

BUBBLE CUP 2011

Student programming contest

Microsoft Development Center Serbia

Problem set & Analysis
from Finals and Qualifications

Belgrade, 2011

Bubble Cup Finals 2011

Scientific committee:

 Andreja Ilić

Andrija Jovanović

Milan Vugdelija

Milan Novaković

Stevan Jončić

 Dimitrije Filipović

 Dražen Žarić

 Miloš Lazarević

 Miloš Milovanović

Qualification analyses:

Alexander Georgiev

Nikola Milosavljević

Aleksandar Ilić

Gustav Matula

Boris Grubić

Vanja Petrović Tanković

Dušan Zdravković

Dimitrije Dimić

Stefan Stojanović

Yordan Chaparov

Rajko Nenadov

Demjan Grubić

Mladen Radojević

Slobodan Mitrović

Andrija Jovanović

Andreja Ilić

Cover:

 Sava Čajetinac

Typesetting:

 Andreja Ilić

Proofreader:

 Andrija Jovanović

Volume editor:

 Dragan Tomić

Bubble Cup Finals 2011

Contents

Preface ... 5

About Bubble Cup and MDCS .. 6

Bubble Cup Finals 2011 ... 7

The final scoreboard ... 8

Statistics from finals .. 9

Problem A: Card .. 11

Problem B: Rook ... 13

Problem C: Tree game ... 15

Problem D: Transformations ... 17

Problem E & I: LIS .. 20

Problem F: Padlock ... 25

Problem G: LR primes .. 27

Problem H: Hashed strings .. 30

Qualifications ..33

Problem R1 01: Triathlon (ID: 1062) .. 35

Problem R1 02: Archer's Travel (ID: 1459) ... 37

Problem R1 03: Caves and Tunnels (ID: 1553) .. 40

Problem R1 04: Cactuses (ID: 1610) ... 44

Problem R1 05: Salary for Robots (ID: 1696) .. 48

Problem R1 06: Visits (ID: 1726) .. 51

Problem R1 07: Ministry of Truth (ID: 1732) .. 54

Problem R1 08: Old Ural Legend (ID: 1769) .. 56

Problem R1 09: Barber of the Army of Mages (ID: 1774) .. 58

Problem R1 10: Space Bowling (ID: 1775) .. 60

Problem R2 01: Funny Card Game (ID: 1166) ... 63

Problem R2 02: Shots at Walls (ID: 1390) ... 66

Problem R2 03: Wires (ID: 1460) .. 69

Problem R2 04: Spy Satellites (ID: 1478) .. 72

Problem R2 05: Square Country 3 (ID: 1667) .. 75

Problem R2 06: Monkey at the Keyboard (ID: 1677) .. 78

Problem R2 07: Mnemonics and Palindromes 2 (ID: 1714) ... 81

Problem R2 08: Expert Flea (ID: 1763) ... 83

Problem R2 09: Fair Fishermen (ID: 1818) .. 87

Problem R2 10: Professional Approach (ID: 1819) .. 89

Bubble Cup Finals 2011

MDCS – Bubble Cup 2011

5

Preface

Dear Participant,

Thank you for participating in the fourth edition of the Bubble Cup. On behalf of Microsoft Development

Center Serbia (MDCS), I wish you a warm welcome to Belgrade and I hope that you will enjoy yourself.

MDCS has a keen interest in putting together a world class event. Most of our team members participated

in similar competitions in the past and have passion for solving difficult technical problems.

This edition of the Bubble Cup is special. It is the most international event that we had so far. This year,

teams from Serbia, Bosnia, Croatia and Bulgaria are competing in the finals. In our evaluation of

participants, we observed that at least a dozen IOI Olympians from the region will participate in the Bubble

Cup finals this year. You folks are the best that this region can offer!

Given that we live in a world where technological innovation will shape the future, your potential future

impact on humankind will be great. Take this opportunity to advance your technical knowledge and to build

relationships that could last you a lifetime.

Thanks,

Dragan Tomić

MDCS Group Manager/Director

Bubble Cup Finals 2011

 MDCS – Bubble Cup 2011

6

About Bubble Cup and MDCS

BubbleCup is a coding contest started by Microsoft Development Center Serbia in 2008 with a purpose of

creating a local competition similar to the ACM Collegiate Contest, but soon that idea was outgrown and

the vision was expanded to attracting talented programmers from the entire region and promoting the

values of communication, companionship and teamwork.

The contest has been growing in popularity with each new iteration. In its first year close to 100

participants took part and this year, 2011, it attracted more than 500 participants from 8 different

countries.

This year the emphasis was on keeping intact all of the things that made BubbleCup work in previous years

but taking every opportunity to tweak and subtly improve the format of the contest. Among others, the

novelties include complex, serious qualification problems that are chosen to take advantage of the long

period of time given to the contestants, as well as problems in the final which make teams think about

some constraints that are rarely tested in this type of competition.

Microsoft Development Center Serbia (MDCS) was created with a mission to take an active part in

conception of novel Microsoft technologies by hiring unique local talent from Serbia and the region. Our

teams contribute components to some of Microsoft’s premier and most innovative products such as SQL

Server, Office & Bing. The whole effort started in 2005, and during the last 6 years a number of products

came out as a result of great team work and effort.

Our development center is becoming widely recognized across Microsoft as a center of excellence for the

following domains: computational algebra engines, pattern recognition, object classification, computational

geometry and core database systems. The common theme uniting all of the efforts within the development

center is applied mathematics. MDCS teams maintain collaboration with engineers from various Microsoft

development centers around the world (Redmond, Israel, India, Ireland and China), and Microsoft

researchers from Redmond, Cambridge and Asia.

Bubble Cup Finals 2011

MDCS – Bubble Cup 2011

7

Bubble Cup Finals 2011

The Bubble Cup Finals, like the previous years, were held at the School of Electrical Engineering in Belgrade.

The competitors had five hours for eight problems. In this booklet you will find nine problems - problem I

(generalization of problem E) was removed from the actual competition because of its difficulty. For ties,

the same rules applied as in previous years: if two or more teams solved the same number of problems, the

one who needed the least time was ranked best. Additionally, teams received bonus points depending on

their qualification results, but for each problem there were time penalties if a team had incorrect

submissions before managing to solve it (Problem A turned out to be very good at making teams collect

penalty points). Programming style is not considered in this contest – contestants are free to code in

whatever style they prefer and documentation is not required.

This year, problems from the finals are slightly easier than the last year. The emphasis was on stimulating

students’ creativity - some of the problems were not so standard for programming competitions. The idea

behind this was to test contestants in some areas for which they were not very well-prepared. The

Scientific Committee is pleasantly surprised with the skill the competitors have shown. Three problems

were solved by all teams, while on the other side there was only one problem that no team managed to

solve.

Team Suit Up! won the competition (improving on last year, when they were second). The second place

went to wehmuma. They managed to solve six problems and edge out ex1t thanks to a smaller time

penalty.

This year the Scientific Committee decided to give some special awards:

 Award: Silver lightning
Team wehmuma - Rumen Hristov, Georgi Georgiev and Alex Ivanov, for the first accepted solution
to a problem.

 Award: system("pause");
Team Gastartbubblers - Rajko Nenadov, Slobodan Mitrovic and Nikola Skoric, for lifetime
achievement in programming excellence and spreading the BubbleCup spirit.

 Award: Hardcoding Expert
Team v.haralampiev - Vladislav Haralampiev, for being the first to solve LR Primes despite a lack of
manpower.

The Scientific Committee would like to congratulate all of you, teams and individuals, for the hard work you

put in solving the problems we selected, and for your enthusiasm and interest in the Bubble Cup

competition.

Bubble Cup Finals 2011

 MDCS – Bubble Cup 2011

8

The final scoreboard

Place Team Team crew Score Penalty

1. Suit Up!
Gustav Matula, XV. Gimnazija Zagreb
Ivan Katanić, Gimnazija Pozega
Ivica Kičić, V. gimnazija Zagreb

7 824

2. wehmuma
Rumen Hristov, High School of Natural Science and Mathematics
Georgi Georgiev, SMG
Alex Ivanov, Nancho Popovich Maths and Science High School

6 760

3. ex1t
Alexander Georgiev, Sofia University
George Acev, Sofia University
Preslav Le, Sofia University

6 1019

4. Gari
Demjan Grubic, Gimn. Jovan Jovanovic Zmaj
Boris Grubic, Gimnazija Jovan Jovanovic Zmaj
Mario Cekic, Gimnazija Jovan Jovanovic Zmaj

5 480

5. Gastarbubblers
Nemanja Skoric, ETH Zurich
Slobodan Mitrovic
Rajko Nenadov, ETH Zurich

5 538

6. Tim Raketa
Viktor Braut, FER Zagreb
Frane Kurtović, FER Zagreb
Anton Grbin, FER Zagreb

5 589

7. Drišlje
Nikola Stojiljkovic, Gimnazija Svetozar Markovic, Nis
Nikola Smiljkovic, Gimnazija Svetozar Markovic, Nis
Nikola Stevanovic, Gimnazija Svetozar Markovic, Nis

5 734

8. Magic 3
Maja Kabiljo, Racunarski Fakultet
Miroslav Bogdanović, Racunarski Fakultet
Milos Stankovic, Racunarski Fakultet

5 734

9. kikiriki i pivo
Mladen Radojevic, ETF Beograd
Ugljesa Stojanovic, RAF/ETF Beograd
Aleksandar Tomic, ETF Beograd

5 844

10. I like it RAF
Nenad Božidarević, Računarski fakultet, Beograd
Vanja Petrović Tanković, Računarski fakultet, Beograd
Aleksandar Milovanovic, Računarski fakultet, Beograd

5 949

11. S-Force
Dusan Zdravkovic, Gimnazija Svetozar Markovic Nis
Dimitrije Dimic, Gimnazija Svetozar Markovic Nis
Stefan Stojanovic, gimnazija Svetozar Markovic Nis

4 358

12. The Ninjas
Nikola Milosavljevic, PMF Nis
Marija Cvetkovic, PMF Nis
Aleksandar Trokicic, PMF Nis

4 408

13. doktori
Andrija Milicevic, University of Zagreb - School of Medicine
Marin Smiljanic, FER Zagreb
Goran Gasic, FER Zagreb

4 431

14. v.haralampiev Vladislav Haralampiev, SMG 4 474

15. [BG] Coders
Vladimir Vladimirov
Yordan Chaparov, Atanas Radev
Yasen Trigonov, OMG

4 478

16. TPPH
Dominik Gleich, XV. Gimnazija
Zvonimir Medić, XV. Gimnazija
Drago Plecko, XV. Gimnazija

4 515

17. Royal Randoms
Nina Radojicic, Matematički fakultet, Beograd
Stefan Miskovic, Matematički fakultet, Beograd
Stefan Jankovic, Matematički Fakultet, Beograd

4 902

18. Firewall
Damir Ferizovic, MSS Bosanski Petrovac
Daniel Ferizovic, MSS Bosanski Petrovac
Aleksandar Ivanovic, Prva kragujevačka gimnazija

3 213

19. Gimnazija Sombor
Predrag Ilkic, Gimnazija Veljko Petrovic
Slobodan Ilkic, Gimnazija Sombor
Dejan Pekter, Gimnazija Veljko Petrovic

3 414

Bubble Cup Finals 2011

MDCS – Bubble Cup 2011

9

Statistics from finals

ID Problem name
Number of teams

with correct
solutions

Number of teams with at
least one submission

attempt

Total percentage of
accepted

submissions

A Card 13 19 09.77%

B Rook 19 19 50.00%

C Tree game 19 19 82.60%

D Transformations 9 11 20.93%

E LIS 0 3 00.00%

F Padlock 19 19 67.86%

G LR primes 6 8 22.22%

H Hashed strings 3 6 15.00%

Table 1. Problem statistics

Chart 1. Number of correct solutions

ID Task name Elapsed time for the first
accepted submission

Average elapsed time for accepted
submission

A Card 1:53 3:08
B Rook 0:09 1:03
C Tree game 0:20 1:11
D Transformations 1:42 2:56
E LIS / /

F Padlock 0:38 1:40
G LR primes 2:14 4:00
H Hashed strings 2:56 3:36

Table 2. Time statistics

0

5

10

15

20

Bubble Cup Finals 2011

 MDCS – Bubble Cup 2011

10

Problem set & Analysis
from Finals

Taken from xkcd.com – A web comic of Romance, Sarcasm, Math, and Language

Problem A: Card

MDCS – Bubble Cup 2011

11

Problem A: Card

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija

Statement:

Mike often needs to know if he could place a rectangular card of size into an envelope of size .

In order to be faster, Mike doesn’t really try to put a card into an envelope, he just places a card on the

table and then tries to cover it with an envelope. Of course, both the card and the envelope can be rotated,

but they cannot be folded.

Now, Mike wants to be even faster. He decided to find the answers for all sizes of cards and envelopes he

operates with. That’s where you jump in. Your program should compute the answer for one particular case.

The program should work the same way Mike does his tests, so in boundary cases the answer is “yes”.

Input:

The first line contains four integers and delimited by a space. All values are less than .

Output:

The output contains only one string: “yes” or “no” (without quotes).

Example input: Example output:

2 3 3 4 yes

Time and memory limit: 0.5s / 64 MB

Solution and analysis:

All we need to do is to distinguish between several cases. To simplify the analysis, let’s first sort pairs

and so that .

Case 1:

In this case the answer is clearly no, since any -projection of the card is bigger than .

Case 2:

In this case card is easily covered with the envelope, for example by matching centers and aligning
card and envelope axes, so the answer is yes;

Case 3:

In this case the card diagonal √ cannot be covered with the envelope, because the

Problem A: Card

 MDCS – Bubble Cup 2011

12

envelope diagonal √ is shorter than . Therefore, the answer is no.

Case 4:

This is the remaining case. Now we have and we need to try to put the

envelope’s diagonal over the card. Consider the circle centered at envelope center and having radius

. It

intersects all four sides of the envelope and we need to check if the distance between the nearest two
intersection points is bigger or equal to . If so, the answer is yes, otherwise no.

Time complexity of this algorithm is constant - .

Test data:

Test corpus for this problem contains 10 test cases constructed with following methods

 several tests with different orders of side sizes

 tests with boundary conditions (for example card and envelope being of equal size)

 test in which the card tightly fits into the envelope diagonally

 test in which the card doesn’t fit diagonally, but it would if it was just a bit smaller

Problem B: Rook

MDCS – Bubble Cup 2011

13

Problem B: Rook

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija

Statement:

There is a generalized chess board of size . A rook should move from square to square . In

every move, exactly one coordinate must increase by 1 or more. There are also occupied squares on the

board, so the rook cannot be placed on any of them and cannot jump over them. Squares and

are not occupied.

In how many ways can the rook reach the square ?

Input:

The first line contains two positive integers and delimited by a space, . In each

of the next lines there are two positive integers, and , , coordinates of occupied

square, .

Output:

The output contains number of different rook paths, as described above. If this number is 1 million or

greater, you should only output its last 6 digits.

Example input: Example output:

4 2

3 3

4 1

48

Time and memory limit: 2s / 64 MB

Solution and analysis:

Let’s denote the number of ways in which the rook can reach the square . Then and

 ∑

 ∑

where

 {

 {

Problem B: Rook

 MDCS – Bubble Cup 2011

14

Using the formula for each square directly gives an algorithm that works in time, which is too slow

for limitations given in the problem statement.

Introducing two new matrices,

 ∑

 ∑

for each square we can compute in time, which gives the following

algorithm:

==

01 w[1][1] = 1

02 for i = 1..n

03 for j = 1..n

04 if (square (I, j) is occupied

05 a[i][j] = 0;

06 b[i][j] = 0;

07 w[i][j] = 0;

08 else

09 a[i][j] = (a[i-1][j] + w[i-1][j]) mod 1000000;

10 b[i][j] = (b[i][j-1] + w[i][j-1]) mod 1000000;

11 w[i][j] += (a[i][j] + b[i][j]) mod 1000000;

==

We are assuming here that all elements with at least one zero coordinate are initialized to 0.

Complexity:

For this solution, there are a couple of variations regarding time and space complexity:

a) We can put info about occupied squares into a matrix (for example w), and use a, b, w as matrices.
In that case both time and space complexity is .

b) We could also put info about occupied squares into a separate array of length m and sort it in order
in which the squares are being visited. Also, instead of matrices , it is enough to use the last
two rows of each of them. That gives us time complexity , and space complexity
 .

Test data:

Test cases should include:

 An example where it is not possible to move by the rules and reach the square ;

 A big example with a large table and lots of occupied squares (up to the limit).

Problem C: Tree game

MDCS – Bubble Cup 2011

15

Problem C: Tree game

Author: Stevan Jončić Implementation and analysis: Stevan Jončić

Statement:

You are playing a simple game. You are given an undirected connected graph which does not have cycles.

There is also one coin with is in the beginning located at vertex . One step consists of moving the coin

from the vertex at which it is currently located to any adjacent vertex (two vertexes are adjacent if there is

an edge connecting them). Every edge has an associated number of points you gain if you move the coin

from one of its vertexes to another. Your task is to calculate the maximal number of points you can gain in

 steps. You can move the coin along some edges more than once.

