take any angle, and consider the

following two possibilities:

(1) the light within the angle lights only one edge (Figure 1),

(2) the light within the angle lights at least two edges (Figure 2).

Figure 1. The light within the angle lights only one edge

Figure 2. The light within the angle lights at least two edges

We have already mentioned that (1) is a simple case, so let us play with (2). If the light within the angle

lights at least two edges and , then there exists a point over which light passes from before

switching to . We separate the angle by line and replace the current angle with two just

obtained (smaller) angles and continue the procedure. Such a point P we will call "switching point". This

procedure raises two very important questions: how can we find a switching point, and is the described

procedure finite?

Instead of asking "how we can find", let us ask "when we are sure" there is no switching point in the given

angle. A switching point can occur as an intersection of two edges or as a vertex of an edge. The first is

impossible by conditions of the problem statement, so a switching point can only be a vertex. Considering

the fact that whenever a switching point occurs it has to be a vertex of an edge, we immediately give the

answer to the second question - the described procedure is finite, because we have at most vertices.

Now we can come up with an easy procedure for choosing the angle which does not contain any point

within it, except maybe at the lines of the angle. The following pseudo-code describes this procedure:

==

01 for each vertex V

02 let angle(V) be angle between line V-(X0, Y0) and x-axis

03 let A be array of sorted vertices in ascending order by their angle(V) value

04 make A to be a circular array

05 for each two (V1, V2) adjacent vertices in A

06 angle V1-(X0, Y0)-V2 is angle which does not contain switching point
==

Note that in this way we got angles described by case(b), and each of those angles is of type (1). Calculating

lighted area within any angle of type (1) can be done in the following way:

Qualifications

MDCS – Bubble Cup 2010

69

==

01 doublelightedArea(vertex V1, vertex V2)

02 Xs = (V1.x + V2.x) / 2

03 Ys = (V1.y + V2.y) / 2

04 let A be array of edges. A contains an edge e only iff interior of

angle V1-(X0, Y0)-V2 contains at least one point of e

05 for each edge e in A

06 let dist(e) be a distance from (X0, Y0) and intersection point between e and line

(Xs, Ys)-(X0, Y0)

07 sort A in ascending order according by dist(e) value

08 let minE be the first edge of A

09 let (XV1, YV1) be the intersection point between minE

and line (V1.x, V1.y)-(X0, Y0)

10 let (XV2, YV2) be the intersection point between minE

and line (V2.x, V2.y)-(X0, Y0)

11 return areOfTriangle(X0, Y0, XV1, YV1)
==

Note that if there exists at least one point of an edge e in the interior of an angle, like mentioned on the

line 4, then the interior of the angle does not contain vertex of e. On the contrary, the angle will contain a

switch point and it would not be of type (1). Also, note that once we have chosen minimal edge on the line

8, we have chosen the only edge lighted within the angle. By contrast, if we suppose there exists another

edge , different than , lighted within the same angle it would mean and intersect, which is

impossible.

Let us summarize what we have concluded so far - for each angle, and there are exactly of them, we can

in steps decide lighted area within it. We need steps per one angle because of

sorting method on the line 07. So, using described methods we obtained an algorithm with time complexity

 . Well, taking into account time limit, such algorithm is slow.

Now we will go a few steps back and consider again the point of what is the main difference between

asking "how we can find" and "when we are sure" there is no switching point in the given angle. Let us take

a look and see in which way these questions affect simple test case. In the Figure 3 is shown what algorithm

should detect if we ask the first question, and in the Figure 4 what the algorithm is supposed to find if we

have asked the second question. Although we have less area calculations once we give answer to the first

question, it shows that asking the latter question is more efficient. We simplified the question, in some

cases got a few more area calculations, but got a lot easier method for deciding whether there is or not a

switch point.

Figure 3. What should algorithm detect if we ask the first question

Figure 4. What algorithm is supposed to find if we have asked the

second question

Let us move on and conclude how we can make a more efficient algorithm. We are going to analyze lines 04

and 07, and what we have said about them. Obviously, no matter which angle and which type of it we have

chosen, and no matter which two edges and we have chosen, as long as nor make a switch point

Qualifications

MDCS – Bubble Cup 2010

70

within the angle, once is greater (line 07) than it will always be greater than . This is a very

important observation. To explain it, we will choose three consecutive vertices , and , and consider

two edges and which both have at least one point in interior of the angles and

 . A call of the function lightedArea(,) will compare edge against , and call

lightedArea(,) will also compare against . The latter one is unnecessary; we already know what is

greater from the previous step. This is the key of the optimization. Instead of sorting edges over and over,

we should update structure of sorted edges. Note that the suitable structure we need does not have to

answer what is i-th ordered element; we need only minimal/maximal element (the line 08). The structure

should be dynamic because we will possibly add new edges to it, when parameter is equal to the starting

vertex of the edge, or remove some edges from it, when parameter is equal to the end vertex of some

edge. The structure that fulfills those requests is a heap.

By using the heap, lines 05, 06 and 07 are replaced by maintaining edges that should be removed or added

as described -- according to their end/start points and the parameters and . During sweep through all

angles each edge will be added and removed exactly once. Adding to the heap or removing an element

from the heap is done in . The size of the heap is at most , so for sure we do not

need more then operations for adding or removing. Operation on the line 08 is executed in .

Just to remind ourselves, we sweep over angles and sort vertices. Overall time complexity of this

approach is . Finally, we designed an efficient algorithm that runs in time.

In the end, take a look at an example - how we make the angles and light them.

Figure 5. Example of cutting a polygon into angles.

Solution by:
Name: Slobodan Mitrović
School: The Faculty of Mathematics and Sciences, Novi Sad
E-mail: boba5555@gmail.com

Qualifications

MDCS – Bubble Cup 2010

71

Problem R2 03: Fat Hobbits (ID: 1533)

Time Limit: 1.0 second

Memory Limit: 64 MB

None of the hobbits can fight Mordor's army on his own. Gandalf have chosen N hobbits from Shire to form

a platoon that will go on a new campaign against Mordor. But some of the hobbits refuse to go because

they are afraid that other hobbits in the platoon will call them fat. More exactly, each hobbit refuses to go

on the campaign if there will be at least one hobbit with smaller weight in the platoon. Fortunately, hobbits

don't know their exact weights. They can only compare their weights using a pan balance, and there is only

one pan balance in Shire. Some pairs of hobbits used it to determine which of them was heavier. All hobbits

know the results of all weighings. Gandalf is sure that there are no two hobbits with the same weight. Help

Gandalf to choose from the N hobbits as many hobbits as possible provided that they will agree to go on

the campaign together. Remember that hobbits are clever creatures and know that if, for example, Sam is

heavier than Pippin and Pippin is heavier than Frodo, then Sam is heavier than Frodo.