Input:

The first line contains number n, which is the number of vertexes of the tree (number of vertexes

). The following lines contain information for edges of the tree. Each of the

following lines has three numbers (-th of these lines describes -th edge) – the first two numbers

are vertexes connected by the edge and the third number is the number of points that you gain if you move

the coin along that edge. The number of points associated with an edge is less or equal to . The

vertexes are labeled with numbers from to .

The next line contains the number , .

The last line contains the vertex , vertex at which the coin is located in the beginning.

Output:

You should output one number which is the maximal number of points you can gain in steps with the coin

located in the beginning at vertex .

Example input: Example output:

6

1 2 3

4 3 5

4 1 2

3 6 6

5 1 9

3

4

20

Time and memory limit: 1s / 64 MB

Problem C: Tree game

 MDCS – Bubble Cup 2011

16

Solution and analysis:

This is a graph problem. On first sight, it looks like this problem requires the standard dynamic

programming approach for trees - bottom-up from leaves to the root. But if we play a little bit with this

problem, we will see that the greedy approach will find an optimal path.

Assume that we use following edges in steps path: . Edges can be used more than once

so and can be the same edge for some . If there is an edge () that has

more points than every edge in the path used after , then the path p can’t be optimal. Namely, in that

case we can use the first part of the path and after that we just use edge for the

remaining steps. This way we will get more points than in the original path.

Because of this, in the optimal path the edge with the maximal number of points among the edges that

constitute the optimal path must be the edge which was used last (or in a last couple of steps) in the

optimal path. This is the main idea for the algorithm.

Let’s say that in the optimal path the edge is used last in a couple of steps. We can see that the number of

edges we used prior to using edge should be as small as possible; otherwise the path would not be

optimal because we can make a path which uses less edges prior to using edge , and this path will then get

us more points.

Figure 1. Optimal path

The solution consists of the following: for every edge of the tree we try to go to that edge using the minimal

possible number of edges and then use that edge for every available step left and we choose among those

paths the path with the maximal number of points. Of course, we try this for every edge to which the

minimal number of edges used is less than the available number of steps. Because this is a tree, we can

accomplish all this with one traversal using some standard graph traversal algorithms – DFS or BFS.

Time and memory complexity of this solution are both .

Problem D: Transformations

MDCS – Bubble Cup 2011

17

Problem D: Transformations

Author: Stevan Jončić Implementation and analysis: Stevan Jončić
Andreja Ilić

Statement:

You are given different transformations of integers , one for each of these n numbers. Using the

first transformation you can transform number to some group of numbers, using the second

transformation you can transform number to some other group of numbers etc. Numbers that can be

derived using given transformations are also integers between and .

If you have a group of elements, which are numbers from through (there can be multiple instances of

the same number in the group), in one step can you can transform any element of the group to new

elements that are produced using the transformation of the selected element. You start with a group which

has only one element, which is a number between and , and you can choose which number is the

starting element of the group. Your goal is to have after steps a group with as much elements as possible.

Input:

The first line contains one positive integer , .

The following lines contain information for transformations of numbers from to . Each of the following

 lines consists of the following integers (-th of these lines describes transformation of number) – the

first number, denote it with () is the number of elements to which number is transformed

and the following numbers are the numbers to which number is transformed.

The last line contains number () which is number of available steps.

Output:

You should output one number which is the maximal number of elements your group can possibly have

after steps.

Example input: Example output:

4

3 1 1 4

5 4 4 1 3 1

1 4

2 2 1

3

10

Explanation:

There are 4 numbers. The transformations are:

Problem D: Transformations

 MDCS – Bubble Cup 2011

18

The optimal solution is choosing the initial element of the group to be , then after transforming it the

group will have elements , after that one instance of number is transformed and the group will

have elements . Finally, the number is transformed and the group has elements after 3

steps.

Time and memory limit: 1s / 64 MB

Solution and analysis:

We can solve the task using dynamic programming. This is a very nice problem, because we have some kind

of two-step dynamic programming where these steps communicate with each other.

Firstly, let us introduce labels that we are going to use:

 ([][] [][] [][[]]) [], [], for the transformations. Number can

be transformed in the above group, where [] represents cardinality of this list.

 – maximal number of elements that can be obtained starting from the
group and performing transformations in some order.

 - number of steps (transformations)

The final solution can be computed as:

The main observation for this problem is following: when we perform transformation [] on the

group we obtain a new group

 ([][] [][] [][[] []]) []

Pay attention that the plus sign in the above formula is not a union. From here, we can look at these two

groups independently. The only question is to find how many transformations to “give” to each group -

partition of the number of steps. Without loss of generality, we can calculate the value

 by checking all possible number of steps for transformation [] .

Formally:

 ()
 []

We can think of these transformations and groups as some kind of tree of deep . Basically, we start from

any group with one element – which is going to represent a root of this tree. We want to find a leaf which

holds the set with maximal cardinality.

Problem D: Transformations

MDCS – Bubble Cup 2011

19

Figure 1. Example of the tree mentioned in the problem analyses from example in the problem statement

with changed condition

Implementation:

This can be implemented in many ways. We will describe one of them. First let us define matrix as

 [] maximal number of elements that can be obtained starting

 from only one element in steps

When we are computing some particular element [], we are going to use:

 [] maximal number of elements that can be obtained starting

 from the group [][] [][] in steps

From here we have that [] [[]] (here we have because we used one

transformation []). We can play with elements of the matrix with following relation:

 [] []

 [] [] [] [[][]] , for [[]]

The complexity of this solution is , where represents maximal group cardinality in the given

transformations.

Problem E & I: LIS

 MDCS – Bubble Cup 2011

20

Problem E & I: LIS

Author: Andreja Ilić Implementation and analysis: Andreja Ilić

This document contains the problem statements for problems E and I. You will see that the only difference is

in one constraint. These are separate problems and will be tested on different test cases.

Scientific committee only has a solution for problem E.

Statement:

You are given an integer sequence of length and an integer , . Let us denote with the

length of the longest increasing subsequence (LLIS) for subarray: . You have to write a

program that computes values for every , .

 Problem E: Assume that the sum of values does not exceed √ .

 Problem I: There are no constraints for the sum of values .

The longest increasing subsequence of a given sequence is the subsequence of strictly increasing

elements containing the largest number of elements. Elements of the subsequence do not need to be

consecutive.

Input:

The first line contains two positive integers and (and), where is the

number of elements in the given array and is the width of subarray that have to be examined. Next line

contains integers, separated with one space, which represents the elements of array .

The elements are in range [].

Output:

The output contains numbers, one per line. The number in the -th line is the length of the

longest increasing subsequence for .

Example input: Example output:

6 4

1 4 2 5 6 7
3
3
4

Explanation:

For this example we have three subsequences of width in given array :

 , where LLIS is equal to ; one possible LIS is

 , where LLIS is equal to 3; one possible LIS is

Problem E & I: LIS

MDCS – Bubble Cup 2011

21

 , where LLIS is equal to ; LIS is the whole subsequence

Time and memory limit: 2s / 64 MB

Implementation and analysis:

This problem considers finding the length of the longest increasing subsequence in a sliding window (of

width), over a given sequence . In the problem statement it is noted that the sum of lengths does not

exceed √ . This is a very interesting fact and it might be confusing. Here we are going to present an

output-sensitive data structure that solves this problem with time complexity or in

our case √ .

Within this framework, several related questions can be posed regarding this problem, each with

potentially different time complexity.

 Local Max Value - For each window report the length of the longest increasing subsequence in that
window.

 Local Max Sequence - Explicitly list a longest increasing subsequence for each window.

 Global Max Sequence - Find the window with the longest increasing subsequence among all
windows.

Here we deal with the Local Max Value. This algorithm solves the other two versions of the problem

described above. Its optimality in our case is an open question and left for contestants to improve it

A naïve approach is to consider finding LIS for every window separately. The standard dynamic

programming algorithm for finding LIS has time complexity of , which will lead to complexity of

 for our problem. This approach can be sped up with algorithms which date back to Robinson [1]

and Schensted [2] with a generalization due to Knuth [3]. These algorithms have time complexity

 , which is optimal in the comparison model. Hunt and Szmanski [4] gave an algorithm with time

complexity using the van Emde Boas data structure [5]. In any case, this naïve approach has

time complexity in the best case.

Without loss of generality we can assume that a given array is a permutation of the set (if not

we can simply sort the array and rename the numbers in it with corresponding index). As we have seen in

the previous paragraph, we have to find some way to use the LIS (or some other information) from the

previous window when examining the current one. For this purpose, we will use Young tableaux or the

Robinson–Schensted–Knuth algorithm. We will not explain these algorithms in detail, because only a part of

them will be needed here.

Above we have stated that the length of LIS for a given array can be found in time. How can we

do this? Let us introduce a new list . Initially this list will be empty. We will insert elements from array

one at a time into the list . When inserting number into we have two cases:

a) is greater than all elements from the list - In this case we add to the end of list
b) is not greater than all elements from the list - In this case there exists an element that is

greater than . Let us denote with the first one from the left. Remove the element from the
list and put in its place.

With this algorithm list will be monotonically increasing. It can be shown (how?) that the length of list is

the length of the longest increasing subsequence. It should be noted that list is not a LIS for array ,

Problem E & I: LIS

 MDCS – Bubble Cup 2011

22

because it may not be a subsequence (see example on Figure 1). The main idea behind this method is that

the element [] is the smallest element from array for which there exists an increasing subsequence in

 of length ending with that element. We will call the principal row of array and denote it with .

Figure 1. Example of algorithm for finding the LIS in array .

In order to deal with the problem, we will consider a slightly more general question. We want to define

some kind of structure that will maintain information about the LIS of a sequence in such a way that it

supports the following operations:

 adding a new element at the end of a sequence

 removing the first element from a sequence

 querying the data structure for the LLIS

For this purpose we are going to store the principal row for every suffix of the current sequence. If we

denote with the suffix , our structure will maintain (note that in

our case this sequence has length). This collection of principal rows is called a row tower.

Figure 2. Example of a row tower for the array and how it is generated.

Removing the first element from a sequence can be implemented easily – delete the first principal row

 . The length of the first principal row is the length of LIS. Adding a new element corresponds to

inserting it in every row and adding a new row containing only this element. A naïve implementation of this

method will also lead to time complexity of . If we want to speed this up, we must store this

tower in some compressed way.

Something that we can notice in Figure 2 is that is either the same as or can be obtained

Problem E & I: LIS

MDCS – Bubble Cup 2011

23

from it by deleting a single element. This can be proven by induction (how?). From this we can state a

generalization:

Lemma Let sequence be a suffix of sequence . Then is a subsequence of and

| | | | | | | |.

Because of this nice property, we can store the whole row tower in the following way:

 – the principal row of whole sequence

 Drop out sequence with the length | |. Element [] represents the suffix at which the
element [] drops out of the principal row.

For our example of Figure 2 we have . With these two sequences we can reconstruct the

whole tower. The main problem here is to see how we can efficiently update this representation of the row

tower. The expire operation simply subtracts one from each element of and deletes the element with

expiry time (if there is one) from . The add operation for an element requires that should bump an

element out of each row of the row tower (unless it is appended to all of them). Since the rows form an

inclusion chain, if bumps a certain element out of a row, then it bumps the element out of all further

rows to which s belongs. In other words, the drop out time for changes to the index of the first row from

which it is bumped out by . Now consider the next row of the tower (if one exists) after has dropped out.

In this row there may or may not be elements larger than . If there are such elements then b bumps out

the smallest one. If not, then is appended to the end of this and all subsequent rows. We can find a

sequence of indices for the sequence such that:

 is the least index of an element in the principal row which is larger than

 is the least index larger than for which (the element is larger than the prior
one and it is still in the current principal row).

Now we can simply update the drop out sequence according to:

 , for []

Implementation of this algorithm is pretty straightforward and we will leave it to the reader.

Complexity

In this way we managed to implement operations for adding and removing one element in linear time of

the LLIS problem (querying is still in constant time). In the problem statement we denoted the length of LIS

in -th window with . From this the overall time complexity of our algorithm is . The described

algorithm computes the lengths of LIS in the sliding window in total time of

 √

Test data

The test corpus for this problem consists of 15 test cases.

Test cases were generated with a couple of algorithms which (except those for special cases) were based

on random sequences and following theorem [9]:

Problem E & I: LIS

 MDCS – Bubble Cup 2011

24

Theorem Let be an uniform random permutation of set the and an integer-

valued random variable . As we have

 [] √ and [] (√)

A short description of test cases is given in Table 1.

ID min LLIS max LLIS solution sum Description

01 10 5 2 3 16 By hand

02 100 10 3 7 395 Random

03 1000 100 12 21 15.333 Random

04 1000 900 54 57 5.675 Random

05 10000 100 70 91 802.603 Increasing sequence

06 99000 1000 2 825 39.315.222 "Saw" sequence

07 100000 50000 427 446 21.829.042 "Saw" sequence

08 100000 90000 587 597 5.908.135 Random

09 100000 100 12 25 1.671.330 Random

10 100000 1 1 1 100.000 Special case - Random

11 1 1 1 1 1 By hand

12 99999 99999 618 618 618 Special case - Random

13 99888 65432 1 1 34.457 Decreasing sequence

14 99999 1000 23 61 4.159.326 Random,

15 99999 77777 3024 3101 67.945.385 Random,

Table 1. Description of the test data

References

[1] G. de B. Robinson, On representations of the symmetric group, Am. J. Math. 60 (1938) 745–760.

[2] C. Schensted, Longest increasing and decreasing subsequences, Can. J. Math. 13 (1961) 179–191.

[3] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970)

709–727.

[4] J. Hunt, T. Szymanski, A fast algorithm for computing longest common subsequences, Comm. ACM

20 (1977) 350–353.

[5] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue,

Math. Systems Theory 10 (2) (1976/77) 99–127.

[6] M. H. Albert at al., Longest increasing subsequences in sliding windows, Theor. Comp. Sci. 321

(2004) 405 – 414.

[7] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison–Wesley,

Reading, Mass, 1973.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT Press (2009)

Problem F: Padlock

MDCS – Bubble Cup 2011

25

Problem F: Padlock

Authors: Andreja Ilić

Implementation and analysis: Miloš Lazarević
Dražen Žarić

Statement:

You are stuck in a room with doors. On every door there is a padlock with a -digit rolling lock

combination. You can roll any digit either up or down, where rolling up at digit will make the digit , and

rolling down at digit will make the digit . The padlock will be open when the combination is matched

with the key for that padlock. The goal is to open all doors with the minimal number of rolling operations.

Initially all padlocks are set to . Doors can be opened in any order. Besides rolling digits there

is one very cool button on the padlocks. This button can turn the digits on padlock to the same combination

as a different padlock that is already open (you cannot jump to a combination of the padlock for some door

that is not open yet). This transformation does not count as a rolling operation.

Input:

The first line contains one positive integer (), where is the number of doors. The next

lines contain -digit integers (some of them can have leading zeros), which represent the keys for

padlocks.

Output:

The output should contain only one integer – minimal number of rolling necessary to open all doors.

Example input: Example output:

2

0000000003

0000000001

3

Figure. Explanation of the given example

Time and memory limit: 1s / 64 MB

Problem F: Padlock

 MDCS – Bubble Cup 2011

26

Solution and analysis:

We will first give the algorithm description, and then prove its correctness. We can use a simple greedy

strategy:

1. Find a lock that needs the least number of rollings, from the initial state, to open. Add that number

to the overall cost, and put that lock into the set of open locks.

2. Repeat until all locks are open:

 Among locks that are still closed, find the one that requires the least number of rollings to

unlock, considering we can set it to state of any of the locks already open using zero

rollings, or we can roll the numbers from the initial state.

 Update the overall cost, and put the minimal lock into set of open locks.

To show that this approach does indeed yield the minimal overall number of rollings, we can consider a

graph whose vertices are locks, and weight of each edge is equal to number of rollings needed to

open lock once it is set to the combination of lock . We can extend this graph with a lock , whose key is

all zeros, so that weights of edges represent numbers of rollings necessary to open lock from its

initial state. We also notice that weights of edges and must be equal, thus we have a complete

undirected graph.

When opening lock , we can either set it to a key of a previously open lock and then roll the numbers to

get the right key, or roll the numbers from the initial position to ’s key. So unlocking increases the

overall cost either by weight of edge) or by weight of edge . If we consider the subgraph with

only these used edges, we see that it is actually a spanning tree of the original graph. So in order to find the

least number of rollings necessary to open all locks, we need to find a minimum spanning tree of our

graph.

The proposed greedy approach is actually Prim’s algorithm for finding minimum spanning trees of graphs

and is easily implemented to run in time. We can also precalculate numbers of rollings between all

pairs of locks, and store the graph in matrix form, which requires additional time and memory.

Problem G: LR primes

MDCS – Bubble Cup 2011

27

Problem G: LR primes

Author: Andreja Ilić Implementation and analysis: Milan Novaković
Andreja Ilić

Statement:

A number ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is called L prime if its every non-empty suffix is a prime number and all its

digits are different from zero. In other words, numbers ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ must be

primes. For example the number is L prime number.

A number ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is called R prime if its every non-empty prefix is a prime number. In other

words, numbers ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ must be primes. For example number is

R prime.

You are given an integer segment []. How many integers from this segment are L or R prime numbers

(including numbers and)?

Input:

The first line contains two positive integers and (), which represent the given

segment.

Output:

The output contains only one integer – the number of integers from given segment that are L or R primes.

Example input: Example output:

10 30 4

Explanation

From the segment [] L primes are: ; R primes are . Number is both L and R prime,

so we are going to count it only once.

Time and memory limit: 0.5s / 64 MB

Problem analysis:

L and R primes are also known as left-truncated and right-truncated primes. Codes of their sequences in

the On-Line Encyclopedia of Integer Sequences are A024785 and A024770. We found them interesting for a

programming problem because of two facts:

Problem G: LR primes

 MDCS – Bubble Cup 2011

28

 they are finite

 they have some kind of recursive property

We need to find a method for generating consecutive right and left primes. Here we are going to explain

the algorithm for right primes. The same algorithm, with small modifications because of the special digit ,

can be used for the left primes.

As we mentioned, these numbers have some kind of recursive structure: every right prime number having

at least two digits is an extension of another right prime number (i.e. the least significant digit is added).

This is the main fact on which we are going to base our iterative algorithm.

Let be an empty queue, which will store the right primes. We start by inserting the one-digit right

primes (just primes). Then in every step we extract the first element from the queue and check if any of

the numbers , [] is prime. We excluded the digits , because if the last digit

is from this set, the new number will not be prime. If this number is also a right prime - put it at the end of

the queue.

Figure 1. The queue states in the right prime construction process.

Complexity and implementation:

An interesting feature that we need to address for this algorithm is its time complexity. The complexity is

 √), where is the number of the right prime numbers and is the greatest among them (the same

thing holds for the left primes). This fact is left for contestants to find out. Namely, these are finite

sequences and after running this algorithm it appears that the algorithm terminates with an empty queue.

There are only right prime numbers and only left prime numbers.

The largest of them are and , respectively.

Another interesting fact is that if zeros are permitted, the sequence of left primes is infinite.

Because of this fact, the described algorithm with a reasonable implementation works very fast. For this we

must use some other technique for the primality testing. In our case the Fermat test will do the work. Of

course some other algorithm, like the Miller-Rabin test, would also work. Here we will briefly describe the

Fermat test.

Firstly, recall Fermat’s little theorem: if is a prime number and is an integer relatively prime to , then

Experimentation shows that this typically fails when is composite. This is the fact which is going to be the

Problem G: LR primes

MDCS – Bubble Cup 2011

29

core of our test. Complexity of this algorithm is , where is the number of times we test a

random number with above theorem.

==

Function: Fermat’s primality test

Input: n – a value to test for primality

 Output: false if n is composite

 true if n is probably prime

01 repeat k times

02 pick random integer a from set {2,3,…,n-1}

03 d = gcd(a,n);

04 if (d != 1)

05 return false;

06 tmp = a^(n-1) mod n;

07 if (tmp != 1)

08 return false;

09

10 return true;

==

Pseudo code for the second algorithm

Another option is to hardcode all left and right primes in the code. Such solution works in linear time. Here

we have to pay attention to the size of the file. If we hardcode this in a relatively smart way, we will get the

source file of the size ~ 60KB, and 64KB is the maximum allowed size for source files on the finals.

Problem H: Hashed strings

 MDCS – Bubble Cup 2011

30

Problem H: Hashed strings

Author: Dimitrije Filipović Implementation and analysis: Andrija Jovanović
Dimitrije Filipović

Statement:

You are an evil hacker and your current evil mission is to impersonate your target by sending messages that

look like they came from them but that are actually from you. You have worked out the entire operation

except for one small detail: every string that your target sends is followed by a 32-bit hash value, which is

used for error checking. You know the algorithm, and it goes like this:

The strings are composed of lowercase letters of the English alphabet, and every letter corresponds to a

unique 16-bit code. All 32 bits of the hash value are initialized to zero. The hash is then calculated by

passing through every character of the string in order and performing the following steps:

1. Do a binary left rotation of the entire hash value (by one place)
2. Take the code for the character and the least significant 16 bits of the hash and do a binary XOR of

these two values
3. Write the result from the previous step to the least significant 16 bits of the hash

Unfortunately, to implement the algorithm you need to know the 16-bit codes for letters of the alphabet,

and those codes are secret. Not all is lost though! You have already intercepted many pairs of strings with

their hash values. Now all you have to do is find some way to use that information to crack the codes.

 Input:

The first line contains one positive integer (, the number of strings. Each of the following

lines contains one string consisting exclusively of letters ‘a’-‘z’ and one integer in the range [].

Writing this integer in 32-bit binary gives the hash value of the string. Each string is at most 100 characters

long.

Output:

The first line of output should be one of three words: “IMPOSSIBLE”, “UNIQUE” or “MULTIPLE” (without

quotes), if there are respectively no solutions, exactly one solution and more than one solution. If the first

line is “IMPOSSIBLE” or “MULTIPLE”, nothing else should be written to output. If the first line is “UNIQUE”,

each following line of output should contain exactly one letter and one number, separated by a space.

Every number is in the range [], and when written in 16-bit binary represents the code for the

letter. There should be as many lines as there are different letters that appear in input. The lines should be

sorted alphabetically by letter.

Example input: Example output:

2

a 4

ab 12

UNIQUE

a 4

b 4

Time and memory limit: 3s / 64 MB

Problem H: Hashed strings

MDCS – Bubble Cup 2011

31

Implementation and analysis:

This task is based on a problem that the author actually had to solve for his real-life job (it didn’t involve

any hackers though – that part is made up), and we thought it was interesting enough to be used for

competitive purposes.

We have strings. Let’s denote them with
(; is the length of).

(We’ll use indexes that increase right to left throughout the text, so don’t say you weren’t warned.) A 32-bit

integer corresponds to each string: . And finally, each character

corresponds to a code, which is the 16-bit integer .

Let’s observe the rightmost (index 0) bit of the hash value How is it calculated? Obviously, the rightmost

bit of the rightmost character of string (which we have denoted with) can change it in the last step.

But before that, the bit was initially added on index and then made half a circle to get to our bit

 . And before that, bits , ,… also ended up turning around and contributing to .

And another half-circle before that bit , and so on. Obviously, this goes on until we run out of

characters in . The formula is

 ∑

 |

where the sum is an XOR sum (or, mathematically speaking, everything happens in). Now let’s try to

generalize this observation. We have the -th bit (from the right, zero-based – as above) of hash value .

Which bits of the original codes are important for this bit? The same line of thinking as in the previous

paragraph leaves us with the formula

 ∑

This means that the problem reduces to a system of linear equations. We have one equation per every bit

of every hash sum, which is a total of . The number of variables is 16 times the number of letters that

appear in the input.

Solving systems of linear equations is a well-known problem, and here it is made even easier by the fact

that we are working in so the only values are 0 and 1 and there are no problems with precision. For

example, we can solve the system in time , where is the number of variables and the number

of equations, by the standard Gaussian method of eliminating the variables one by one. Of course, this

algorithm is able to determine whether the system has a solution, whether it is unique and, if it is, to find it.

After this, assembling the solution bit-by-bit into codes for every letter and sorting them alphabetically

should present no trouble at all.

Complexity

It is easy to see that the most expensive part of our algorithm is solving the system of equations, so the

time complexity will be per above. We have and, since we have a finite alphabet of

known size, we could say that is a constant but that would be slightly disingenuous as this constant is

quite large. If is the number of letters that appear in the input, we have , and finally our

complexity is It is interesting to note that time complexity is independent from the length

Problem H: Hashed strings

 MDCS – Bubble Cup 2011

32

of the strings.

We need space to store the equations, which gives us the memory complexity of

this solution.

Test data:

ID Description

01 Easy test (example from the problem statement)

02 1 string with 1 letter with valid hash value (result code for the letter is equal to the hash value)

03
1 string - 31 times one letter. Code invalid/valid (IMPOSSIBLE/UNIQUE)

04

05 1 string - 32 times one letter (each bit from the code influences each bit of the hash value, so all
bits of the hash value need to be equal) (IMPOSSIBLE/MULTIPLE) 06

07 1 string - 33 times one letter. Code valid (UNIQUE)\

08 1 string - 64 times one letter (hash value doesn't depend on the code of the letter/hash value is
always 0) (IMPOSSIBLE/MULTIPLE) 09

10
Invalid hash value (larger than it could be calculated with given string) (IMPOSSIBLE)

11

12 Contradiction (last bit of the code for a letter should be both 0 and 1)

13 Large test with a small number of letters

14 Less strings than the number of used letters but still UNIQUE solution

15 Large strings but not enough equations to calculate UNIQUE solution (MULTIPLE)

16 Large test. One bit changed so IMPOSSIBLE.

17
Large tests to calculate UNIQUE solution

18

19

Qualifications

MDCS – Bubble Cup 2011

33

Qualifications

This is the fourth birthday of Bubble Cup and we are very pleased to see that the number of participating

teams keeps increasing. This year 71 teams managed to solve at least one problem from the qualification

rounds. We are especially proud of the fact that the competition can now truly be called regional, with

more and more teams from countries such as Croatia, Bulgaria, Romania and Macedonia not only

participating but also achieving notable results.

The qualifications were split into two rounds, with ten problems in each round and 25 days for the

contestants to solve them. The first round lasted throughout April, and teams earned one point for each

successfully solved problem. The second round was in May, and problems in this round were worth two

points each. The problems for both rounds were chosen from the publicly available archives at the Timus

Online Judge site.

The qualification rounds, especially the second one, were a little bit advanced. Some of the problems (like

Expert Flea) were pretty unusual for competition problems. Namely, these problems required spending a

good couple of days thinking, or reading and analyzing scientific papers on the subject. We are very

delighted to see that competitors managed to deal with this type of tasks.

Unlike last year, every problem from qualifications has been solved by at least one team. The nineteen

teams with the highest number of points qualified for the finals. One of these teams was not eligible for

awards, but they were nevertheless allowed to compete.

Num Problem name ID Accepted solutions

01 Triathlon 1062 36

02 Archer's Travel 1459 30

03 Caves and Tunnels 1553 39

04 Cactuses 1610 28

05 Salary for Robots 1696 37

06 Visits 1726 78

07 Ministry of Truth 1732 57

08 Old Ural Legend 1769 88

09 Barber of the Army of Mages 1744 51

10 Space Bowling 1775 41

Table 1. Statistics for Round 1

Num Problem name ID Accepted solutions

01 Funny Card Game 1166 18

02 Shots at Walls 1390 5

03 Wires 1460 9

04 Spy Satellites 1478 4

05 Square Country 3 1667 25

06 Monkey at the Keyboard 1677 17

07 Mnemonics and Palindromes 2 1714 18

08 Expert Flea 1763 5

09 Fair Fishermen 1818 23

10 Professional Approach 1819 1

Table 2. Statistics for Round 2

Qualifications

 MDCS – Bubble Cup 2011

34

The explanations of the solutions for all 20 problems are provided in this booklet. They were written by a

number of different people, some by contestants and some by MDCS Bubble Crew, and you should note

that they are not official - we cannot guarantee that all of them are accurate in general. (Still, a correct

implementation should pass all of the test cases on the Timus site.)

The organizers would like to express their gratitude to everyone who participated in writing the

solutions.

Team results chart [overall]

Average percent of points won by team members

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Qualifications

MDCS – Bubble Cup 2011

35

Problem R1 01: Triathlon (ID: 1062)

Time Limit: 2.0 second

Memory Limit: 16 MB

Triathlon is an athletic contest consisting of three consecutive sections that should be completed as fast as

possible as a whole. The first section is swimming, the second section is riding bicycle and the third one is

running.

The speed of each contestant in all three sections is known. The judge can choose the length of each

section arbitrarily provided that no section has zero length. As a result sometimes she could choose their

lengths in such a way that some particular contestant would win the competition.

Input

The first line of the input contains integer number (), denoting the number of contestants.

Then lines follow, each line contains three integers and (), separated by

spaces, denoting the speed of th contestant in each section.

Output

For every contestant write to the output one line, that contains word "Yes" if the judge could choose the

lengths of the sections in such a way that this particular contestant would win (i.e. she is the only one who

would come first), or word "No" if this is impossible

Sample

input output
9

10 2 6

10 7 3

5 6 7

3 2 7

6 2 6

3 5 7

8 4 6

10 4 2

1 8 7

Yes

Yes

Yes

No

No

No

Yes

No

Yes

Solution:

The constraints for this problem were relatively relaxed (in terms of both size and properties of the input)

so it was possible to solve the problem in several different ways and BubbleCup contestants have come up

with some very creative solutions. One cool way to solve it, which we will explain now, is to treat it as a

geometry problem.

Let’s choose any of our contestants – without loss of generality we will assume we have chosen the first

Qualifications

 MDCS – Bubble Cup 2011

36

one. Now, for all other contestants , we make expressions (

) (

)

(

). If we can choose a vector such that the value of this expression is greater than zero it

means that when the judge picks , and as respective distances for the three disciplines the first

contestant beats contestant , and if we can choose such that all expressions have values

greater than zero it means that the first contestant can win the race.

Of course, an equation of the type defines an open half-space in Euclidean 3D

space. So, geometrically speaking, determining whether a chosen player can win reduces to determining

whether the intersection of half-spaces is nonempty. There is a bug hiding here, however – we have to

make sure that our result makes physical sense! In addition to half-spaces defined by the expressions

above, we have to add half-spaces , and to make sure our solutions are positive.

It is known that the problem of finding the intersection of half-spaces is the dual of the problem of finding a

convex hull of a set of points in the same number of dimensions. Finding a 3D convex hull is tricky but there

exists a variety of well-known algorithms– we will not go into detail for any of them, but the reader is

encouraged to refer to [1] for a description of a randomized incremental algorithm that works in expected

 time (worst-case performance:) and space. You can also find the proof of

the duality property (and explanation of the duality concept itself) in [1].

Since we have to do iterations of the algorithm (one for each contestant), and the running time of one

iteration is dominated by convex hull computation, we conclude that the solution for the whole task has

expected time complexity of and worst-case time complexity of . (It is nearly impossible

to actually achieve running time, but due to the low constraints the solution should pass even if that

happens). The space complexity is .

References:

[1] Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried Schwartzkopf, Computational Geometry:

Algorithms and Applications, 2nd, revised edition, Springer, 2000.

Solution by:
Name: Andrija Jovanović
School: School of Computing, Belgrade
E-mail: ja.andrija@gmail.com

Qualifications

MDCS – Bubble Cup 2011

37

Problem R1 02: Archer's Travel (ID: 1459)

Time Limit: 1.0 second

Memory Limit: 32 MB

Let an archer be a chessman that can move one square forward, back, to the left, or to the right. An archer

is situated at the square (1, 1) of an N × M chessboard (the upper right square of the board is coded as

(N, M)). The archer's goal is to travel through the board and return to the initial position in such a way that

each square of the board is visited exactly once (the travel starts with the first move of the archer). It is

required to determine the number of different ways to perform such a travel.

Input

Integers N and M separated with a space. 2 ≤ N ≤ 5; 2 ≤ M ≤ 109.

Output

You should output the number of ways to travel through the board calculated modulo 109.

Sample

input output
2 3 2

Solution:

In this task we need to find the number of directed Hamiltonian cycles in the grid matrix , where

 and . This task requires dynamic programming with bitmasks as well as fast

computation of matrix powers. We will calculate the number of undirected Hamiltonian cycles and at the

end just multiply this number by .

For or it is obvious that there is exactly one such cycle.

For , we will give some mathematical arguments. By coloring the grid in chessboard pattern, it

follows that after each step a color of a cell is changed. Therefore, if the number of white and black cells is

not equal – there are no Hamiltonian cycles. So assume that is even. Since cells with coordinates

and have only two neighbors, we are forced to have the cycle as shown on Figure 1. Using a

symmetry one can easily conclude that there are only two possibilities for next moves (see Figure 1). If

 [] denotes the number of Hamiltonian cycles in table , we have the recurrence []

 [] with starting value [] . Finally, []

 for being even.

Figure 1. Example for .

Qualifications

 MDCS – Bubble Cup 2011

38

For we can extend the above argument and establish a similar, although much more complicated,

recurrence formula. But here we will present a more general method for and .

In order to solve these linear homogenous recurrence relations, we will use the matrix multiplication

method. To illustrate this, consider Fibonacci numbers, defined as and . In

order to the calculate -th Fibonacci number, we can consider the matrix [

] and verify the

following identity [] [

] []. Therefore, by taking -th power of matrix , one can

easily calculate with the starting row vector [].

We can calculate the -th power of a matrix in time complexity , where is the dimension

of a square matrix . This can be done using a general principle called exponentiation by squaring:

==

Function: Exponential squaring

01 result = 1;

02 while exponent > 0 do

03 if (exponent & 1) == 1 then

04 result = (result * base) mod modulus;

05 exponent = exponent >> 1;

06 base = (base * base) mod modulus;

07 return result;

==

For and , we will code one column state with numbers , and by taking the cross section

between any two neighboring columns: means that this cell is not an end of some path, while and

represent ends of two possible paths. It can be easily seen that there must be exactly two ’s, or two ’s,

and two ’s in each state (the rest are zeros). Furthermore, we need to be careful when there are two

paths – these are either independent (one above the other) or nested (one inside the other). Using a

symmetry, for there are exactly five possible states and .