Input

The first line contains the number N of hobbits which were primarily chosen by Gandalf (2 ≤ N ≤ 100). The

hobbits are numbered from 1 to N. In the next N lines there is a matrix N × N, which shows the results of

weighings. If hobbits with numbers i and j weighed themselves against each other and it turned out that

hobbit i was heavier, then there is 1 at the intersection of row i and column j. All other elements are zeros.

Output

In the first line output the maximal number of hobbits in the platoon. In the second line, give their

numbers.

Sample

input output
2

0 1

0 0

1

2

3

0 0 0

0 0 0

0 0 0

3

1 2 3

Solution:

To solve this problem, we can use some ideas from the graph theory. We can represent hobbits as nodes

with an edge from node to node if and only if hobbit knows he is heavier than hobbit . We are

asked to find the maximum independent set (MIS) in such a graph. This is an NP-hard problem in general,

but this graph has a special structure:

1) There are no cycles (antisymmetry)

2) If there is an edge from node to node and from node to node then there is an edge from

node to node (transitivity)

Qualifications

MDCS – Bubble Cup 2010

72

This graph, therefore, corresponds to a partial order relation.

Dilworth’s theorem states that cardinality of the maximum antichain in a partially ordered set is equal to

the minimum number of chains.

In this case, the maximum antichain is the maximum clique in the complemented graph, which is equal to

maximum independent set in the original graph, and the minimum number of chains is the minimum

number of paths that cover the entire graph.

In order to find these paths, we can build a bipartite graph with hobbits on both the left and the right side.

There is an edge between node (a node on the left side) and node (a node on the right side) if and only

if hobbit knows he is heavier than hobbit . This graph contains duplicate nodes from the original graph

on both sides and edges are directed according to the partial order relation defined among hobbits. Max-

flow min-cut theorem states that the set of edges with flow is equal to matching because this is a bipartite

graph.

Once we have the appropriate matching, we need to find the nodes that are in MIS, which can be done by

using Konig’s theorem.

This procedure can be implemented in with 50-60 lines of code, but there is a faster algorithm which

runs in √ where is the number of nodes and is the number of edges in the graph.

Outline of the complexity algorithm:

1) Find transitive closure using the Floyd-Warshall algorithm in

2) Duplicate nodes and create bipartite graph

3) Find matching in

4) Find MIS

Outline of the √ complexity algorithm:

1) Find transitive closure in – hint: this graph is acyclic

2) Duplicate nodes and create bipartite graph

3) Find matching using Hopcroft-Karp in √

4) Find MIS

Solution by:
Name: Boris Grubić
School: “Jovan Jovanovid Zmaj” Grammar School

 E-mail: borisgrubic@gmail.com

Qualifications

MDCS – Bubble Cup 2010

73

Problem R2 04: Aztec Treasure (ID: 1594)

Time Limit: 1.0 second

Memory Limit: 64 MB

During the recent excavations in Teotihuacan archeologists found a strange casket, the contents of which

was probably used during the legendary corbans held by Montezuma, and a lot of equal rectangular bone

pieces of size 1 × 2.

Archeologists found out that in order to open the casket you should tile the rectangular covering of this

casket with bone pieces in a specific way. Pieces cannot overlap and intersect the border of the covering.

Archeologists are afraid to break the casket, so they just want to try all possible ways of tiling. Your task is

to calculate the number of such ways.

Input

The only line of the input contains two space-separated integers l and w, the length and the width of the

casket's covering (1 ≤ l, w ≤ 100).

Output

Output the number of ways of tiling modulo 109 + 7.

Sample

input output
3 4 11

Solution:

The problem is to calculate the number of ways to cover a rectangular board of dimensions with

domino tiles of size . The solution is more complex than the mere description of the problem

suggests! Temperley & Fisher (1961) and Kasteleyn (1961) independently came to the closed form of the

problem solution (1).

∏∏(

)

(1)

However, computing the solution using the previous formula requires the work with high-precision floating-

point numbers, and circumvents the intuitive combinatorial approach. The following description of the

solution is not based on a direct evaluation of the previous formula, but on graph theory and matrix

algebra.

Qualifications

MDCS – Bubble Cup 2010

74

Representation of the board with planar graph and perfect matching

Figure 1. Representation of the board with the planar graph and perfect matching

If the board is turned into a graph (Figure 1.) by replacing the squares with vertices and putting an edge

between adjacent squares, the required number of possible tilings is the number of perfect matchings in

the resulting graph. Particularly, putting dominoes on the board corresponds to selecting edges from the

graph such that no two edges share a vertex (i.e. domino tiles do not overlap). A matching in the graph is a

set of pairwise non-adjacent edges. Matching is said to be perfect if every vertex of the graph is included in

it. Of course, the graph can only have a perfect matching if the number of vertices is even. It follows that

the product of the board dimensions must be even, that is, the dimensions should not both be odd

(otherwise there is no complete covering).

Although there is a polynomial algorithm to determine the perfect matching of an arbitrary graph, counting

the number of perfect matchings in a general graph has been shown to be #P-complete (much harder than

NP-complete). Nevertheless, for certain special cases, among which are the planar graphs, there are

efficient algorithms. A graph is said to be planar if it can be placed in the 2D plane in such a way that its

edges do not intersect.

Counting perfect matchings in the planar graphs

(Those less keen on mathematics can skip the following paragraph)

Let be a graph on vertices, where is even. The following definitions are introduced:

 – the adjacency matrix of G ().

 - set of all partitions of elements into pairs without regard to the order. Each element of

 can be thought of as a permutation of the integers between and (where edges are

represented by consecutive pairs of two numbers), and gives a potential perfect matching of .