For example consider the position for as shown in Figure 2. In order to continue to the next

column and include the empty cell, one has three possibilities: the lower end of the second path will

include the empty cell, the lower end of the upper path will include the empty cell and the second path will

join the first path (in the last case again lower end of the upper path will include empty cell). We can

establish similar relations for other states.

Figure 2. Example state 12201 for N=5.

Qualifications

MDCS – Bubble Cup 2011

39

For N=5, there are eleven possible states:

 and

and the corresponding matrix is

{0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0}

{0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1}

{0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0}

{2, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0}

{0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0}

{0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0}

{2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0}

{0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1}

{0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0}

We use starting row vector [] and the final solution is the sum of the third and

twice the eighth element of the product (these are the only possible ending positions).

Solution by:
Name: Aleksandar Ilić
Organization: Facebook Inc.
E-mail: aleksandari@gmail.com

Qualifications

 MDCS – Bubble Cup 2011

40

Problem R1 03: Caves and Tunnels (ID: 1553)

Time Limit: 3.0 second

Memory Limit: 64 MB

After landing on Mars surface, scientists found a strange system of caves connected by tunnels. So they

began to research it using remote controlled robots. It was found out that there exists exactly one route

between every pair of caves. But then scientists faced a particular problem. Sometimes in the caves faint

explosions happen. They cause emission of radioactive isotopes and increase radiation level in the cave.

Unfortunately robots don't stand radiation well. But for the research purposes they must travel from one

cave to another. So scientists placed sensors in every cave to monitor radiation level in the caves. And now

every time they move robots they want to know the maximal radiation level the robot will have to face

during its relocation. So they asked you to write a program that will solve their problem.

Input

The first line of the input contains one integer () — the number of caves. Next

lines describe tunnels. Each of these lines contains a pair of integers () specifying the

numbers of the caves connected by corresponding tunnel. The next line has an integer ()

representing the number of queries. The queries follow on a single line each. Every query has a form of

" ", where is a single character and can be either or representing the type of the query

(quotes for clarity only). In the case of an query radiation level in -th cave () is incremented

by (). In the case of a query your program must output the maximal level of radiation

on the way between caves with numbers and () after all increases of radiation (

queries) specified before current query. It is assumed that initially radiation level is 0 in all caves, and it

never decreases with time (because isotopes' half-life time is much larger than the time of observations).

Output

For every ' query output one line containing the maximal radiation level by itself.

Sample

input output
4

1 2

2 3

2 4

6

I 1 1

G 1 1

G 3 4

I 2 3

G 1 1

G 3 4

1

0

1

3

Qualifications

MDCS – Bubble Cup 2011

41

Solution:

First, let’s write the problem statement in graph theory language: We are given a tree (connected acyclic

graph) where every node has some value. In a query we are either asked to find the maximum value on a

path between two given nodes (and because this is a tree this path is unique) or to change the value of a

given node.

We could do the first query type, query, using any graph search algorithm (BFS for example) and find this

value in time complexity of and the second query type, query, in constant time. Unfortunately, this

naïve approach would be too slow for this problem.

Without loss of generality, let us assume that the tree is rooted in node 1. This way we have a father – son

relationship between nodes. Let’s forget about the second query for a moment. Then we could solve it

using a preprocessed matrix which contains the maximum value on the path between node and its

 -th father. This could be easily preprocessed in using simple dynamic programming. This

would help in finding the asked value in) – first we will find the lowest common ancestor (LCA) and

then maximal value on paths between LCA and given nodes using . But with the second type of query

this solution doesn’t work.

Let’s introduce a relation between nodes. Nodes and are in relation iff is a direct son of and it

has the maximal number of nodes in its subtree among other direct sons of node . If there are several

maxima, has to be the son with the minimal index. This way relation decomposes the tree into paths

(every node is in relation with at most one son). A useful property of this decomposition is the number of

distinct paths on path from some node to any other node in its subtree. How can we determine this

number?

Let represent the number of nodes in the subtree rooted at node Let’s assume we are in node

with . Now if we continue going down the tree we can either:

 go to node which is in relation with - but then we do not change path and

 go to node which isn’t in relation with – then we do change path, but (if

 then would be in relation with)

We can see that the number of distinct paths on a path from some node to any other node in its subtree is

limited by logarithm of the number of nodes in the tree. This is very convenient for our needs.

This decomposition is known as heavy-light decomposition of a tree. We can achieve it using this simple

algorithm:

 Put every leaf in other paths.

 Using BFS from leaves, put every next node in the same path as its son with maximum number of

nodes in its subtree, or if there are several maxima, choose the minimal-indexed among them

(please note that you should put a new node in queue only if all of its sons have been visited, that’s

because we have rooted our tree around node).

It’s clear that this algorithm takes linear time.

Now, how does this decomposition help us (this is a very good question)? Let’s assume we are asked to find

maximum value on the path between nodes and . We can find LCA in time, find maximum

value from LCA to and from LCA to and combine these results. So, now it is left to solve the following

Qualifications

 MDCS – Bubble Cup 2011

42

problem: Find the maximum value from node to node if we know that node is in ’s subtree.

We know that the number of distinct paths from to is at most , so we could go to every path and

find the maximum value in it. The problem is that it isn’t always the whole path that we are looking at, so

we should find maximum value in some part of the path. We can do this in using a well-known

structure called the segment tree (we could do it even faster, but because of the second query type

segment tree is the optimal choice).

Figure 1. Example of the paths in heavy-light decomposition of a given tree.

This completes the solution for this task. Let’s summarize:

 Find decomposition of tree – .

 On every path in decomposition construct segment tree - overall .

 Initialize the matrix where is -th father of (we need this for finding LCA) –

 Read queries:

o If query is to find maximum value on path between nodes and then:

 Find LCA of and –

 Find maximum value on path from LCA to –

 Find maximum value on path from LCA to –

 Combine results

o If query is to change value of node

 Update its value in segment tree of the path for this node –

Overall time complexity is . Memory complexity for this approach is

 .

Qualifications

MDCS – Bubble Cup 2011

43

The idea of decomposing a tree into paths and applying some “array” data structure over them is, more or

less, well-known. For those who want to test this algorithm on a slight generalization of this problem, we

would recommend the problem Otoci from Croatian Open Competition in Informatics 2009. Another

variant of this problem can be found on SPOJ – problem QTREE3.

References:

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT Press (2009)

[2] Michael A. Bender, Martín Farach-Colton, The level ancestor problem simplified, Theoretical Computer

Science, 321 (2004) 5 – 12

[3] http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor

[4] http://www.hsin.hr/coci/archive/2008_2009/

[5] http://courses.csail.mit.edu/6.897/spring05/lec/lec05.pdf

Solution by:
Name: Boris Grubić
School: “Jovan Jovanović Zmaj” Grammar School
E-mail: borisgrubic@gmail.com

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor
http://www.hsin.hr/coci/archive/2008_2009/
http://courses.csail.mit.edu/6.897/spring05/lec/lec05.pdf

Qualifications

 MDCS – Bubble Cup 2011

44

Problem R1 04: Cactuses (ID: 1610)

Time Limit: 1.0 second

Memory Limit: 64 MB

There is no doubt that Yekaterinburg trams are the best in the world. Nevertheless, it is Saint-Petersburg

that has the largest tram network in Russia. Not long ago, the Saint-Petersburg tram network was included

into the Guinness Book of Records as the largest in the world.

Two fans of the tram forum from Yekaterinburg decided to make a trip to Saint-Petersburg to visit the

centenary celebration of the tram launch in that city. From their Saint-Petersburg friends they learned that

in the previous 15 years the amount of tram service had been constantly decreasing. In many avenues,

tram lines were dismantled. Tram service in the city center was minimized, and the city tram network was

divided into three fragments, so that it was no longer possible to get by tram from any part of Saint-

Petersburg to any other part.

Another thing the travelers learned was that cactuses were in fashion in Saint-

Petersburg. Upon their return to Yekaterinburg, they decided to plant a cactus

at their office. A cactus is a connected undirected graph such that each of its

edges belongs to at most one simple cycle. One vertex of a cactus touches the

ground and is called its root.

However, it soon turned out that cactuses became too popular, and all fans of

the tram forum already had them. Then the friends decided to get rid of their

cactus by a very unusual method: they by turns choose some edge of the

cactus and chop it up. This edge is removed, and if the cactus breaks into two

parts, then the part that is not connected to the root anymore is thrown out.

The friends have bet a monthly tram ticket on who will chop the last edge growing from the root.

Determine who will win if they both play optimally

Input

Along with the vogue of cactuses, the friends follow the Saint-Petersburg vogue to describe the set of edges

of a cactus by a family of paths such that in each path all edges are different. The first line contains the

amount of vertices of the cactus, the amount of paths, and the number of the root vertex;

 .

lines describes a path in the form of a sequence of its vertices. Each description starts with the length of the

sequence (). Then there are integers, which are the numbers of vertices of the

path, in the order in which they are on the path. Adjacent vertices of any path are different. There can be at

most one edge between any two vertices of the cactus. Each edge of the cactus is given in the input only

once.

Qualifications

MDCS – Bubble Cup 2011

45

Output

Output “First” if the person who makes the first move wins a monthly ticket assuming that both play

optimally. Otherwise, output “Second”.

Sample

input output
17 2 1

15 3 4 5 6 7 8 3 2 9 10 11 12 13

14 9

6 2 1 15 16 17 15

First

16 2 1

15 3 4 5 6 7 8 3 2 9 10 11 12 13

14 9

5 2 1 15 16 1

Second

Solution:

This task requires graph and game theory.

A rooted graph is an undirected graph with every edge connected by some path to a special vertex called

the root. A cactus graph is a connected graph in which every edge belongs to at most one simple cycle. It

can be easily proven that the number of edges in a cactus graph is less than 2n-1, where n denotes the

number of vertices in a graph (what is the maximal number of edges of a cactus graph on n vertices?). As

the input graph is given by an edge disjoint partition of paths, we can store the rooted cactus in O (n)

memory using graph using an adjacency list.

Nim is a mathematical game of strategy in which two players take turns removing objects from distinct
heaps. On each turn, a player must remove at least one object, and may remove any number of objects
provided they all come from the same heap. The winner is a player that takes the last object.

The key to the theory of this game is the binary digital sum (xor) of the heap sizes. Within combinatorial
game theory it is usually called the nim sum. The nim sum of and is written to distinguish it from
the ordinary sum. An example of the calculation with heaps of size 3, 4, and 5 is as follows:

In normal play, the winning strategy is to finish every move with a nim sum of 0. This is always possible if
the nim sum is not zero before the move. If the nim sum is zero, then the first player will lose if the second
player does not make a mistake. For the proof of this fact and other variants of Nim we refer the reader to
[1, 2].

The game of Hackenbush is played by hacking away edges from a rooted graph and removing those pieces
of the graph that are no longer connected to the ground. We discuss the impartial version of this game in
which either player at his turn may chop any edge. Our task is to determine who has the winning strategy
(the first or the second player) if both players play optimally.

The simplest case is when there are just pendent paths (also called Bamboo stalks) attached to the root
vertex. A move consists of hacking away one of the edges, and removing that edge and all edges above it
that are no longer connected to the ground. Players alternate moves and the last player to move wins. A
single bamboo stalk of n segments can be transformed into a bamboo stalk of any smaller number of
segments from n-1 to 0. So a single bamboo stalk of n segments is equivalent to a nim pile of n chips.

Qualifications

 MDCS – Bubble Cup 2011

46

Playing a sum of games of bamboo stalks is thus equivalent to playing nim.

Consider now a more complicated case – when the game is played on rooted trees (connected graphs
without cycles). Since the game is impartial, the general theory tells us that each such tree is equivalent to
some nim pile (or if you will to some bamboo stalk). The problem is to find the nim value of each subtree.
This may be done using the following principle, known in its more general form as

The Colon Principle: When branches come together at a vertex, one may replace the branches by a non-
branching stalk of length equal to their nim sum.

We will illustrate this principle on the tree in Figure 1. The leftmost branching vertex has two branches of
lengths three and one. The nim sum of three and one is two, so the two branches may be replaced by a
single branch of length two. The rightmost branching vertex has two branches of lengths one and two
whose nim sum is three, so the two branches may be replaced by a single branch of length three.
Continuing in like manner we arrive at the conclusion that the tree on Figure 1 is equivalent to a nim pile of
8 chips. Since this is not zero, the first player has a winning strategy. We leave to the reader to figure out
how to choose a winning move (although this is not required in the task).

Figure 1. An example of nim sum transformations for trees.

The method of pruning trees given by the colon principle works to reduce all trees to a single bamboo stalk.
One starts by depth first search from the root and for each child v calculates the nim sum of the subtree
rooted at v, by recursively calculating nim sums and XOR-summing the values of all children. This gives an O
(n) dfs algorithm for trees. For the proof of the Colon Principle see [3].

We now consider arbitrary graphs. These graphs may have circuits and loops and several segments may be
attached to the ground. To find the equivalent nim pile, we look for an equivalent tree, from which the
equivalent nim pile may be found. This is done using the fusion principle. We fuse two neighboring vertices
by bringing them together into a single vertex and transforming the edge joining them into a loop (an edge
joining a vertex to itself). As far as Green Hackenbush is concerned, a loop may be replaced by a leaf (an
edge with one end unattached).

The Fusion Principle: The vertices on any circuit may be fused without changing the nim sum value of the
graph.

The fusion principle allows us to reduce an arbitrary rooted graph into an equivalent tree which can be
further reduced to a nim pile by the colon principle. For a proof of the fusion principle see [1]. An example
of fusion and colon principles is given in Figure 2.

Qualifications

MDCS – Bubble Cup 2011

47

Figure 2. An example of nim sum transformations for general graphs.

We see more generally that a circuit with an odd number of edges reduces to a single edge, and a circuit
with an even number of edges reduces to a single vertex. Therefore, in the cactus graph we can transform
each cycle to a single vertex or single edge in one graph traversal and reduce the problem to trees. For an
even easier solution, one can modify depth-first search for cactus graphs and when examining a back-edge,
recursively calculate the nim sum of all subtrees rooted at vertices of a given cycle. The time complexity of
this algorithm is O (n).

References:

[1] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy: Winning Ways for your Mathematical Plays,
Academic Press, Inc., 1982.
[2] http://en.wikipedia.org/wiki/Nim
[3] http://www.math.ucla.edu/~tom/Game_Theory/comb.pdf

Solution by:
Name: Aleksandar Ilić
Organization: Facebook Inc.
E-mail: aleksandari@gmail.com

http://en.wikipedia.org/wiki/Nim
http://www.math.ucla.edu/~tom/Game_Theory/comb.pdf

Qualifications

 MDCS – Bubble Cup 2011

48

Problem R1 05: Salary for Robots (ID: 1696)

Time Limit: 2.0 second

Memory Limit: 16 MB

There are n robots on planet PTZZZ. Each robot has its own unique rank — an integer from 1 to , and

should execute all orders from robots with a higher rank.

Once a month all robots get their salary: a positive integer number of credits, not exceeding . The salary is

paid by an accountant-robot. Salary is so important for robots that the first month when all the robots got

their salary was named the First month of the First year. There are months in the year on PTZZZ, so the

robots get their salary times a year.

The salary paid to each robot can be different in different months. If it turns out that all the robots get

exactly the same salary as in any month earlier, the accountant-robot will rust of sadness. What is more,

the law doesn't allow the accountant-robot to pay salary in such a way that there will be a triple of robots

 with rank of higher than rank of , rank of higher than rank of and the salary of less than

the salary of and the salary of less than the salary of .

The accountant-robot doesn't want to rust, so since the First month of the First year he tries to pay salary in

different ways. However, the accountant-robot will rust sooner or later. Your task is to calculate the month

number when this will happen.

Input

The only input line contains three space-separated integers and —the number of robots on PTZZZ,

the maximal possible salary and the number of months in a year, respectively (,

 ,).

Output

Output the month number the accountant-robot will rust in. Months are numerated 1 to .

Sample

input output
3 3 20 7

Solution:

Here we have a pretty interesting task. Let’s reformulate it a little bit. Define as a sequence of integers

where each element is between and , inclusive. Call “bad” if there exist three indexes

 such that and call sequence “good” otherwise. How many “good” sequences are there?

Output that number modulo .

We could just iterate over all sequences and count only “good” ones, but of course it would be too slow.

Qualifications

MDCS – Bubble Cup 2011

49

Let’s assume that we have one “good” sequence for – numbers. Suppose we add the number , which is

between and (inclusive), at the end of this sequence. Is this sequence “good”?

Because the first numbers are “good”, the only possibility that this sequence is “bad” is that there are

two indexes such that . Because we don’t care about indexes, we can just consider

the maximum such that there exists where . If the sequence is “good”, the number can

be a new such value. When does it happen? This happens if and there exists an index such that

 , but because we don’t care about indexes, we can just consider maximum .

Now with this we can represent sequence of integers with three numbers:

 current length of the sequence , denoted by

 the maximum number such that there is a larger number before it (with a smaller index), denoted

by

 maximal value in the sequence, denoted by

We can directly see that not all sequences have , but let’s set for those sequences. Also,

we have that is strictly smaller then .

Let’s define a three-dimensional matrix , such that

 [] represents the number of “good” sequences

 such that , and

How can we calculate these values? Assuming that we have calculated all [] for all such that

 and that the last number in sequence is , we have five cases:

1) Case : this case is not possible because then we would have a “bad” sequence (the number

is bigger than and we have a number before which is bigger than);

2) Case and x this case is not possible either because the maximal element among the first

 – elements is , but then is and .

3) Case x and we should add [] for all and

4) Case : we should add [] for all and

5) Case : this is not possible because then would be , but

So, we have:

 [] ∑ [] ∑ []

 [] ∑ []

For the initial states we have [] for all , . The final results is [] .

A naive implementation of this idea runs in , which is too slow for our constraints. We can speed

up our algorithm if we return the required sums in constant time. We can achieve this by creating two

matrices and defined as:

 [] ∑ []

Qualifications

 MDCS – Bubble Cup 2011

50

 [] ∑ []

The initialization of these matrices can be done using the following recurrent relations:

 [] [] []

 [] [] []

Finally we have that

 [] [] []

 [] []

Actually, there is one more thing we should do. Memory complexity of this solution is which gives

Memory Limit Exceeded, but we can note that we only need the last two matrices of dimension for

every array. Pay attention that you should do all calculations modulo .

This completes the solution for this task. The time complexity is and the memory complexity is

 .

Solution by:
Name: Boris Grubić
School: “Jovan Jovanović Zmaj” Grammar School
E-mail: borisgrubic@gmail.com

Qualifications

MDCS – Bubble Cup 2011

51

Problem R1 06: Visits (ID: 1726)

Time Limit: 1.0 second

Memory Limit: 64 MB

The program committee of the school programming contests, which are often held at the Ural State

University, is a big, joyful, and united team. In fact, they are so united that the time spent together at the

university is not enough for them, so they often visit each other at their homes. In addition, they are quite

athletic and like walking.

Once the guardian of the traditions of the sports programming at the Ural State University decided that the

members of the program committee spent too much time walking from home to home. They could have

spent that time inventing and preparing new problems instead. To prove that, he wanted to calculate the

average distance that the members of the program committee walked when they visited each other. The

guardian took a map of Yekaterinburg, marked the houses of all the members of the program committee

there, and wrote down their coordinates. However, there were so many coordinates that he wasn't able to

solve that problem and asked for your help.

The city of Yekaterinburg is a rectangle with the sides parallel to the coordinate axes. All the streets stretch

from east to west or from north to south through the whole city, from one end to the other. The house of

each member of the program committee is located strictly at the intersection of two orthogonal streets. It

is known that all the members of the program committee walk only along the streets, because it is more

pleasant to walk on sidewalks than on small courtyard paths. Of course, when walking from one house to

another, they always choose the shortest way. All the members of the program committee visit each other

equally often.

Input

The first line contains the number of members of the program committee (The -th of the

following lines contains space-separated coordinates of the house of the -th member of the

program committee (). All coordinates are integers.

Output

Output the average distance, rounded down to an integer, that a member of the program committee walks

from his house to the house of his colleague.

Sample

input output
3

10 10

20 20

10 20

13

Qualifications

 MDCS – Bubble Cup 2011

52

Solution:

In this problem we are given points and asked to calculate the average distance between two points.

Clearly thе distance defined in this problem is Manhattan distance - since for walking from one to another

point one can use only paths that are parallel to -axis or to -axis.

Let us denote the coordinates for the -th point, , as Let denote the distance

between points and , i.e. | | | |. will be the sum of distances of all pairwise

distinct points. Note that for every two points and both and will be counted for .

Therefore, the output should be

. How can we calculate efficiently?

Obviously, it can be calculated in time , but taking into account the constraints of the problem, that

would be highly inefficient. Formally,

 ∑∑

Since we can rewrite as:

 ∑∑ ∑∑| | | |

 (∑∑| |

∑∑| |

)

From the above equation we conclude that in order to compute one can split calculation into two parts -

calculating -distances and calculating -distances.

If values and values were sorted, independently from each other, then in the equation we can get rid of

absolute values. Therefore, from now on assume that and values are independently sorted in increasing

order, and rewrite in the following way:

 (∑(∑

)

 ∑(∑

)

)

Let []

 , and similarly []

 Finally, we can rewrite in the following way:

 (∑ []

 ∑ ([])

)

In order to sort and values one can use quick or merge sort and achieve sorting in time . Thus

overall time complexity of the algorithm is . Solution can be big number, (of

the order), so in the implementation we must use or types.

We can solve this problem in another way (with same time complexity).

Figure 1. Example for the points on axces with coordinates .

Qualifications

MDCS – Bubble Cup 2011

53

The key observation is that we can calculate the sum of the distances separately for and for

coordinates. Let’s see how can we sum the distances for coordinate (it is analogous for). We have that

the distance between the -th and -th point is . Instead of calculating the distance

between every two points, let see which pairs of points pass through this segment []. We can easily

see that the number of such pairs is . This is because every pair with one point on the left side of

the segment and one point on the right side of the segment passes through (recall that array is sorted).

See example of Figure 1, where we have that pairs of point pass through the segment [].

==

Function: getDistance

Input: n – number of points

X – x coordinates of points

Y – y coordinates of points

 Output: average distance between points

12 sort arrays x and y;

13 toReturn = 0;

14 for i = 1 to n - 1 do begin

15 segmentX = x [i + 1] – x [i];

16 toReturn = toReturn + segmentX * (i + 1) * (n – 1 – i);

17

18 segmentY = y [i + 1] – y [i];

19 toReturn = toReturn + segmentY * (i + 1) * (n – 1 – i);

20 endif

21 numPair = (n * (n – 1)) / 2;

22 toReturn = toReturn / numPair;

23 return toReturn

==

Pseudo code for the second algorithm

At the end let us mention the Serbian IOI 2008 preparation where one of the problems was very similar to

this one. Here we will just give the problem statement:

You are given a set of points in the plane. Coordinates of the given points are integers. For every given

point let us denote

 ∑ | | | |

In other word, is sum of distance to all other points, where distance between point and is defined

as | | | | .

Find a point for which function has minimal value.

Solution by:
Name: Slobodan Mitrović
School: EPFL Lausanne
E-mail: boba5555@gmail.com

Qualifications

 MDCS – Bubble Cup 2011

54

Problem R1 07: Ministry of Truth (ID: 1732)

Time Limit: 1.0 second

Memory Limit: 64 MB

In whiteblack on blackwhite is written the utterance that has been censored by the Ministry of Truth. Its

author has already disappeared along with his whole history, and now, while Big Brother is watching

somebody else, you, as an ordinary official of the Minitrue, have to delete some letters from the utterance

so that another utterance will appear, which has been approved of by the Ministry.

The Ministry of Truth defines a as a nonempty sequence of English letters and an as a

sequence of one or more words separated with one or more spaces. There can also be spaces before the

first word and after the last word of an utterance. In order to compare two utterances, one should delete

all the leading and trailing spaces and replace each block of consecutive spaces with one space. If the

resulting strings coincide, then the utterances are considered to be equal. When the official deletes a letter

from the utterance, this letter turns into a space.

Input

The first line contains the original utterance and the second line contains the utterance that must be

obtained. The length of each utterance is at most symbols. The words in both utterances are

separated with exactly one space; there are no leading or trailing spaces in each line. The original and the

required utterances are different.

Output

If you can't carry out your order, output “I HAVE FAILED!!!” in the only line. Otherwise, output the original

utterance replacing the letters that are to be deleted with the underscore character.

Sample

input output
Preved to Medved

Preved Me

Preved __ Me____

this is impossible

im possible

I HAVE FAILED!!!

Solution:

Denote the original utterance as and the utterance that must be obtained as . Next algorithm checks if

string can be obtained from string using the rules from the problem statement and, if the answer is

’yes’, replaces the letters which should be deleted from the original utterance with the underscore

character. The algorithm executes these steps in a circulary fashion:

1. Take the next word from and search for it in from the corresponding position (for the first

word it is the beginning of).

Qualifications

MDCS – Bubble Cup 2011

55

2. If there is no such substring in then print “I HAVE FAILED!!!” and quit.

3. Ok, a word was found. Replace all letters in before the newly found substring and after the

previously found substring (or from the beginning of if it is the first word) with the underscore

character.

4. If there are no more words to be searched then replace all letters in after the last found

substring with the underscore character. Print and quit.

5. The next position to start searching for a new substring in is two positions to the right from the

last letter in the previously found substring.

In step 1 what we actually want is to find out if some pattern appears in the text. For that some fast enough

string searching algorithm should be used. Implementations of string searching algorithms from standard

libraries are generally slow (for example, functions string::find() in c++ and strstr() in c, their time

complexity is , where is text length).

The two probably best-known appropriate algorithms are KMP (Knuth-Morris-Pratt) and Boyer-Moore.

Both of them have time complexity . KMP is easier for implementation, but Boyer-Moore algorithm is

in general faster, especially on large alphabets (relative to the length of the pattern). A simplified version of

Boyer-Moore algorithm is often implemented in text editors for the <<search>> and <<substitute>>

commands. A slightly deeper analysis of the chosen string searching algorithm with the previously

described solution shows that the time complexity for the whole solution is , where is length of .

Solution by:
Name: Mladen Radojević
School: The Faculty of Electrical Engineering, University of Belgrade
E-mail: mladen0211@yahoo.com

Qualifications

 MDCS – Bubble Cup 2011

56

Problem R1 08: Old Ural Legend (ID: 1769)

Time Limit: 1.0 second

Memory Limit: 64 MB

According to a tale, in the sacred Indian city of Benares, beneath a temple that marked the center of the

world, Brahma put three diamond needles and placed gold disks on them. Priests of the temple are busy

transferring the disks from needle to needle. It is believed that the world will perish as soon as the task is

done.

Another legend is known in Ural. It is said that a monastery is lost in woods at the boundary of Europe and

Asia, where the mythical stone flower grew. The monks who live there are doomed to write positive

integers on parchment until the Last Judgement. Nobody knows when and where they started this work.

There is a legend among monks that when the monastery had been built its first abbot was visited in his

dream by the Archangel Gabriel, who showed a stone on the slopes of the Ural mountains where a string of

digits was carved. Gabriel ordered to write all the integers starting from the smallest integer that was not a

substring of that string. If this legend is true, which integer was written by the monks first?

Input

The only input line contains the nonempty string consisting of decimal digits carved on the stone. The

length of the string does not exceed .

Output

Output the positive integer that is the first number written by the monks.

Sample

input output
10123456789 11

Solution:

After reading the problem statement we can shorten it to: what is the smallest positive integer that is not a

substring of a given string?

The first thing we should ask ourselves is how big the answer can be. Even if each substring of the given

string is a different integer there are at most

 substrings, i.e. integers, where is the length of the

given string. So the answer is at most . Obviously, naïve brute-force solution that checks

each integer would time out.

A common trick in such problems is “inverting” what we need to do – instead of selecting a number and

checking if it is contained in the string, we should get all integers that are contained in the string and find

the smallest that is not. Since the answer has no more than digits, we can iterate the string

and get all integers with length less than or equal to 10 out of it in . Since is not really big we

Qualifications

MDCS – Bubble Cup 2011

57

can do one of the following:

a) Use a hash set and then iterate for the smallest integer that is not in the hash set. Since it contains

at most entries, we will find the answer in at most iterations.

b) Do the same as a), using a tree set (which can be slow, depending on the implementation, but STL

set should do fine).

c) Store the integers in an array, then sort it afterwards and find the smallest missing positive integer

in linear time.

d) Note that the upper bound we used is much bigger than the real one (try to solve the following

problem: generate an input to this problem that covers the maximal number of integers) and use

arrays instead of a hash set. The maximal answer in Timus’ test set is smaller than , so

the memory is quite enough.

The complexity is for finding the numbers and for finding the

smallest missing one in a) and d), or if we are using b) or c).

The overall complexity with the faster solution is .

Solution by:
Name: Alexander Georgiev
School: Sofia University, Sofia, Bulgaria
E-mail: espr1t.net@gmail.com

Qualifications

 MDCS – Bubble Cup 2011

58

Problem R1 09: Barber of the Army of Mages (ID: 1774)

Time Limit: 0.5 second

Memory Limit: 64 MB

Petr, elected as a warlord of the army of mages, faced a challenging problem. All magicians recruited in the

army had heavy beards, which were quite unacceptable for soldiers. Therefore, Petr ordered all recruits to

shave their beards as soon as possible. Of course, all magicians refused to do it, referring to the fact they

don't know any shaving spell. Fortunately, a magician Barberian agreed to shave all recruits.

Barberian can cast a “Fusion Power” spell which shaves beards of at most k magicians in one minute. In

order to achieve full effect every magician should be shaved twice: the first spell shaves close, the second

spell shaves even closer. For each recruit Petr appointed a time when he should visit Barberian.

Unfortunately, the discipline in the new army is still far from perfect, so every magician will come to

Barberian in time, but everyone will wait for the shave until his patience is exhausted and will disappear

after that.

Determine whether Barberian will be able to shave beards of all magicians before they disappear.

Input

The first line contains two space-separated integers and (), which are the number of

recruits in the army and the number of magicians Barber can shave simultaneously. The -th of the

following lines contains space-separated integers and (, , which are

the time in minutes, at which the -th magician must come to Barberian, and the time in minutes he is

ready to spend there, including shaving time.

Output

If Barberian is able to shave beards of all magicians, output “Yes” in the first line. The -th of the following

lines should contain a pair of integers , which are the moments at which Barberian should cast the

spell on the -th magician (). If at least one magician disappears before being

completely shaved, output a single word “No”.

Sample

input output
3 2

1 3

1 3

1 3

Yes

1 2

1 3

2 3

2 1

1 3

1 3

No

Qualifications

MDCS – Bubble Cup 2011

59

Solution:

First we are going to solve an easier version of this task, where one magician has to be shaved only once,

and Barberian can shave only one magician in one second. Let’s make a graph in which each magician is

represented with a node. We will denote these nodes with , where represents the -th magician. We

can notice that there is at most seconds, so we can make a node for every second. Let’s call these

nodes , where represents -th second. Edges will be constructed in the following way: if the -th

magician comes to Barberian at time and he can wait seconds, we should connect node with nodes

 . Now it is quite obvious that it is a bipartite matching problem. If there is a

perfect bipartite matching on that graph there is a solution and we should write all edges which are in the

perfect matching, otherwise there is no solution.

Now let’s extend this solution for our problem. Because every magician should be shaved times, we

should make a global node , which will be connected to all nodes in with weight . The second

condition says that Barberian can shave magicians in one second, so we should make a second global

node , which will be connected to all nodes in with weight . Weight between nodes in and nodes in

 is , because every magician can be shaved only once in one second. Now we have a standard maximum

flow problem between nodes (sink) and (target). If the maximum flow through that graph is ,

there is a solution and we should write edges which are in maximum flow, otherwise there is no solution.

Because there are at most augmenting paths, the complexity of this algorithm is only .

Memory complexity is also .

Solution by:
 Name: Demjan Grubić
School: “Jovan Jovanović Zmaj” Grammar School, Novi Sad
 E-mail: demjangrubic.f@gmail.com

Qualifications

 MDCS – Bubble Cup 2011

60

Problem R1 10: Space Bowling (ID: 1775)

Time Limit: 1.0 second

Memory Limit: 64 MB

The inhabitants of planets orbiting around the pulsar PSR 2010+15 enjoy playing space bowling. A few

cylindrical pins of unit diameter are set on a huge field. A player chooses a certain point of the field and

rolls a ball from this point, trying to destroy as many pins as possible. After the ball is released, it rolls in a

straight line, touching the surface all the time before rolling away from the field. If the ball touches a pin,

this pin dematerializes, and the ball doesn't change direction. To score a strike, the player has to destroy at

least pins in one shot.

Unfortunately, aliens haven't yet invented a machine that would return the balls that rolled away from the

field. Instead, they use a machine that materializes a new ball from vacuum before each shot. A player

enters the diameter and in a second he obtains a ball of exactly the same diameter.

It is time for an alien Vas-Vas to roll a ball. There are pins standing on the field at the moment. Help Vas-

Vas to determine the minimal diameter of a ball, he can score a strike with.

Input

The first line contains space-separated integers and (). The -th of following lines

contains space-separated integers and (), which are the coordinates of the

centers of pins. All pins are situated at different points.

Output

Output the minimal possible diameter of a ball which can be used to score a strike, with absolute or relative

error not exceeding 10−6. If a strike can be scored with a ball of arbitrarily small diameter, output

“0.000000”.

Sample

input output
5 4

0 4

0 6

6 4

6 6

3 0

1.0000000000

Solution:

Let us first make a couple of observations. Suppose that the starting position of the ball of radius is ,

and that we roll it in some direction . The gray area in the Figure 1 (plus the area of the ball) represents all

points that are touched by the ball. Note that moving the ball to the left, in the opposite direction from ,

Qualifications

MDCS – Bubble Cup 2011

61

only increases this area, and hence we can move it „infinitely“ to the left without losing anything - Figure 2.

This allows us to completely ignore the starting position of the ball, and consider only the strip of width as

the area affected by the ball. With this new setting in mind, our goal is to find minimum such that there is

a strip of width that intersects at least balls.