 ∑ ∏ - the number of perfect matchings. As each element of the set

 is a permutation, each vertex appears exactly once, which is a necessary condition for a

perfect matching. However, in order for the condition to be sufficient, it is necessary that graph

contains each edge comprised in the particular element . If any edge does not exist, associated

 element will be zero and the entire product will be zero which will not affect the sum. If all

edges exist, the product will be 1 and the sum will be increased accordingly. Since the set

contains all the necessary permutations (permutations regardless to order of the elements within

pairs), all the perfect matchings will be counted.

 ∑ ∏ - the Pfaffian of a matrix where is the sign

of as a permutation of elements (depending on the parity of number of equivalent

transpositions). If the signs of adjacency matrix are adapted forming new matrix so that

Qualifications

MDCS – Bubble Cup 2010

75

 ∏
 holds, is said to be a Pfaffian orientation of G, and

 holds.

 According to the theorem (Kasteleyn, 1963), every planar graph has a Pfaffian orientation that

can be found in polynomial time. Let be a planar graph. Then can be oriented efficiently so

that each face has an odd number of lines oriented clockwise, and this is a Pfaffian orientation of

 .

 According to the theorem (Muir, 1882), for skew-symmetric matrices () the formula

 holds.

In the previous paragraph it was shown that the number of perfect matchings can be computed as the

square root of the determinant if the graph can be represented by a corresponding skew-symmetric

adjacency matrix in a Pfaffian orientation. Skew-symmetry is achieved by a systematic orientation of edges

so that for edge element and . The lattice graph can be trivially oriented into a

Pfaffian orientation as shown in figure 2.

Figure 2. Pfaffian orientation of a lattice graph

Problems with direct implementation

It is easy to see that the direct implementation of the previous results is not efficient enough. Specifically,

the resulting graph has vertices, and computing the determinant of a generic matrix is which

gives the overall complexity of . Furthermore, the problem arises in extracting the square root of

the determinant, because of the inability to determine the root sign, which apparently prevents the use of

the modulo arithmetic. For example: , √ ,

√ . Knowing the , without whole results (and), it

is not possible to determine which is the correct positive root (or) since both and

 . The inability to use the modulo arithmetic requires to use big numbers, which makes

procedure more computationally complex.

Reducing the complexity by studying the structural properties of the adjacency matrix

By studying the structural properties of the adjacency matrix (Figure 3.) several things can be noticed. One

of the most important properties is that it is a tridiagonal block matrix consisting of submatrices of

size . In further calculations, all the elements are previously mentioned submatrices of size ,

and the corresponding complexity of the operations over them is . Furthermore, as will be shown

later, it is advisable to swap and if necessary, so that is smaller! The determinant of the tridiagonal

matrix can be calculated in where is the dimension of the matrix, which gives the overall complexity

of . The determinant is calculated by reducing the matrix to a triangular one and multiplying the

Qualifications

MDCS – Bubble Cup 2010

76

diagonal elements (Figure 4.).

Figure 3. Skew-symmetric adjacency matrix for board

[

]

Structure of submatrix

Figure 4. Tridiagonal matrix

The diagonal elements of the triangular matrix are calculated recursively by the relations (2) and (3). It is

clear that the elements on the three diagonals are equal (), and for further

structural properties the expression
 can be replaced with

 , which produces the relation

(4).

 (2)

 (3)

 (4)

The final determinant is equal to the determinant of the element which is determined by the relations

(5) and (6). Further rearranging gives the relation (7).

 (5)
 (6)
 (7)

The recursive relation (7) can be efficiently solved by a matrix exponentiation (8), (9) and (10). Complexity

of this approach is .

 *

+ (8)

[

] [

]

(9)

[

] *

+

(10)

1

-1 1

1-1

-1

-1

-1

1

1

1

-1

1

-1

1

-1 1

1-1

-1

-1

-1

1

1

1

-1

1

-1

1

-1 1

1-1

-1

-1

-1

1

1

1

-1

1

-1

1

-1 1

1-1

-1

-1

-1

1

1

1

-1

1

-1

1

-1 1

1-1

-1

A1

C2

B2

A2

C3

B3

A3

C4

B4

A4

C5

B5

A5

D1 B2

D2 B3

D3 B4

D4 B5

D5

Qualifications

MDCS – Bubble Cup 2010

77

By further exploiting the structural properties, the complexity can be additionally improved by a constant

factor. The matrix consists of 4 submatrices (Figure 5. and 6.) which are (anti)symmetrical about the

major and minor diagonal. Furthermore, half the elements of the submatrices are zero, and two

submatrices are equal (up to sign). Knowing the properties, it is sufficient to calculate asymptotically less

than a tenth of the elements (

), which is equivalent to tenfold speedup!

Figure 5. Matrix for

Figure 6. Matrix for even

Note: These structural properties are valid only for even powers of , but this is easy to overcome by

powering the square of the matrix , and finally, if necessary make one additional matrix multiplication

(, where). All these structural properties and preservation of them

can be proved by mathematical induction.

Extracting the square root of determinant in modulo arithmetic

Although there are algorithms for extracting the square root in modulo arithmetic (Cipolla, Pocklington,

Tonelli–Shanks), in this case they can be avoided due to the structural properties of diagonal elements. By

an intuitive inspection the following can be observed: When calculating the determinant of the element ,

if, instead of all, only every second diagonal element is taken into product, the result obtained is exactly the

square root of the determinant!

For example, by performing Gaussian eliminations on the matrix in figure 5, the following diagonal

elements are obtained: { } . Product of every second

element is: or which is precisely the square root of

the determinant. For and the diagonal elements are

{ } . Product of

every second element is:

 .

It still remains to determine the sign of the root. As in the previous step, by observation it can be concluded

that the sign depends on the remainder of division of and by 4. The exact expression is given in the

source code.