Since brute-forcing our way through all possible strips is too slow, we need an observation about what the

solution looks like. Let us consider an example with the set of pins and a possible solution stripe as on the

Figure 3, and suppose that is .

It is easy to see that the given solution can be improved, shortened, by moving the upper boundary of the

stripe down and the lower boundary of the stripe up.

Moving the upper boundary further down causes the loss of intersection with the topmost pin, and hence it

would no longer be a possible solution. Thus we can conclude that in the optimal solution there is at least

one pin such that the upper boundary is tangential to it and its center lies outside of the stripe (and a

Figure 1: Rolling of the ball Figure 2: Moving the ball to the left

Figure 3: Pins and solution stripe

Figure 4: Improved solution

Qualifications

 MDCS – Bubble Cup 2011

62

similar statement holds for the lower boundary). If that is not the case, we can move the upper boundary

further towards the lower one until this happens, because in order for the ball not to be intersected by the

stripe anymore we need to pass the moment when its upper bound is tangential to it. Hence stopping

exactly at that moment does not change the number of intersections.

However, for two fixed pins, there are infinitely many stripes that are tangential to them (one from the

below and one from above). Note that only those stripes that are tangential to at least one additional pin

are candidates for the optimal solution, because otherwise we could rotate the stripe in the direction that

decreases its width (rotate „around“ two fixed pins) until this happens (Figure 5).

We can now easily transform these observations into a solution. Since we know that the upper and lower

boundary of the solution stripe must be tangential to at least one pin, and that it further needs to be

tangential to at least one additional pin, we can assume that the center of this additional pin will be above

the upper boundary. Hence, we can iterate over all pairs of pins, and fix them as pins that are

tangential to the solution stripe and whose centers are above it. After that we just need to find a pin that

will be tangential to the lower boundary. Note that we can do this greedily, by selecting the th

farthest pin from the line that goes through the centers of pins and (and that is also below it, since we

are looking for the lower boundary). Taking any other pin gives either a strip of larger width or too few

intersections. Since there are pairs, and for each pair we can find the th farthest one in , the

total running time is . Note that for an easier implementation, selecting can be done in (sort

and then pick) which gives , which is still good enough for .

Solution by:
Name: Rajko Nenadov
School: ETH Zurich
E-mail: rajkon@gmail.com

Figure 5: Rotation

Qualifications

MDCS – Bubble Cup 2011

63

Problem R2 01: Funny Card Game (ID: 1166)

Time Limit: 1.0 second

Memory Limit: 16 MB

Of course all of you want to know how to become ACM world champions. There is no exact answer to this

question but it is well known that the champions of the last two ACM World Finals enjoyed playing the

following funny card game. Two or more players can play this game simultaneously. It is played using a

standard 54-card deck. At the beginning the players sit forming a circle. One of the players shuffles the deck

and then he deals the cards in clockwise order starting from the neighbour on his left. He deals the top card

of the deck to the current player each time. He does it until each player gets five cards. Then he takes the

top card of the deck and lays it onto the table face up and he also lays the remainder of the deck nearby

(these cards are laid face down preserving their original order). The card laid by the shuffler is considered

as the first turn of the game (as if it was made by the shuffler to the player on his left).

The normal game flow as following: the player should cover the last laid card with the card of the same suit

or value. If he has none, he takes one card from the top of the deck and again checks this condition. If still

there are no matching cards, the move will go to the next player (his left neighbour). But for some cards

special rules are applied:

1. If the laid card is 6, the player takes one card from the top of the deck and skips his turn

2. If the laid card is 7, the player takes two cards from the top of the deck (if there is only one card in

the deck, he takes just it) and skips his turn

3. If the laid card is Ace the player skips his turn without taking any cards

4. If the player lays Queen, he himself announces the suit of the card it should be covered with

5. Eight is one of the most powerful weapons in this game. When it is laid, the next player has to

cover it in any case. If he cannot cover it with his cards he has to take cards from the deck, until he

is able to cover it.

6. And the most important card in the game is the King of Spades. If it's laid, the next player takes 4

cards from the top of the deck (if there is not enough cards in the deck, he takes all of them) and

skips his turn.

You may assume that the deck is looped and the laid cards are immediately moving to the bottom of the

deck. So it can happen that the player has to cover the card by itself. We should say some words about

Jokers. Jokers can have any card value by the wish of the player who has it. If the player lays the joker, he

assigns a definite card value and suit for it, so this Joker has this assigned value until another player takes it

from the deck (if it ever happens). The player is free to use or not to use the Joker whenever he wants (if it

is his turn to play, of course). If the player is left without any cards in his hand, he is considered a winner

and the game continues without him (his left neighbour becomes the left neighbour of his right neighbour).

If there is only one player left, he is the looser, so he is called a Japanese Fool (it is a Russian name of this

game). We are interested in the following situation. Consider the moment when only two players are left in

the game. If one of them has a special combination of cards, it may happen that he can lay out all his cards

in a some sequence so that the other player won't get a move (he'll just have to take cards from the deck

Qualifications

 MDCS – Bubble Cup 2011

64

and skip turns) and will be the loser — provided the first one finds the winning sequence.

You will be given the position of the game in which only two players are left. Your task will be to determine

whether such a winning sequence for the first player exists or not. We will consider that the first player

have already taken all cards from the deck that he had to (if any), so he cannot take any cards from the

deck. We will also consider that if the last laid card is a skip-turn card, it was the second player who skipped

the turn.

Input

The first line contains cards of the first player separated by spaces. The second line contains the last laid

face up card. The card description consists of two characters. The first of them corresponds to the card

value (2-9 for digits, T for 10, J for Jack, Q for Queen, K for King and A for Ace). The next describes the suit

of the card and may be one of the following: S for Spades, C for Clubs, D for Diamonds or H for Hearts. Joker

is represented by a character '*'. If the last laid card is Queen, it is followed by a suit letter. If the last laid

card is a joker, then the '*' is followed by an actual card description (the card specified by the player who

laid the Joker).

Output

The first line should contain a single word YES or NO signalling whether the winning sequence exists. If the

answer is positive the second line must contain the winning sequence of cards separated by spaces. As in

the input, the Joker is to be followed by a card specification and the Queen should follow a suit letter. If

there is more than one solution you may output an arbitrary one.

Sample

input output
6C QD 6S KS 7S *

*QHS

YES

7S KS 6S 6C *6D QDS

Solution:

This problem was tricky in terms of understanding and coding, but the idea hiding behind it is more or less

standard.

First, let’s read the text of the problem closely and see if we can draw some preliminary conclusions.

 The part about picking up cards from the deck is obviously irrelevant to the solution so we can

simply ignore it wholesale.

 Let’s call cards that do not have a special rule attached to them ordinary cards. It is clear that if the

first player has two or more ordinary cards in his hand he cannot finish the game, and if he has

exactly one ordinary card the only way to finish is to play that card last.

 Queens and eights can for our purposes be considered ordinary cards as well (although we will

have to pay attention to the case when a queen is the last laid card at the start).

 There is no point to play a joker as a card you already possess in your hand – it is always smarter to

simply play that card instead and keep the joker because it is more versatile.

Qualifications

MDCS – Bubble Cup 2011

65

 There is no point to play a joker as an ordinary card.

From all this, we can conclude that the largest amount of cards we will be dealing with at any point is 16 – 4

sixes, 4 sevens, 4 eights, the King of Spades, two jokers and one ordinary card.

The simplest way to solve this is to use backtrack to try all possible paths until we reach one that

successfully gets rid of all the cards. Let’s try to estimate how much time this will take.

The highest amount of possible moves in a position (the branching factor) is 7 (if the last card was 6, 7 or 8

of spades and we have at least one joker in hand – note again that we should never use jokers as

replacements for cards we currently possess, and that if we have an ordinary card we should never play it

until the very end). Of course, we can be in that kind of situation at most five times (until we spend the

three spades and the two jokers), and otherwise the branching factor cannot be over 6. Also, we never

have a meaningful choice when we have reached the last special card (even if it is a joker). So the upper

bound on the number of positions we can go through is .

Note that a much better upper bound can be calculated by examining the problem more closely and that

card configurations that come close to that bound will have many solutions, so only a small portion of the

search space will have to be traversed before we find one. This means that it is actually possible that a very

fast implementation of this approach using some good heuristics will pass all the tests. However, a much

safer way is to use a bitmask to store the positions we have already been in and thus avoid unnecessary

calculations.

To keep all data about a position during our move we will need the following information: which cards from

our original hand are still present (1 bit per card for 13 special cards and 2 more bits to keep track of the

jokers) and which card is laid on the table (5 more bits – remember that the only time this can be a non-

special card is at the very beginning so we use 4 bits to specify a card, plus one more bit to know if it was

actually a joker posing as that card). This gives a total of possible positions at most.

For each position all we care about is whether it leads to a solution, which takes up just one bit. If a solution

is found, we can easily reconstruct the path since we are already storing the last-played card for every step

of the way.

Now, since we know that we never have to go through any position more than once, we can conclude that

the overall time is , where is the number of special cards (or jokers) in our original hand. Since we

have seen that cannot be larger than 15, we finally conclude that, even after including the constant

factors, we still have more than enough time to calculate everything. The memory complexity is also ,

but it is probably simpler to just allocate bits (or even booleans) in advance and not worry about it

afterwards.

There are several small obstacles involved in the implementation, such as correctly interpreting the input

(including cases when a joker or a queen is the last laid card) and dealing with jokers, but we will leave that

to the reader.

Solution by:
Name: Andrija Jovanović
School: School of Computing, Belgrade
E-mail: ja.andrija@gmail.com

Qualifications

 MDCS – Bubble Cup 2011

66

Problem R2 02: Shots at Walls (ID: 1390)

Time Limit: 3.0 second

Memory Limit: 64 MB

A new pistol is being tested. The pistol can fire shots with variant bullet speeds. In some points of time

shots are fired from the point of origin with certain horizontal speeds, and in some other points of time

walls are built on a horizontal platform. The walls are non-singular segments lying on lines that do not go

through the point of origin. The walls may intersect. For processing of the test results, you are to determine

the time that each shot bullet had been flying for. You can assume that the speed of the bullet after shot is

constant.

Input

Each line of the input begins with either "shot", "wall", or "end" (without quotes). The number of lines

doesn't exceed . After "shot", the two coordinates of speed of the bullet are listed; the speed cannot

be zero. After "wall", the four numbers follow, being the coordinates of wall's beginning and end. "end"

denotes the end of the input. All the coordinates are integers whose absolute values doesn't exceed 10000.

All the events are listed in chronological order, and time intervals between the events exceed the time

needed to build a wall, or the time needed for bullet to reach the next wall or end of the proving ground.

Output

For each of the shots, you must output the single number, on a line by itself: the time that the bullet had

been flying for, with precision of 10−6. If the bullet doesn't hit any wall, you must output "Infinite" instead of

a number.

Sample

input output
shot 1 0

wall 1 0 0 1

shot 1 1

shot -1 3

wall 1 0 -1 2

shot -1 3

wall 1 1 -1 1

shot -1 3

wall 2 3 2 -3

wall 3 -2 -3 -2

shot 1 -1

shot 40 -39

shot 9999 -10000

shot -1 -1

shot -3000 -2000

shot -3001 -2000

shot -3000 -2001

shot 1 0

shot 1 1

wall -1 2 10 -10

Infinite

0.50000000000000000000

Infinite

0.50000000000000000000

0.33333333333333333333

2.00000000000000000000

0.05000000000000000000

0.00020000000000000000

2.00000000000000000000

0.00100000000000000000

Infinite

0.00099950024987506247

1.00000000000000000000

0.50000000000000000000

1.00000000000000000000

0.90909090909090909091

0.43478260869565217391

0.83333333333333333333

2.00000000000000000000

3333.33333333333333333

Qualifications

MDCS – Bubble Cup 2011

67

shot -1 1

shot 0 1

shot 1 1

shot 1 0

shot 1 -1

wall 0 -10000 -10000 0

shot -2 -1

end

Solution:

We can consider each shot having two attributes – direction and speed. The direction is the polar angle at

which the shot is fired. We will use it to determine the wall which the shot hits. The speed is the change of

each coordinate for 1 time unit and it is given in the input. Let's denote them with the change in -

coordinate, and , the change in -coordinate. Once we know which wall is shot, if any, we can easily find

the time the bullet had been flying for.

We find the equation for the line of the wall in the form . We know that the shot crosses

the wall - so the bullet crosses the line. The bullet is at point at time . From this we have

the equation . We can find from this equation.

Now the tricky part: how to find which wall is hit by the bullet? For each shot we know the direction – an

angle from segment [. We must use some data structure so we can do two things with it:

 answer the question: which wall is hit if the direction of the shot is α ?

 insert a new wall and update the data structure.

At each time we keep a sequence of intervals and a wall corresponds to each interval. It looks like: []

– wall for [], where . There might be gaps in

this sequence of intervals. When there is a gap the bullet hits no wall and we must output “Infinite”.

Let's imagine we add a wall. We know the coordinates of the wall's both ends, so we can find their polar

angles – say they are and (we have to be careful when the wall crosses the axis, i.e. when the

angle should be in the interval). If no other interval we had in our structure before intersects with

[] we can just add it to the data structure and say it corresponds to the current wall we add. This

means that no other wall had covered the interval []

Otherwise we have to process each interval which intersects it. The order in which we process them

doesn't matter. Imagine we have to process an interval [] which crosses []. First we remove

[] from the data structure. We see the walls corresponding to both intervals and decide which is

closer to the origin at each angle – we get some new intervals. We are left with a part of [] – which is

the interval which intersected the interval we add. This part is added to the data structure – it won't cross

anything else and we are done with it. We have a part of [] – the one we try to add which doesn't

cross the part of [] we added in the data structure. But this interval can cross another interval from

our structure. While we are left with a part of the interval we are trying to add on this step which crosses

an interval from the data structure we have to process those intervals and split them into smaller intervals.

A little more detail about the data structure: it has to support fast searches, erases and insertions. In C++

we can use the set class to store the intervals. We just need to predefine the comparison operator so the

intervals are sorted as we want. We have a number of disjoint intervals. We want the interval [] to

Qualifications

 MDCS – Bubble Cup 2011

68

be before [] when it is entirely to the “left” of it i.e. . If we overload the comparison

operator like this we can easily find the intervals which our interval intersects. We just need to search for

our interval in the set and the one returned will be one of the intervals intersected by ours. How to find

which wall is hit if the direction of the shot is ? We just need to search for the interval [].

Solution by:
Name: Yordan Chaparov
School: 'Atanas Radev' Mathematics High School, Yambol, Bulgaria
E-mail: ancho_mg@abv.bg

Qualifications

MDCS – Bubble Cup 2011

69

Problem R2 03: Wires (ID: 1460)

Time Limit: 1.0 second

Memory Limit: 32 MB

Connoisseur of sound Vova decided to update his equipment. One of the ways to improve the sound is to

use point-to-point wiring with heavy wires, and the wires must be as short as possible to diminish the

resistance. It is clear how to connect two terminals, it is also easy to find an optimal wiring for three

terminals. But what about four terminals?

There are four terminals on a circuit board. You should connect them (there must be a contact between

each pair of terminals). It is permitted to add at most three auxiliary terminals and to connect terminals

with wire pieces. The goal is to minimize the total length of the wires.

Input

 is the number of tests

 the first test

x3 y3

x4 y4

x1 y1 the second test

x2 y2

x3 y3

x4 y4

…

 , are integers, , no two points coincide in each test.

Output

For each test, you should output a line containing the minimal possible length of the wires. The number

must be given with at least four fractional digits.

Sample

input output
2

0 0

2 0

2 1

3 0

0 0

0 1

1 0

1 1

3.9093

2.7321

Qualifications

 MDCS – Bubble Cup 2011

70

Solution:

This problem in combinatorial optimization is known as the Steiner tree problem. The original problem

(also known as Euclidean Steiner tree problem) is: Given points in the plane, the goal is to connect them

by lines of minimum total length in such a way that any points are connected directly by a line segment,

or via other points and line segments. It may be shown that for the Euclidean Steiner problem points added

to the graph (called Steiner points) must have a degree of three, and any two of these three line segments

must form a degree angle. It follows that the maximum number of Steiner points that we need to add

is – , where is the initial number of given points. In this task we have 4 points, so the number of

Steiner points here equals . We are not going to prove this, instead we will just show how to find Steiner

points and give one of the ways to implement it.

We can split the task into two smaller tasks, based on whether the starting quadrilateral is convex or not.

If the quadrilateral is not convex, we take the points that form the triangle which contains the last point

and find Fermat's point for this triangle. If Fermat’s point is inside a triangle then we reach the minimum

total length by connecting all points with it, else we need to connect the point in the triangle with the

other points.

Figure 1 - is Fermat’s point of triangle

If the quadrilateral is convex, we need to find two Steiner points using the following algorithm:

 We construct equilateral triangles using opposite edges of the quadrilateral and mark their

third points with and (and are outside of the quadrilateral)

 We construct circles and around these triangles

 Intersection of line with circles and consists of two points (possibly identical) and .

 Points and are Steiner points of that quadrilateral.

We get the minimal network if we connect the points like in the Figure 2.

Qualifications

MDCS – Bubble Cup 2011

71

Figure 2. Example for the convex case

If these points are outside of the quadrilateral, then it is best not to include any of them, and connect the

starting points by edges of the quadrilateral like in the Figure 3.