89

-132

221

221

89-132

-132

-132

22

-29

51

51

22-29

-29

-29

-36

67

-67

-103

-6736

67

103

36

-67

67

103

67-36

-67

-103

A

-B

B

C

Qualifications

MDCS – Bubble Cup 2010

78

Curiosities

Figure 7. Aztec diamond of order 4, and the augmented Aztec diamond

The number of tilings of a region is very sensitive to boundary conditions, and can change dramatically with

apparently insignificant changes in the shape of the region. This is illustrated by the number of tilings of an

Aztec diamond of order , where the number of tilings is . If this is replaced by the "augmented

Aztec diamond" of order with 3 long rows in the middle rather than 2, the number of tilings drops to the

much smaller number , a Delannoy number, which has only exponential rather than super-

exponential growth in . For the "reduced Aztec diamond" of order with only one long middle row, there

is only one tiling. Asymptotically, an board has about tilings.

Solution by:
Name: Ognjen Dragoljević
School: The Faculty of Electrical Engineering and Computing, University of Zagreb
E-mail: ognjen.dragoljevic@gmail.com

Qualifications

MDCS – Bubble Cup 2010

79

Problem R2 05: Abstractionism to the People (ID: 1649)

Time Limit: 1.0 second

Memory Limit: 64 MB

I will never paint again,” Dunno answered. “I paint and paint,
and nobody is ever thankful. Everybody keeps scolding me.”

The great abstractionist artist Herman Brooks invented a new style in painting—bactorgaphy. Of course,
you want to know what kind of a style it is. That's simple: every painting is live, quite literally. Herman
paints with bacteria.

Such a painting is a real work of art. It's a sight worth seeing—the fascinating canvas plays with two or
three hundred different shades. But how could this wonder be shown to the people? Photography or video
just can't convey the entire range of colors, and Herman still doesn't have a museum (modern art
custodians don't like innovative ideas, and there's no point arguing with them). In addition, the painting can
be seen in detail only under a microscope. Finally, it was decided to make several thousand copies of the
best paintings and sell them as souvenirs. However, there is a problem. Herman, as a real creator, doesn't
want to make copies himself, and the hired bioengineers unanimously claim that a copy can only be made if
the exact sequence of populating the canvas with bacteria is known. Your task is to restore this sequence.

To help you fulfill the task, the bioengineers provided you with the following information.

 A finished painting is a rectangular canvas divided into equal square cells with bacteria.
 Before the process of painting is started, the canvas is thoroughly disinfected. All its cells are empty

and contain no bacteria.
 In each cell of the canvas there can be at most four bacteria.
 The painting process consists in settling successively one bacterium into a free cell of the canvas.

When the bioengineers do this, the numbers of bacteria in the adjacent (top, bottom, left, and
right) populated cells increase by one. If the number of bacteria in a certain cell becomes 5, then 4
of them die because of overcrowding.

 It is impossible to settle a bacterium into a cell that is already populated, because it leads to an
unpredictable reaction that can damage the whole painting.

Input

The first line contains the dimensions of the canvas n and m (1 ≤ n, m ≤ 20). The description of the painting

follows in the form of the table with n lines containing m integers each. In every cell of this table the

number of bacteria in the corresponding cell of the painting is written. These numbers range from 1 to 4.

Output

If it is impossible to obtain the described painting by means of the procedure available to the bioengineers,

output “No”. If you managed to find a sequence that makes it possible to create a copy of Herman's

masterpiece, output “Yes” in the first line, and in the following lines give this sequence. Each of these lines

must contain two integers, which are the number of line and number of column of the next cell to be

populated.

Qualifications

MDCS – Bubble Cup 2010

80

Sample

input output
3 3

2 2 1

3 1 3

1 2 2

Yes

2 2

2 1

1 1

1 2

2 3

1 3

3 3

3 2

3 1

Solution:

Denote the original matrix with . The values of the fields of matrix are in the range

 , but they can also take the value at some points.

Let denote the number of neighbors of the field (two for corners, three for

edges and four for all other fields). Next, let’s create a new matrix of the size and call it . At

any moment, represents the number of neighbors of the field not equal to zero at that

time (we will call them current neighbors).

An easy thing to notice is that the value of the element in the matrix that was filled last has to be 1. This

leads us to the idea to try finding a field where and . If

 , we can safely conclude that this was obtained by filling the field after filling

all its neighbors. Then we can set to and decrease the values of all its neighbors by one (if some of

these values were , they become) and update all corresponding fields in the matrix . However, if

 , there is another possibility - could have been filled before its neighbors,

increasing four times to go back to 1. How do we get around this?

Unfortunately, in the general case, we can’t conclude locally (using just data from an area around this field)

which of these two options is the correct one. So backtrack is a good way to go. We can try one possibility,

and if we get stuck, then try the other one.

We have already described what we have to do if was obtained by filling that field after filling its

neighbors. For the second option, we set to and update all neighboring fields in , but we

don’t decrease the values in its neighboring fields. Note that both options represent simulating a step of

the matrix-filling process, but the first choice represents a “backward” step in time, while the second one is

a step in the same direction in which the matrix was originally filled. We can keep all “forward” (first) steps

and “backward” (last) steps we have made in separate lists, and use these lists to reconstruct the filling

order in the end.

This is a valid solution, but it can be too slow for this problem. So we can notice some other properties of

the matrix: if there are positions for which , the field is filled before

all its current neighbors and we can make a forward step by filling . Further, if

Qualifications

MDCS – Bubble Cup 2010

81

 and , the field was filled after all its current neighbors and we can make

a backwards step by filling it. This considerably reduces the number of choices we will have to make.

If during the execution of the algorithm the matrix becomes a zero matrix, we have reached our goal, we

output “Yes“ and the filling sequence. On the other hand, if we are in a situation where we cannot make

further progress by applying any of the described operations, the output is .

The time complexity of the algorithm is exponential. The memory complexity is .

Solution by:
Name: Mladen Radojevic
School: The Faculty of Electrical Engineering, University of Belgrade
E-mail: mladen0211@yahoo.com

Qualifications

MDCS – Bubble Cup 2010

82

Problem R2 06: The Hobbit or There and Back Again 2 (ID: 1663)

Time Limit: 0.5 second

Memory Limit: 64 MB

Old Bilbo collects songs and sagas of all races of Middle-earth. Every twenty years he leaves Rivendell for a

year to travel through N cities of the Middle-earth, numbered from 1 to N (Rivendell has number 1), and

comes back at the end of the journey. Nineteen years have passed since Bilbo's last journey, so he started

to prepare for travelling. From his last journey Bilbo remembers that there is a warder at the entrance to

each city. He asks the travelers what city they came from and requires an entrance fare depending on that.

Time passed, and the entrance fee has changed since the last journey. From the King of Elves Elrond Bilbo

has learnt that, if a traveler arrives to a city with number A from a city with number B, the warder will

require exactly PA·[1000/PB] gold coins, where Pi is the population of city with number i and [X] denotes the

floor of X. Officials think that it will stimulate the population outflow from the bigger cities to the smaller

ones. Bilbo knows a population of all cities of Middle-earth and supposes that it will not change during the

year of his journey. As usual, before the journey he would like to know the order of visiting the cities which

will minimize the total amount of money paid.

Input

The first line contains an integer N. 2 ≤ N ≤ 1000. The second line contains N integers P1, …, PN, delimited

with spaces — the populations of the cities of Middle-earth. All Pi lie in range from 1 to 1000.

Output

Output N integers — order of visiting N cities which minimizes the total entrance fee. Remember that Bilbo

starts his travel from the city with number 1, visits each city exactly once and returns to the city with

number 1 only in the end. If there are several solutions, you may output any one of them.

Sample

input output
4

10 3 5 4

1 4 2 3

Solution:

The problem of finding an optimal route that goes through every city exactly once and returns to the

starting city is known as The Traveling Salesman Problem (TSP). It is known that TSP is an NP-complete

problem, which means that it is unlikely to have a solution of polynomial time complexity. However, if we

know some details about the input, we could use them to design an efficient (polynomial) solution. So,

what do we know about the input graph? We know it is a complete graph with vertices (cities), and we

know that the edge weights have an additional property – they are calculated from weights of endpoint

vertices (weight of city is .

Qualifications

MDCS – Bubble Cup 2010

83

Figure 1. Traveling Salesman Problem comics

Taken from xkcd.com – A web comic of Romance, Sarcasm, Math, and Language

Since the route we are looking for is a cycle, we can choose any city to be the starting one. Let it be the city

with the smallest weight (let’s call it city , and the one with the highest weight city). We can separate

this cycle into two vertex disjoint paths (except for starting and ending vertex) – path from to , and path

from to . Let’s take a closer look at the path from to , . The cost

of this path is ∑ ⌊

⌋

 . The crucial observation here is that the optimal path that goes from to ,

through the cities , is the one in which cities are visited in increasing order according to their

weights. We will now give a sketch of the proof.

Let be the order of the cities according to their weights. We would like to show

that among all the permutations of { }, the one for which the sum ∑ ⌊

⌋

 is smallest

is the permutation . Without loss of generality, let’s suppose that in the optimal permutation

(the one for which the summation achieves the minimum), . Since is a permutation, there

must exist some such that . If we swap these two values, and , new

summation will obviously be at least as small as summation . By repeating this swapping for every such

that , we eventually get the desired permutation as the optimal one. Note that during this

process we might encounter some permutations for which the summation does not correspond to any

ordering of the cities or corresponds to ordering of the cities which does not end in city . This is, however,

not the problem because we have actually proved a stronger statement than needed.

It is straightforward now to translate this observation into a dynamic programming solution. We will add

one city at a time, in the order of increasing weights, and keep track of the last city added to both paths

(this is the only information we need, because of the proven observation). This way we will also keep these

two paths vertex-disjoint, and every city will be added exactly once. Since there are at most possible

states, and every state needs constant computing time, the time complexity is .

Solution by:
Name: Rajko Nenadov
School: The Faculty of Mathematics and Sciences, Novi Sad
E-mail: rajkon@gmail.com

Qualifications

MDCS – Bubble Cup 2010

84

Problem R2 07: Asterisk (ID: 1670)

Time Limit: 0.5 second

Memory Limit: 64 MB

Recently Cuckooland mathematicians have invented a new binary operation “asterisk”, which uses
sequences as its arguments. Operation just appends the first sequence to the second. For example (2, 4) *
(1, 3) = (1, 3, 2, 4). “Asterisk” operations in one expression are performed in order from the leftmost to the
rightmost, but this order can be changed with brackets (operations in brackets are performed earlier). E. g.
(3) * ((1, 5) * (2, 7)) = (2, 7, 1, 5, 3). Notice that if a sequence element is represented by an expression, then
this expression is calculated first and then all nested brackets in this sequence are removed. For example,
(1, ((2) * (3)), 4) = (1, (3, 2), 4) = (1, 3, 2, 4).

Now cuckoolanders want to use this operation for generating permutations. More precisely, they want to
obtain a given permutation from permutation (1, 2, …, N) by adding brackets, commas and asterisks and
evaluating the resulting expression.

The formal definition of expression follows.

<expression> ::= <sequence>[*<sequence>…]

<sequence> ::= (<sequence element>[,<sequence element>…])

<sequence element> ::= <number> | <expression>

<number> ::= 1|2|…|N

Input

The first line contains an integer N (1 ≤ N ≤ 10000). The second line contains a permutation of numbers

from 1 to N. These numbers are separated by spaces.

Output

Output a single line — correct expression, the result of which is the given permutation. Numbers from 1 to

N should appear in ascending order. The length of the expression should not exceed 100000 symbols. In

case there is no such expression output “IMPOSSIBLE”. Note that expression must not contain spaces and

all sequences must be enclosed in brackets.

Sample

input output
4

3 4 2 1

(1)*(2)*(3,4)

6

5 1 2 6 4 3

IMPOSSIBLE

Solution:

This task can be viewed as a dynamic programming problem. Before discussing the algorithm, one can

make a few useful observations. First of all, applying asterisk operation changes the order of the

arguments. Let us assume that we have a correct expression. The order of applying asterisk operations can

be changed using brackets, but one can always find the first asterisk that should be applied except when

there exists none. In other words, correct expression has one of the following two forms:

Qualifications

MDCS – Bubble Cup 2010

85

a)

b)

The first form is trivial and essentially nothing needs to be done, but the second form requires some

analysis. After applying the asterisk operation, arguments and are going to change order, so the second

part of the final permutation has to match part , and the first part with part . The key observation is that

both of these parts are segments of natural numbers. The same principle can be applied to both of these

parts recursively. Similarly, one can analyze behavior when applying the comma separator. In this case, part

 matches the first part of the permutation, and part the second one.