Figure 3. Another example for the convex case

Since it is always better to avoid many special cases in the implementation of a geometry problem, here the

easiest way to do that is the following: we find Fermat’s point for each points of the quadrilateral (that

way we eliminate the case in which the quadrilateral is not convex), and find Steiner points for both pairs of

opposite edges. This way we get points which we can include in getting the minimum network. Now we

try out all cases for adding points, for adding one point, and without adding any points (which is

 cases). When we have chosen the points we want to add, we make the minimum

spanning tree where vertices are the points we have, and edges exist between every two of the vertices

and their weights are distances between the points. From all the cases, we take the smallest tree we have

got as the solution. With such implementation we don’t need to manually check whether the quadrilateral

is convex nor whether Steiner and Fermat points are inside or outside of the quadrilateral.

Solution by:
Name: Dušan Zdravković, Dimitrije Dimić, Stefan Stojanović
School: Gymnasium “Svetozar Marković”, Niš

 E-mail: zdravkovicdusan@hotmail.com, dimke92@gmail.com, dolarlord@gmail.com

Qualifications

 MDCS – Bubble Cup 2011

72

Problem R2 04: Spy Satellites (ID: 1478)

Time Limit: 1.0 second

Memory Limit: 64 MB

Martian spy satellites have taken a photo of an area on the dark side of the Moon. In this photo, only a lot

of light points are seen in the dark. The Martian general suggests that the points are secret objects at lunar

military bases. He wants to know how many bases there are on the Moon. The Martians suppose that the

bases are seen at the photo as clusters of light points and satisfy the following property: the distance

between any two objects at the same base is strictly less than the distance from any object at this base to

any object at any other base. The area on the photo can be assumed flat, and the distance between objects

having in the photo coordinates (A,B) and (С, D) is assumed to be √ .

Input

The input contains several tests separated by an empty line. The first line of each test contains the number

of objects on the photo . The next lines contain coordinates of the objects, two integers separated by a

space per line. Absolute values of all coordinates do not exceed . After the last test there is an empty

line and the number 0. The sum of all in the input does not exceed , the sum of all does not

exceed 400 000, and the sum of all does not exceed 250 000 000.

Output

For each test, you should output all possible numbers of bases on the photo in the form of a line of

length N consisting of zeros and ones. For example, the line 110 means that there may be one or two bases

on the photo, and the line 011 means that there may be two or three bases.

Sample

input output
4

-1 -1

1 1

1 -1

-1 1

4

1 0

2 4

1 1

0 1

0

1001

1101

Solution:

First let's see what the problem actually was.

Given a set S of points in the plane, we say that a subset of is a valid 'cluster' for if and only if for each

Qualifications

MDCS – Bubble Cup 2011

73

point in we know that the (Euclidean) distance between any point from C and is strictly greater
than the distance between any pair of points in .

We'll call a valid 'clustering' of a set some family of valid disjoint clusters of , such that the union of all
elements of yields , or in other words, each point is a member of exactly one cluster.

In this problem we're interested in the possible sizes can have. We have to verify for each size of from
 to | | whether that size can be achieved by some valid clustering of .

For starters, let's gain some intuition about the structure of these clusters, and get some insight into how
the sizes of might be calculated. For example, we might look at a cluster as if it were a graph: We have an
edge between each pair of points in the cluster with weight equal to their distance. This graph is obviously
complete.

Now, if we're given two clusters, namely and , and we're given the solutions and to and
respectively as recursive sub-problems of the initial problem on cluster (where [] tells us whether or
not can be decomposed into disjoint clusters, so and are Boolean vectors), we can construct the
solution for the cluster , which is equal to the union of and . This is done by noting that if [] and
 [], then []. We'll call this binary operation of combining two solutions 'multiplication', and our
operator will be . Thus .

It's easy to see that this idea generalizes any number of initial clusters so given solutions
we have

The idea of the solution is to start with | | clusters, each equal to a single point in , and then to grow the
clusters by increasing the allowed distance.

The algorithm will be quite similar to Kruskal's algorithm for finding the minimum spanning tree of a
weighted graph.

We'll be adding the edges to the graph of all points in increasing order of their weight. If we find a set of
edges of equal weight, we'll add them all at once. After we add some weight (perhaps more edges of the
same weight), we’re interested if there's a connected component in this graph that is also its complete sub-
graph - as in that case we know we've identified a new cluster. When we find such a cluster , we can look
at the clusters , , that it was made from (the clusters that were connected by adding
edges to form). We may assume that solutions are already known, so we get by
multiplying all of these solutions.

Figure 1 Figure 2 Figure 3

Qualifications

 MDCS – Bubble Cup 2011

74

Here we see figures showing some steps of the algorithm on an example. In the beginning each point is a
cluster of its own (Fig 1). The first step adds all the edges with weight equal to (Fig 2). After adding some
more edges we’ll have three valid clusters (complete graphs). In the end they will all merge into a single
cluster and in order to calculate its solution we will use the solutions for those three clusters.

Next we can analyze the complexity of this idea. The heaviest operation in this algorithm is obviously
multiplication, which seems to take | | time.

In the beginning we have | | clusters, and merging of any two clusters decreases their number by one, thus
we will make a multiplication | | times. The overall complexity of the algorithm looks like | |

Note that the multiplication algorithm can be optimized by doing breaks:

for(int i = 0; i <= |S|; ++i) { *

 if(s0[i] == 0) break;

 for(int j = 0; i+j <= |S|; ++j) **

 if(s1[j]) s[i+j] = 1;

}

Now the next idea I will present here justifies the name of our merging operation.

Let's look at these two polynomials:

 [] [] []
 [| |]

| |

 [] [] []
 [| |]

| |

It's easy to verify that [] if and only if the 'th coefficient of is nonzero.

As the multiplication of two polynomials can be done in | | | | using FFT (Fast Fourier Transform),
we've just found a | | | | algorithm for the problem.

You may note that the | | algorithm with optimizations probably runs faster in practice.

Implementation issues

For the actual implementation of this algorithm one may use the disjoint-set structure. For identifying

complete graphs we only need to know the number of edges and nodes in some component. To find the

solution, we also need to know the solutions of all active clusters, and id’s of clusters that merged into

some other cluster.

Exercise 1: Solve the problem with a small modification: for each size find the number of decompositions
that yield clusters.

Exercise 2: Show that a really simple observation converts the first algorithm to an algorithm with overall
complexity of | | , which beats the FFT one.

(Hint: a trivial change to the lines marked * and ** makes it an overall | | algorithm, you should note
that both loops can go to the actual size of the given cluster, not all the way to | |, which is quite obvious,
but it’s not that clear how it gives a quadratic complexity.)

Solution by:
Name: Gustav Matula
School: XV. Gimnazija Zagreb
E-mail: syntax.error.ffs@gmail.com

Qualifications

MDCS – Bubble Cup 2011

75

Problem R2 05: Square Country 3 (ID: 1667)

Time Limit: 0.5 second

Memory Limit: 64 MB

The governor of Yekaterinozavodsk region had to deal with ambassadors from one of the nearby states —

Square country. All square inhabitants of this country loved the squares of integers. So, they declared to

the governor that they would build a square metropolitan from Yekaterinozavodsk to one of the suburbs

only if he would be able to fill a rectangular table with squares of different positive integers in such

a way, that the sum of numbers in each row and in each column would also be a square. The governor

wasn't a square man, and also he wasn't good in maths, so he asked for your help.

Input

The first line contains an integer — the number of test cases (). The following lines contain

the pairs of integers and ().

Output

For each test case output the required table: lines with numbers in each line. All numbers in the table

shouldn't exceed . If there is no such table, output . Answers for different test cases should be

delimited with an empty line.

Sample

input output
3

1 2

3 1

2 2

9 16

1024

25

274576

4761 8464

627264 1115136

Solution:

The first thing we should notice is that, as in many other problems at Timus, the part “If there is no such

table, output -1” is deceiving – actually an answer always exists. Most of the competitors probably saw this

on the discussion board for the problem, so it will not be analyzed further (it will be shown later that there

is always a solution by generating the solutions themselves).

Now, before going into the solution itself we should make some crucial observations:

1. The first one is rather obvious – if we multiply a square by a square the resulting number is also a

square (for example , here and are squares, and so is).

2. The second one follows directly from the first one – if we multiply a vector of squares (i.e. sequence

Qualifications

 MDCS – Bubble Cup 2011

76

of integers that are squares) by a square, the resulting vector also contains only squares. This is the

first observation applied to each of the elements of the vector.

3. The third one uses the first and second one: if we have a vector of squares, whose sum of elements

is also a square (i.e. a valid row or column of the required rectangle of numbers), then if we

multiply it by a square, the resulting vector is also of the desired type. Let’s see why this is correct.

If we have a square number and a vector , and each of the numbers is a

square, as is their sum , then using observation 2 we know that the vector

 is also a vector of squares, and using observation 1 we know that the

sum of the numbers, which is is also a square.

4. The last one is the third one applied several times: If we have two vectors and of squares of

sizes and respectively, whose sum of elements is also a square, then the matrix is

of the required type (each of its elements is a square and the sum of each row and column is also a

square).

Now we (almost) have a way to generate matrices of the desired type. Just generate two vectors of sizes

and , respectively, and then generate the matrix. Generating such vectors is rather easy – just generate

vectors of random numbers squared and check if their sum is also a square until you find one. These

vectors are relatively common, so it doesn’t take much time for a computer to find one.

For example if and , we can chose the vectors and to get:

 4 9 36

9 36 81 324

16 64 144 576

We see that the resulting matrix is of the type we want – all numbers are squares and the sums of the rows

and columns are also squares.

Why isn’t this solution correct? Well, looking at the statement “…only if he would be able to fill a

rectangular table N × M with squares of different positive integers in such a way, that the sum of numbers

in each row and in each column would also be a square.” we see that we did nothing to guarantee that the

numbers will be different. In fact, here is an example that shows that our current solution is wrong

(although the matrix has squares inside and the sum of each row or column is also a square, there is a

duplicate number – 36):

 1 9 16 25 49

4 4 36 64 100 196

9 9 81 144 225 441

36 36 324 576 900 1764

From here on there are a few ways we can go to fix this issue. One of them is applying some number theory

and setting restrictions on the vectors that would guarantee that there are no duplicates in the final matrix.

For example if the vectors we use are squares of prime numbers, and all used prime numbers are unique,

this automatically means that the resulting matrix has no duplicates. However, this approach is not as easy

as it seems, because generating the vectors becomes more difficult.

Qualifications

MDCS – Bubble Cup 2011

77

We will show another solution that is much easier to think of. It turns out that duplicate numbers are rare

(this can also be seen from the examples above and if you generate some longer ones and try it by

yourselves). In fact, if we try few random (valid) vectors we quickly find such ones that do not have

duplicates in the resulting matrix. So hence the solution – just generate random vectors until you end up

with a matrix that has no duplicates. The generation of the vectors should be done relatively smart though,

otherwise this solution might time out. The only optimization my solution used in order to fit in the time

limit was to store the vectors with different sizes once generated and try them in other combinations. The

most time is used to generate valid vectors, so this reduces the time required for this process dramatically.

There is also a safer solution, however. Since the input is quite limited – only numbers up to - we can

easily generate the vectors for the different combinations of offline, put

them in the code and just generate the matrix when given a query. This is probably the easiest and safest

way (there is no test that can break your solution even if eventually additional tests are added). Since the

previous solution is actually really close to the time limit even if not optimized, generating all the vectors

doesn’t take much time. All that is left to be done is put them in the code and write a simple loop that

prints the matrix. The complexity of such solution is , where is the number of queries, is

the number of rows and is the number of columns of the current query, which is clearly well below the

time limit.

Solution by:
Name: Alexander Georgiev
School: Sofia University, Sofia, Bulgaria
E-mail: espr1t.net@gmail.com

Qualifications

 MDCS – Bubble Cup 2011

78

Problem R2 06: Monkey at the Keyboard (ID: 1677)

Time Limit: 5.0 second

Memory Limit: 64 MB

The “Entertaining math” showmen decided to ensure their audience in the well-known fact that a monkey

randomly pressing keyboard buttons will sooner or later type the required word according to the

probability theory.

The monkey taken to the shooting from the city zoo already can type — every second she types one of

first letters of English alphabet with equal probability. Fortunately, the word prepared by the showmen also

contains some of these letters only.

However, prior to giving a keyboard to the monkey, the showmen want to calculate the time it would take

her to finish the job. More precisely, after how many seconds the given word will appear in the typed string

for the first time?

Input

The first line contains an integer — the number of letters the monkey can type (). The

second line contains a word proposed by the showmen. The word can contain only the first N lowercase

Latin letters. Its length is positive and doesn't exceed 30000.

Output

Output the expected time the monkey will need to type a word, rounded down to the nearest integer.

Sample

input output
2

aa

6

2

ba

4

Solution:

The problem is to find the expected time of the first occurrence of a given string in a random sequence

(whose elements are from a given finite alphabet). In short, we have to find the position in an infinite

random sequence at which the given string occurs for the first time, on average. Although the solution to

this problem is quite beautiful (considering the final form) and could be found using good intuition, formal

proof and complete understanding requires some strong background in math probability (including theory

of stochastic processes and Markov’s chains). We present a solution with non-formal proofs which should

be understandable to high school-level students. For a formal solution, one can see [1].

Denote by X size of the alphabet, by S the given string, by N its length and by A an infinite random sequence

in which each element of given alphabet occurs with equal probability. We say that S occurs in A at position

Qualifications

MDCS – Bubble Cup 2011

79

pos for the first time if , for (S is 1-indexed) and there is no other position pos’ <

pos for which that holds. Let = probability that S occurs at position i for the first time. Denote by SOL –

solution to our problem. Then, by definition of expected value of random variable, we have

 ∑

However, computing solution using the previous formula is not trivial since those probabilities are not easy

to calculate and that’s why we will use a different approach. Imagine we observe sequence A and all

occurrences of S in A. Let’s divide those occurrences in 2 categories: good and bad ones. Definition of good-

bad is recursive: first occurrence of S in A is good; every other occurrence of S is bad if it overlaps with

some earlier good occurrence, otherwise it is good. For example, if and alphabet is , all

positions of good occurrences of S in following sequence are maked bold:

Also, denote by F(S) the frequency of string S, i.e. the number of its occurrences per length (of random

sequence). Since all characters are equally probable, frequency only depends on string length and since the

sequence is random, we can consider every successive N characters as an independent random string of

length N (despite the fact that they overlap) – therefore

 .

 Now, let’s mark the position of every good occurrence of S in the random sequence – that way we get an

infinite sequence of positions Observe that represents the position of the first

occurrence of S in A if we imagine that A starts at . Therefore we have a (infinite) collection of values

SOL and we need the average value of those. It is easy to see that the average value for first n marks is

And therefore

 Notice that is very important that we only count good occurrences of S – otherwise some of our SOL’s

from collection will not be valid because they had a greater probability of occurring, as some prefix was

already there. Also notice that a necessary condition for existence of bad occurrences of S is that S has a

prefix which is at the same time a suffix of S – we will call such substrings infixes. For example, if

 , than S has two infixes: A and ABA of lengths 1 and 3, respectively. Let

 | be a set of all S’s infix lengths. (). As we will see,

those sets fully determine value for a given string S.

Now we have to calculate the appropriate frequency. Let F(S) = s, F(good occurrences of S) = g, F(bad

occurrences of S) = b. Since every occurrence of S in sequence A is either good or bad (but not both), we

have s = g + b. Also, the probability that some good occurrence of S will produce a bad one starting at

position (within S) is equal to

 if i (since we need the next N - i elements to be exactly

), and 0 otherwise. This directly implies that the expected number of bad occurrences starting from

position of some good one is also

 , because there can be only 0 or 1 such bad occurrences. It

follows that the expected number of bad occurrences produced by a (fixed) good occurrence of S is equal

Qualifications

 MDCS – Bubble Cup 2011

80

to

 . Therefore we have , which implies

. Combining all results so

far we finally get

 (∑

) ∑

It only remains to calculate all infixes of the given string S. But this problem is solved by the well-known

Knuth-Morris-Pratt (KMP) algorithm (more precisely, its subroutine). During pre-processing of string S the

algorithm calculates its , defined as [] length of the longest prefix of S which is also a suffix

of , in linear time (of length of S). It is not hard to see that { [] [[]] } For a detailed

description of the algorithm, see [2]. After that, it is a matter of simple calculation. If we represent our

polynomial as

than this problem can be solved in . Note that Big Integer arithmetic is needed.

This is very a interesting problem and we can get some interesting facts after result analysis, for example:

expected sequence length is always an integer, it heavily depends on string’s self-repetition properties, all

strings of same lengths have equal frequencies but not expected sequence lengths, expected sequence

length for ABCDE is almost twice as short as for AAAAA (why?) etc…

References:

[1] Terry R. McConnell, The Expected Time to Find a String in a Random Binary Sequence

[2] T. Cormen, C. Leiserson at. al., Introduction to algorithms, MIT Press

Solution by:
Name: Nikola Milosavljević
School: Faculty of Mathematics, University of Niš
E-mail: nikola5000@gmail.com

Qualifications

MDCS – Bubble Cup 2011

81

Problem R2 07: Mnemonics and Palindromes 2 (ID: 1714)

Time Limit: 3.0 second

Memory Limit: 64 MB

At last, Vasechkin had graduated from the university and it was the time to choose his future. Vasechkin

recalled all the inadequate outcomes, unsolvable problems, and incomprehensible problem statements

that he encountered at programming contests, so he decided to join a program committee. Soon he was

asked to prepare a problem for the forthcoming student contest, which would be dedicated to binary

alphabets. The problem had to fall under that topic. However, Vasechkin wanted the participants to

remember his problem for a long time, so he decided to give the problem an unusual and complicated

name.