Figure 1. Matching parts after asterisk operation

One can define to be if can be transformed into ,

where is the given permutation, and otherwise. This is a large matrix to initialize, but another key

observation is that it can be computed using greedy approach. In other words, if is then

there is a split of segment with asterisk operation in any two parts that are valid. Parts are valid if

corresponding parts (permutation – segments) represent the same elements (up to the ordering). As can be

seen in Figure 1, one only has to check if is a permutation of numbers in segment

 . Since the elements are different, this is reduced to checking that minimum is equal to

 and maximum to . Similar principle can be applied in the case where comma separator is

applied, but parts do not change places.

Because of the greedy approach, there is no need to compute or store the whole matrix . Instead,

recursion can be used with break condition a . First, it should be checked whether segment can

be split in parts like in Figure 1. If not, it should be checked whether comma separator can be applied. If any

of these attempts is successful, the same principle needs to be applied recursively to the two parts. If

neither can be applied, then there is no correct expression for the given permutation.

==

 Function: Solve (simulates d [i][j][a][b])

 Input: i, j – segment from permutation p [i],… ,p [j]

 a, b – segment [a,b] that has to match to p [i],… ,p [j]

02 if (i == j)

03 return true;

// Asterisk operator

03 minP = maxP = p [i];

04 for k = 1 to j – I do

05 update minP and maxP with p [k];

06 if (minP = b – k + 1) and (maxP = b)

07 if (solve (i + k, j, a, b – k) && solve (i, i + k – 1, b – k + 1, b))

08 return true;

Qualifications

MDCS – Bubble Cup 2010

86

09 else

10 return false;

 // Comma operator

11 minP = maxP = p [i];

12 for k = 1 to j – I do

13 update minP and maxP with p [k];

14 if (minP = a) and (maxP = a + k - 1)

15 if (solve (i, i + k - 1, a, a + k - 1) && solve (i + 1, j, a + k, b))

16 return true;

17 else

18 return false;

19 return false;

===

The reconstruction of the correct expression can be made using the same principle. Once it is determined

that asterisk or comma can be applied (lines 08 and 16), it is pushed to stack. Another way is to have a

similar function like the one above, which will print the solution during construction (of course, one must

know that a solution exists).

Solution by:
Name: Andreja Ilić
School: The Faculty of Mathematics and Sciences, Niš
E-mail: ilic_andrejko@yahoo.com

Qualifications

MDCS – Bubble Cup 2010

87

Problem R2 08: Mortal Kombat (ID: 1676)

Time Limit: 1.0 second

Memory Limit: 64 MB

Once every generation, there is a tournament known as Mortal Kombat, which was designed by the Elder

Gods for the main purpose to save Earthrealm from the dark forces of Outworld. If the forces of Outworld

win the tournament ten consecutive times, the Emperor will be able to invade and conquer Earthrealm.

Thus far, Outworld has won nine straight victories, making the upcoming tournament the tenth, and

possibly final one, for the Earthrealm.

From Wikipedia, the free encyclopedia

There are N monsters and M best human fighters participating in the Mortal Kombat. According to the

tournament rules, each monster should fight one of the humans (different monsters should fight different

humans). If at least one monster wins, the Eathrealm will be conquered by the Emperor of the Outworld.

However, the humans can choose the competitors and the order of battles.

The thunder god Raiden, protector of the Earthrealm, should choose the fighters in such a way that all

Earth warriors will win their battles. For each monster and each Earth warrior it is known whether the Earth

warrior can win the monster. First of all, the fighters for the first battle should be chosen.

For example, suppose that Liu Kang wants to fight Goro, but he is the only warrior able to defeat Shang

Tsung, while Goro can be defeated by other warriors, such as Johnny Cage. So, even if Liu Kang will defeat

Goro in the first battle, it will inevitably lead to the conquest of the Earth, because later Shang Tsung will

defeat his opponent. This means that the pair Liu Kang vs. Goro should not be selected for the first fight.

Find out which pairs cannot be chosen by Raiden if he wants to save the freedom of humanity.

Input

The first line contains integers N and M (1 ≤ N ≤ 300; N ≤ M ≤ 1500). Next lines contain the binary matrix A

with N rows and M columns. Aij = 1 if and only if j-th Earth warrior can defeat i-th monster.

Output

Output matrix B with N rows and M columns. Bij should be equal to one if the first battle cannot be held

between i-th monster and j-th human, and zero otherwise.

Sample

input output
4 4

1111

1000

1111

1111

1000

0111

1000

1000

4 5

10000

10000

10000

10000

11111

11111

11111

11111

Qualifications

MDCS – Bubble Cup 2010

88

Solution:

It is quite obvious that this problem is a variation of the bipartite matching problem, which can be solved

using a standard augmenting-path algorithm.

Denote with and number of monsters and fighters, respectively. Now we can construct a bipartite

graph with partitions (monsters) and (fighters), where an edge exists between the nodes

and if fighter can defeat monster . We can consider any schedule of the battles as a matching in

 . Now the problem is to check for every edge if there exists a perfect matching in with respect

to (i.e. matching of size) such that belongs to that matching.

The easiest (and obvious) way to do that is to simply loop over all the edges in and for every edge

remove its two vertices and check if the remaining graph has the matching of size by applying a

maximum matching algorithm. The complexity of this approach is , which is

not good enough for this problem. The key idea is to change the approach and not try to find perfect

matching for every edge, but, instead, try to change some fixed perfect matching so that the observed

edge becomes part of it. Let’s explain how.

Let be an arbitrary matching of size in our graph . Denote by an oriented graph obtained from

in which every edge is directed from partition to partition if , and directed in opposite

direction otherwise. Note that any path in contains edges from and alternatively. Next theorem

gives us a way to efficiently implement our approach (all notations are from our graph):

Theorem: Let be an arbitrary edge in and let be an arbitrary matching of size in .

Then there exists a perfect matching in with respect to which contains if and only if at least one of

the following statements is true:

i) There exists a path in from vertex to vertex ;

ii) There exists a path in from vertex to some vertex which does not belong to (free

vertex).