Vasechkin decided that the name had to consist of the letters “a” and “b” only and contain exactly

letters. In addition, the name had to be as complex as possible. The complexity of a name is defined as the

minimal number of palindromes into which it can be decomposed. Help Vasechkin to invent the most

complex name for his problem.

Input

The only line contains an integer ().

Output

Output the required name of length consisting of the letters “a” and “b” only. If there are several such

names, output any of them.

Sample

input output
6 aababb

Solution:

On the Timus online judge, this problem is tagged as the “hardest problem”. Before the Bubble Cup

qualifications, only contestants solved it. The small acceptance rate is not a consequence of its difficulty.

The reason is its method for the problem analysis – “I will sit down and try anything that is reasonably good

until I find some general pattern”. The source of this problem is NEERC 2009, Eastern subregional contest. It

is interesting that during the contest only one team attempted to solve this problem.

The idea behind this problem is the following problem from the International Mathematical Tournament of

Towns:

Prove that every binary word of length 60 can be divided into 24 symmetric subwords and that the number

24 cannot be replaced by 14.

As we mentioned, road to the solution is very bumpy, so here we are only going to present the algorithm.

Complete analyses of this algorithm and its proof can be found in [1].

Let us denote with , where is a binary word, the minimal number of palindromes whose product is

Qualifications

 MDCS – Bubble Cup 2011

82

equal to . We need to find a value , where

 |

For small numbers of , can be computed with simple backtracking and some dynamic programming:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 1 2 2 2 2 3 3 4 4 4 5 5 5 6 6

With this data we can suggest and prove a precise formula for

Theorem For every number , where , we have that

 [

] [

]

Theorem shows that the “worst” word of length n is very asymmetric: it cannot be divided into less then

palindromes. It is interesting that a random binary word is far from being symmetric, it cannot be divided

into less then

 palindromes.

After playing a little bit with binary strings, many contestants found different patterns for requested string.

One way (that is presented in paper [1]) is:

 {

 ⟦ ⟧

where .

Main fact needed for proving this is following

Lemma For every the word does not contain a palindrome with length greater or

equal to .

Implementation of this method is pretty straightforward. Time and memory complexities are linear.

References:

[1] Olexandr Ravsky, One the palindromic decomposition of binary words, Journal of Automata, Languages

and Combinatorics, 2010

Solution by:
Name: Andreja Ilić
School: The Faculty of Mathematics and Sciences, Niš
E-mail: andrejko.ilic@gmail.com

Qualifications

MDCS – Bubble Cup 2011

83

Problem R2 08: Expert Flea (ID: 1763)

Time Limit: 0.5 second

Memory Limit: 64 MB

A flea has jumped onto a round table used in the popular quiz “What? Where? When?” In this quiz, the

questions are put inside envelopes lying on the sectors of the round table. A panel of experts has to answer

questions chosen by a roulette pointer from those lying on the table. The flea wants to read all the

questions in advance and thus have more time to find the answers.

The round table is divided into sectors numbered clockwise from 1 to

 . The flea has jumped onto the first sector. From this sector it can either

run to an adjacent sector or jump across two sectors (for example, if the

table is divided into 12 sectors, then in one move the flea can get to

sectors 2, 4, 10, and 12). The flea wants to visit each sector exactly once

and return to the first sector, from which it will jump down to the floor

and run away to think about the questions. Find the number of ways in

which the flea can complete its journey.

Input

The only input line contains the number of the sectors of the round table (.

Output

Output the number of ways to visit each of the sectors exactly once and return to the first sector modulo

 .

Sample

input output
6 12

Solution:

This was one of the hardest problems in qualifications and only five teams managed to solve it. It is

interesting that before the competition only fifteen people solved it on Timus online judge. The main

reason for this is inaccessibility of the problem with standard methods – it is necessary to precalculate

many things, after which the solution can be obtained just by multiplying some hardcoded matrices. There

were a couple of different approaches, but here we are going to present a more general technique. This

editorial is a short review of [1].

Let us define this problem in graph theory language. We can look at sectors as vertices in graph and label

them with . Vertex , is connected to four other vertices ,

 , and . Now we have that the number of ways in which the

flea can complete its journey is equal to the number of Hamiltonian cycles in this graph. As we mentioned,

Qualifications

 MDCS – Bubble Cup 2011

84

we will address a more general class of graphs, given by the following definition.

Definition The -node undirected circulant graph with jumps is

denoted by
 . This is the regular graph with vertices labeled such that each

vertex , , is adjacent to vertices mod . Formally

 (), where and |

Graph from our problem is a special case of circulant graph:
 . In what follows we assume that

the step sizes are fixed and known. To simplify our notation we will often drop the jump list

and just write . Let us denote the number of Hamiltonian cycles in graph by .

The main idea is to, instead of trying to decompose a large circulant graph into smaller ones, work on step-

graphs, the unhooked version of circulant graphs. We want to construct a system of linear recurrence

relations on the number of different types of forests in the step graph, and then express the number of

Hamiltonian cycles of the circulant graph in terms of the number of different types of forests of the step-

graph. This technique is very general and, unlike the algebraic methods previously employed, can also be

used to enumerate other parameters of circulant graphs.

Definition The -node undirected step graph with jumps is denoted

by
 () where

 |

Figure 1. Example of
 and its step graph.

As we can see from the above definition, step graph is obtained from circulant graph by removing all

edges that cross the interval . Let us denote this set of edges by

 ⋃ |

It will be useful to have the following notation .

From here we have that both ends from hook edges are in this set.

Let be an Hamiltonian cycle of . When we remove hook edges from we can get two things:

a) a Hamiltonian cycle of
b) a collection of disjoint paths (an isolated vertex is considered as a path) which represents a

partition of the vertices (ends are elements of)

Qualifications

MDCS – Bubble Cup 2011

85

Figure 2. Decomposition of the Hamiltonian cycle in

It is quite difficult to count the number of Hamiltonian cycles in . So let’s try a different approach. With

this unhooking technique, we want to decompose a Hamiltonian cycle in the above path collection and see

how we can connect these paths with edges from the hook set. For this idea we will need to use the

following notation:

 Legal path decomposition (LPD) in is either
o a Hamiltonian cycle of
o a collection of disjoint paths in such that end vertices are from set and every

vertex belongs to exactly one of the paths

 If is LPD of , then with we denote the set

where represents the end vertices of the -th path in , and are isolated vertices in .

 With we will denote the collection of all set partitions of subsets of where each element of
the set partition is of size or (this partition will represent end points for LPD).

 For let
 | |

In other words, is the number of LPDs with ends .

Figure 3. One example of LPD in
 .

Now we can define vectors and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ as

 - where represents the number of edge subsets of for which adding it to
some LPD with yields a Hamiltonian cycle in .

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ - where represents the number of different LPDs for which

Qualifications

 MDCS – Bubble Cup 2011

86

With the above definition we can count the number of Hamiltonian cycles in graph through :

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

This is a direct corollary of the above definitions. The only constraint for this is that .

How we have a new problem of initializing the vectors and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Vector does not depend on , so it

can be computed by some backtracking algorithm. The main problem is ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . For this we will need one

more set

With this set we can define a recurrent relation between these vectors. Let be square matrix where

 number of subsets for which if adding to LPD with

yields to LPD with

We can establish the recurrent relation

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

Finally, with the above recurrent relation and the relation with and we get

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

In [1] the authors have given an example of the above vertices and matrices for
 . We will strongly

recommend for reader to go through this example first (because of the many definitions that we have given

here).

In our case, for the graph
 cardinality of the set is . Matrix is binary and the sum of its elements

is only . We can save matrix in our code as sparse matrix. With vectors and we will need to

hardcode only integers.

The complexity of this algorithm (after computing the needed values) is . We can speed up

this algorithm relying on the matrix properties but usual multiplication and logarithmic powering will pass

the Timus tests.

References:

[1] Mordecai J. Golin, Yiu C. Leung, Unhooking Circulant Graphs: A Combinatorial Method for Counting

Spanning Trees, Hamiltonian Cycles and other Parameters, Proceedings of the 30’th International Workshop

on Graph-Theoretic Concepts in Computer Science (WG’2004) (2004).

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT Press (2009)

Solution by:
Name: Andreja Ilić
School: Faculty of Mathematics and Sciences, Niš
E-mail: andrejko.ilic@gmail.com

Qualifications

MDCS – Bubble Cup 2011

87

Problem R2 09: Fair Fishermen (ID: 1818)

Time Limit: 1.0 second

Memory Limit: 64 MB

Fishermen caught a lot of fishes and, of course, they drank. In the morning it was the time to divide fishes.

The first who woke up counted the fishes and it happened that in order to divide fishes equally he should

throw away fishes. So he did that: threw away fishes and took his part. The second who woke up

didn't know that the first fisherman took his part. He behaved the same as the first one: threw away

excess fishes and took his part. The same story happened with the rest of the fishermen.

Given the amount of fishes thrown away by each fisherman, find the minimal possible number of fishes

they caught. It is known that they caught at least one fish.

Input

The first line contains an integer (. The second line contains integers

(, where is the number of fishes thrown away by the -th fisherman.

Output

Output the minimal number of fishes the fishermen had to catch.

Sample

input output
2

1 1

3

3

1 0 2

19

Solution:

This problem requires some knowledge about number theory. The easiest way to solve it is to analyze it

“backwards”: suppose that after the last fisherman took his part, there were x fish left (for the given

conditions, it follows that x is a non-negative integer). Let be the number of fish before the n-th

fisherman woke up. Since he discarded fishes and took an equal share, we have

 and it follows

 . Analogously, the number of fish before

 fisherman woke up was (

)

 etc. Going to the very first one, we get that

the number of fish they caught is

 ((((

)

)

))

One can easily see that the above expression is actually a polynomial function of degree n of variable

 and coefficients . Therefore, after extracting the common denominator, we get

Qualifications

 MDCS – Bubble Cup 2011

88

Lets simplify things with
 and . Now we can write

Since X is a positive integer, it is obvious that x cannot be just any integer. The necessary condition for x to

be number of leftover fish is that | , but is it sufficient? Remember that all must be

integers too. Luckily, it turns out that it is. Indeed, since n and are relatively prime, it means

 |

 (directly from first X-equation). The rest can be proven

analogously by induction.

It follows that, in order to minimize X, we must find minimal x which satisfies

It is enough to look for it in i.e. modulo M since if x is a solution, than so is for all

 . This is a well-known modular linear equation of the form

It is known that this equation has a solution if and only if | . Also if , the solution is

unique (modulo c). In our case, and and since , our equation

has unique solution modulo M. To find it, one can use the extended Euclid’s algorithm. As its name

suggests, this is an extension of the well-known algorithm for computing in worst-case

logarithmic time, which returns some extra parameters (if , it computes the multiplicative

inverse of a modulo c). For more information on modular linear equations and the Extended-Euclid

algorithm it is recommended to read Chapter 31 in [1].

With this, the problem is solved. However, there are some things we should consider while coding:

 M, SUM and can have a few thousand digits. Therefore, Big Integer arithmetic is required. It

is also required to implement Big Integer division with remainder for Euclid’s algorithm. It is

much easier if Java’s BigInteger type is used.

 The most time-consuming part of algorithm is calculation of the SUM. All numbers and

 should be pre-calculated and should be calculated iteratively, like a polynomial.

This leads to an solution. If every term of is calculated separately, it will lead to

 solution and TLE errors.

 There is a special case where . In that case but x can’t be 0

since “It is known that they caught at least one fish“. Therefore x must be M and

 .

The overall complexity is , for calculating .

Solution by:
Name: Nikola Milosavljević
School: Faculty of Mathematics, University of Niš
E-mail: nikola5000@gmail.com

Qualifications

MDCS – Bubble Cup 2011

89

Problem R2 10: Professional Approach (ID: 1819)

Time Limit: 2.0 second

Memory Limit: 64 MB

Denis, Eugene and Misha take professional approach to ACM ICPC. They don't have any common interests

and communicate with each other only during the competitions. Recently they arrived in Saint Petersburg

to participate in the regional contest and haven't seen each other yet. At morning before the contest they

will leave their hotel at different times and will go to the contest site, Anichkov palace. Help them find out if

there are such three paths from the hotel to Anichkov palace, that no two of them share a common road

segment.

Input

The first line contains integers and (,), which are the number of

crossroads and the number of road segments in Saint Petersburg, respectively. Crossroads are numbered

with integers from 1 to . Each of the following k lines contains two different integers, which are the

numbers of crossroads, connected by a road segment. All road segments are bidirectional. There is at most

one road segment between any two crossroads. The next line contains the number of test cases

 (). Each of the following lines contains two different integers, which are the numbers of

crossroads, where the hotel and Anichkov palace are situated, respectively.

Output

For each test case output “Yes” if there are three such paths that no two of them share a common road

segment. Otherwise, output “No”.

Sample

input output
6 9

1 2

1 5

1 4

1 6

2 3

3 4

3 5

4 5

4 6

9

1 2

1 3

1 5

2 4

5 6

3 6

3 4

2 6

2 3

No

Yes

Yes

No

No

No

Yes

No

No

Qualifications

 MDCS – Bubble Cup 2011

90

Solution:

Professional Approach is a very challenging graph problem. By Menger’s theorem (Karl Menger, 1927), the

maximum number of edge-independent paths from node a to node b is equal to the size of minimum edge

cut for a and b. That means that the minimum number of edges whose removal disconnects the graph is

equal to the maximum number of edge-independent paths. A graph is k-edge-connected if it remains

connected whenever fewer than k edges are removed.

In this problem, we have to find all 3-edge-connected components in order to answer the queries in

constant time. If the vertices and belong to the same 3-edge-connected component, there exist

edge-independent paths between vertices and .

Hopcroft and Tarjan presented a linear time algorithm for finding three-connected components in a graph,

but that one deals with vertex connectivity. The first linear time algorithm for -edge-connected

components was presented by Galil and Italiano in 1991, reducing the edge connectivity to vertex

connectivity and then finding triconnected components. Since then, several other algorithms for this

problem have been presented, but all of them have multiple depth-first search passes and lack plain

simplicity. Just a few years ago, a paper called A Simple 3-Edge-Connected Component Algorithm by Yung H.

Tsin was published, where he describes an algorithm that uses only one depth-first search over the graph

to find 3-edge-connected components in linear time. The algorithm assumes that the graph is bridgeless,

however it can easily be modified to include the detection of bridges, or the well-known linear time

algorithm for finding all the bridges of a graph by Tarjan can be run beforehand.

Tsin’s algorithm is based on the so-called absorb-eject operation. By using this operation, the original graph

is transformed into a new edgeless graph, where each vertex represents a set of vertices from the original

graph – 3-edge-connected component.

When the absorb-eject operation is applied to an edge , vertex is made an isolated vertex (-

edge-connected component) if otherwise it is absorbed by the vertex . When the vertex is

absorbed by the vertex , all the edges incident upon the vertex become incident upon the vertex

instead, while the self-loops are removed.

The depth-first-search starts at an arbitrary vertex , and assigns a depth-first search number at each vertex

 , denoted by . Also, at each vertex , is calculated as

 | |

During the depth-first search, the so-called -path is determined for the vertex . When the search

backtracks from vertex to its parent , the subtree rooted at has been transformed into a set of

isolated vertices and a -path.

When the search first enters vertex , -path is initialized to null path. When the search backtracks from a

child of the vertex (encounters a back-edge , respectively), if (, respectively) is

smaller than the current , then the -path is extended to include the tree-edge (null path,

respectively). The current -path is then absorbed by the vertex , and the new -path becomes -path.

Otherwise, the current -path remains unchanged, while the -path and the tree-edge are

absorbed by the vertex . In any of the cases, if then vertex is made an isolated vertex by

the absorb-eject operation. When the search encounters a back-edge such that

 , vertex has to lie on a -path, since the subtree rooted at a child of containing vertex has

Qualifications

MDCS – Bubble Cup 2011

91

been traversed and is not an isolated vertex because of the existence of edge . The absorb-eject

operation is applied at to absorb the section of the current -path from to . The final -path is

determined when the depth-first search backtracks to the parent of .

For more information and proof of the algorithm, check the paper mentioned above: A Simple 3-Edge-

Connected Component Algorithm by Yung H. Tsin.

Solution by:
Name: Vanja Petrović Tanković
School: Faculty of Computing, Belgrade
E-mail: vpetrovictankovic@gmail.com

Bubble Cup 2011

 MDCS – Bubble Cup 2011

92

The scientific committee would like to thank everyone

who did important behind-the-scenes work.

We couldn't have done it without you.

If you think this adventure was exciting,

then you should get ready for speed up next year!

Stay curious...

Bubble Cup Crew