Proof: Suppose there exists a perfect matching in which contains . Then it is obvious that we

can obtain from M by changing some (possibly all) matching pairs of vertices from (ie. by doing some

reconnections). Since the order of reconnection is irrelevant, we can choose this one: First, put in

 (reconnect). If for some , then we must reconnect (to appropriate pair as in). If

 for some we must reconnect and so on. exists, which means that this alternating path

of ours must end somewhere and the only possibilities for end vertices are (to make cycle) or some free

vertex (no need for new reconnection). It is not hard to see that this implies i) or ii).

 If there exists a path from to in (and), then form an alternating cycle

of even length. If we “invert” the edges on this cycle, in a way that we use all the edges that have not been

in matching for a new matching and throw out the old ones, we get the valid matching of size which

contains . By analogy, if ii) holds, we have an alternating path of even length, and after we inverse that

path and change match-pair of to be vertex , we get the requested matching. □

Qualifications

MDCS – Bubble Cup 2010

89

Notice that cases when or when is a free vertex are covered by i) and ii). Suppose now that there

exists , such that . It is easy to see that, instead of checking for i) or ii), it suffices to check if

there is a path between and or and some free vertex (because is the only outgoing edge from).

Can we efficiently check if there is a path between any two nodes in in ? The answer is yes, that is

precisely what Transitive Closure algorithm does (it works just like Floyd-Warshall, but is only interested in

path existence, not its length). If we denote all free vertex in by (we consider that set as one vertex),

then after calculating transitive closure for vertex set , we can answer the main question for any edge

 in time, as shown in the next (C++ like) pseudo-code (denotes existence of path in):

bool check(int a, int b)

{

 if (or is a free vertex)

return true;

 = neighbor of such that

 if (||)

return true;

 return false;

}

The complexity for finding arbitrary maximum matching is if the standard augmenting-path

based algorithm is used. It is easy to prove that the complexity for our graph is , since we are

interested only in the size . For transitive closure, we need preprocessing to determine direct neighbors

between vertices in (in our case, neighbors at distance 2, since is bipartite). It can be done in by

looping over all edges, because for every , there is at most one outgoing edge in with as start

vertex. It follows that time complexity for transitive closure is . After all this pre-calculation,

the complexity for checking edges is linear on the number of edges, thus overall complexity of our

algorithm is .

Solution by:
Name: Nikola Milosavljević
School: Faculty of Mathematics and Sciences, Niš
E-mail: nikola5000@gmail.com

Qualifications

MDCS – Bubble Cup 2010

90

Problem R2 09: Sniper Shot (ID: 1697)

Time Limit: 1.0 second

Memory Limit: 16 MB

There is a sniper at point S. His mission is to eliminate an enemy of the state, who rides his bicycle along a

straight line from point A to point B. The bullet flies along a striaght line with infinite speed. There are n

rectangular parallelepiped-shaped skyscrapers in the city. The bullet can't fly through the skyscraper but

can touch its border. Of course, the sniper will make a deadly shot as soon as possible. Your task is to

calculate the coordinates of the enemy at the moment of the shot.

Input

The first line contains space-separated coordinates of S: sx, sy, sz (sz ≥ 0). The second line contains space-

separated coordinates of points A and B: ax, ay, bx, by. The enemy of the state moves on the surface of

earth, so his z-coordinate is always equal to zero. The third line containts an integer n (0 ≤ n ≤ 100). Each of

the following n lines contains space-separated numbers lx, ly, rx, ry, h (lx < rx; ly < ry; h > 0)—coordinates of

the opposite corners of the bottom of the current skyscraper and its height. The sides of the skyscrapers

are parallel to the corrdinate axes. All coordinates and heights are integers and don't exceed 100 by their

absolute values. It is guaranteed that no two skyscrapers have common points, the point S doesn't lie inside

or on the border of the skyscraper and the segment AB doesn't have common points with any of the

skyscrapers.

Output

If the enemy of the state cannot be eliminated, output “Impossible”. In the other case output the

coordinates of the enemy of the state precise up to 10−7.

Sample

input output
0 0 2

-4 4 4 4

2

-3 2 -1 3 10

1 -1 4 2 20

-1.3333333333 4.0000000000

0 0 2

4 1 4 -1

1

1 -1 3 1 10

Impossible

Solution:

We have to find the point on the line segment AB closest to A which is not sheltered by a skyscraper. First,

we will find all points sheltered by a skyscraper.

 Let’s note a few things about the problem:

 The bullet will fly in the plane defined by points A, B and S. We denote the plane by π.

 Every side of skyscraper shelters is an (possibly empty) interval of points on the line

Qualifications

MDCS – Bubble Cup 2010

91

segment AB.

 Instead of a skyscraper as a whole we can observe its four vertical sides independently.

 If both upper corners of a skyscraper side are placed “below” π plane, the skyscraper side

doesn’t shelter any point of the line AB and we can remove it from the observations

 If only one upper corner of the skyscraper side is “below” π plane, then the line connecting

those two corners intersects π. We can observe only the part of the skyscraper side from

the corner that is “above” plane π to the intersection.

After removing all skyscraper sides (and the parts of skyscraper sides) “below” π, we can move problem to

2D by projecting the skyscraper sides and the sniper point to xy plane. Every skyscraper side is now

represented by a line segment, say PiRi. For every line segment we find the intersection of lines and

 with the line (where is the -plane projection of). If the points and are between and

the corresponding intersection, then the interval between the two intersections is sheltered by the

corresponding skyscraper side. The union of all such intervals gives us all sheltered points on the line AB

and now it’s easy to find the solution.

Note: however, after finding the union of the intervals we have to take into consideration to which

skyscraper a skyscraper side belongs. We will denote a position on the line AB by a parameter. When two

sides shelter parameter intervals and then the point at the parameter value is also

sheltered if both lines belong to the same skyscraper.

The described algorithm requires:

 Finding a plane given by 3 points

 Determining whether a point is “above” or “below” given plane

 Finding a line given by 2 points in 3D

 Intersecting plane and a line in 3D

 Finding a line given by 2 points in 2D

 Intersecting two lines in 2D

 Determining the middle of 3 collinear points in 2D

 Finding union of intervals

Solution by:
Name: Luka Donđivić
School: The Faculty of Electrical Engineering and Computing, Zagreb
E-mail: ldondjivic@yahoo.com

Qualifications

MDCS – Bubble Cup 2010

92

Problem R2 10: Periodic Sum (ID: 1749)

Time Limit: 1.0 second

Memory Limit: 64 MB

Let S(t) be the sum of integers represented by all substrings of the decimal representation of t. For

example, S(1205) = 1 + 2 + 0 + 5 + 12 + 20 + 05 + 120 + 205 + 1205 = 1575. Note that some substrings can

have leading zeros. Let F(t, k) be the number which decimal representation is obtained by repeating the

decimal representation of t k times. For example, F(1205, 3) = 120512051205. Given numbers p, k and m,

calculate S(F(p, k)) modulo m.

Input

The first line contains one integer p (1 ≤ p < 10100000). The second line contains two space-separated integers

k and m (1 ≤ k, m ≤ 109).

Output

Output the answer on a single line.

Sample

input output
1205

3 999999999

847123538

Solution:

This is medium number theory problem. The main idea is to apply several times efficient algorithm for

calculating the exponent na .

==

 Function: Modular_Power

 Input: a – the base

 n – exponent

 m – modulo

04 result = 1;

02 while (n > 0)

03 result = (result * result) mod m;

04 if (n mod 2 = 1) then

05 result = (result * a) mod m;

06 n = n div 2;

09 return (result);

==

Pseudo code for exponent calculation

The complexity of above algorithm is).(log nO

Qualifications

MDCS – Bubble Cup 2010

93

For saaan ...21 we have

ssss aaaaaaaaaaaanS)...()...()(211322121  








 


s

i

is

i

s

i

is

i iaianS
1

1

1

2

9

110
)10...10101()(.

In order to calculate)),((nxFS modulo m , we will need two additional arrays for prefix and suffix sums:




 


s

i

is

is aaaaaaaaaanSP
1

1

21321211
9

110
......)(






 
s

i

is

isssssss iaaaaaaaaaanSS
1

21121 10......)(.

For integer n , let || n denotes the number of digits in decimal representation of n . The following

recurrent formulas for),(nxF and)1,(nxF hold:












 1

9

110
))1,(()(|)1,(|)())1,(()),((

||x

nxFSSxSPnxFxSnxFSnxFS












 1

9

110
)1,()())1,(()),((

||x

nxFxSSnxFSSnxFSP

)1,(||10)())1,(()),((|)1,(|   nxFxxSSnxFSSnxFSS nxF

xnxFnxF x )1,(10),(|| .

Similarly, for the double values)2,(nxF and),(nxF we have:












 1

9

110
)),(()),((|),(|)),((2))2,((

|),(| nxF

nxFSSnxFSPnxFnxFSnxFS












 1

9

110
),()),((2))2,((

|),(| nxF

nxFnxFSPnxFSP

|),(|),()110))(,(()),((|),(| nxFnxFnxFSSnxFSS nxF 

)110(),()2,(|),(|  nxFnxFnxF .

Using these recurrent formulas one can design)log(log kpO  solution. Division by 9 can be handled by

considering three cases concerning the greatest common divisor of m and 9, or by establishing another

recurrent formula.

The second solution is based on the fast matrix exponential calculation. For given linear recursive

homogeneous sequence dnndndn TcTcTcT   02211 ... , let C be the following matrix



























1210

1000

0100

0010

dcccc

C











.

Qualifications

MDCS – Bubble Cup 2010

94

By simple induction there holds:















































1

1

0

1

1

d

n

dn

n

n

T

T

T

C

T

T

T


.

For saaax ...21 let

kkkkk aaaaaaS 211   .

With the starting value 11 aS  , the following recurrent formula holds

kkk akSS  110 .

Let kB be the sum of all numbers from),(kxF that end with the last digit (the sum of all suffixes).

Similarly as in the first solution, we have sSB 1 and

)1(10 1   ksxBSB k

s

sk .

Let kk BBBA  ...21 . Using kkk BAA 1 and 11   kkk BAA , we get the following:

)1()(10 11   ksxAASAA kk

s

skk

))1((10)101(11   ksxSAAA sk

s

k

s

k

By writing the same relation for kA and subtraction, we get fourth-order homogeneous recurrent relation

for kA

))2((10)101(21   ksxSAAA sk

s

k

s

k

sxAAAAAA k

s

k

s

k

s

k

s

kk   2111 10)101(10)101(

sxAAAA k

s

k

s

k

s

k   211 10)1021()102(

sxAAAA k

s

k

s

k

s

k   321 10)1021()102(

321211 10)1021()102(10)1021()102(  k

s

k

s

k

s

k

s

k

s

k

s

kk AAAAAAAA

 3211 10)1031()1033()103(  k

s

k

s

k

s

k

s

k AAAAA .

Furthermore, let i

kC be the sum of all numbers from),(kxF that end with))1((isk  -th digit.

Similarly, we have)(1 xSC i

i  and

)1(10 1   ksxBSC ik

i

i

i

k ,

where ii aaax ...21 . Next, we set

 




 


s

i

i

s

i

i

k

s

i

s

i

i

i

kk xksBSCC
11

1

1 1

)1(10 .

The sums 



s

i

iSD
1

1 , 



s

i

iD
1

2 10 and 



s

i

ixsD
1

3 can be calculated iteratively, and therefore

3211)1(DkDBDC kk   . Therefore,

Qualifications

MDCS – Bubble Cup 2010

95

)1()),((
1

3

1

121

1









k

i

k

i

i

k

i

i iDBDDkCkxFS

2

)1(
)),((3121


 

kk
DADDkkxFS k .

To summarize, first we need to calculate the sums 321 ,, DDD iteratively and value of s10 ,

together with the first four values 4321 ,,, BBBB . Then apply the fast matrix exponential to find the value

of 1kA and finally compute)),((kxFS .

Solution by:
Name: Andreja Ilić
School: Faculty of Mathematics and Sciences, Niš
E-mail: ilic_andrejko@yahoo.com

Qualifications

MDCS – Bubble Cup 2010

96

Fasten your seatbelts, the adventure continues…

See you next year!

Bubble Cup Crew

