

BUBBLE CUP 7DC

Student programming contest

Microsoft Development Center Serbia

Problem set & Analysis

From the Finals and Qualification rounds

Belgrade, 2012

Scientific committee:

 Andreja Ilić

Andrija Jovanović

Milan Vugdelija

Mladen Radojević

Miroslav Bogdanović

 Dražen Žarić

 Dimitrije Filipović

 Željko Nikoličić

 Milan Novaković

Qualification analyses:

Nikola Milosavljević

Boris Grubić

Dušan Zdravković

Dimitrije Dimić

Uros Joksimovic

Milos Biljanovic

Dejan Pekter

Bartek Dudek

Linh Nguyen

Petar Veličković

Ivan Stošić

Goran Žužić

Bartosz Tarnawski

Vanja Petrović Tanković

Vladislav Haralampiev

Aleksandar Ivanović

Stjepan Glavina

Patrick Klitzke

Teodor Von Burg

Filip Pavetić

Predrag Milošević

Danilo Vunjak

Marko Baković

Cover:

 Sava Čajetinac

Typesetting:

 Andreja Ilić

Proofreader:

 Andrija Jovanović

Volume editor:

 Dragan Tomić

MDCS – Bubble Cup 7DC

4

Contents

Preface .. 6

About Bubble Cup and MDCS .. 7

Bubble Cup Finals 2012 ... 8

Problem A: Good sets ... 9

Problem B: Wheel Of Fortune ... 13

Problem C: MaxDiff .. 15

Problem D: Cars.. 18

Problem E: Triangles ... 22

Problem F: Olympic Games ... 25

Problem G: Matrix .. 27

Problem H: String covering ... 31

Problem I: Polygons .. 34

Qualification .. 37

Problem R1 01: November Rain (code: RAIN1) .. 39

Problem R1 02: Ambiguous Permutations (code: PERMUT2) .. 41

Problem R1 03: Roll Playing Games (code: RPGAMES) ... 43

Problem R1 04: Manhattan Wire (code: MMAHWIRE) ... 45

Problem R1 05: Spheres (code: KULE) .. 48

Problem R1 06: Sightseeing (code: GCPC11H) .. 52

Problem R1 07: Segment Flip (code: SFLIP) .. 54

Problem R1 08: K12 - Building Construction (code: KOPC12A) .. 57

Problem R1 09: Its a Murder! (code: DCEPC206) .. 59

Problem R1 10: Words on graphs (code: AMBIG) ... 61

Problem R2 01: Zig-Zag Permutation (code: ZZPERM) .. 63

Problem R2 02: DEL Command II (code: DELCOMM2) .. 65

Problem R2 03: Boxes (code: BOX) .. 67

Problem R2 04: Cryptography (code: CRYPTO) ... 72

Problem R2 05: Slow Growing Bacteria (code: SBACT) ... 74

Problem R2 06: Reverse the sequence (code: REVSEQ) .. 76

Problem R2 07: Cover the string (code: MAIN8_E) ... 78

Problem R2 08: Dynamic LCA (code: DYNALCA) ... 80

Problem R2 09: Magic Bitwise AND Operation (code: AND) ... 82

Problem R2 10: Contaminated City (code: 1CONTCITY 19) .. 84

Problem R3 01: Four Mines (code: MINES4)... 87

Problem R3 02: Lost in Madrid (code: LIM) .. 93

Problem R3 03: Circles (code: CIRCLES) .. 96

Problem R3 04: Bridges! More bridges! (code: BRII) ... 100

Problem R3 05: Polynomial f(x) to Polynomial h(x) (code: POLTOPOL) .. 103

Problem R3 06: Factorial challenge (code: FUNFACT) ... 105

Problem R3 07: Hi6 (code: HISIX)... 106

Problem R3 08: Frequent values (code: FREQUENT) ... 109

MDCS – Bubble Cup 7DC

6

 Preface

Dear Finalist of BubbleCup 5,

Thank you for participating in the fifth edition of the Bubble Cup. On behalf of Microsoft Development

Center Serbia (MDCS), I wish you a warm welcome to Belgrade and I hope that you will enjoy yourself.

MDCS has a keen interest in putting together a world class event. Most of our team members participated

in similar competitions in the past and have passion for solving difficult technical problems.

This edition of the Bubble Cup is special. It is its fifth anniversary and it is the most international event that

we have had so far. Not only do we have the participants from the region (Bulgaria, Croatia, Serbia) but

teams from Germany and Poland fought their way to the Finals too. This means that BubbleCup is reaching

more and more fans every year.

Given that we live in a world where technological innovation will shape the future, your potential future

impact on humankind will be great. Take this opportunity to advance your technical knowledge and to build

relationships that could last you a lifetime. I wish you all warm welcome to Belgrade.

Thanks,

Dragan Tomić

MDCS Group Manager/Director

MDCS – Bubble Cup 7DC

7

About Bubble Cup and MDCS

BubbleCup is a coding contest started by Microsoft Development Center Serbia in 2008 with a purpose of

creating a local competition similar to the ACM Collegiate Contest, but soon that idea was outgrown and

the vision was expanded to attracting talented programmers from the entire region and promoting the

values of communication, companionship and teamwork.

The contest has been growing in popularity with each new iteration. In its first year close to 100

participants took part and this year while in 2012 this number is over 500.

This year the emphasis was on keeping intact all of the things that made BubbleCup work in previous years

but taking every opportunity to tweak and subtly improve the format of the contest. The third qualifying

round was added this year, where contestants had the opportunity to choose the problems themselves.

Microsoft Development Center Serbia (MDCS) was created with a mission to take an active part in

conception of novel Microsoft technologies by hiring unique local talent from Serbia and the region. Our

teams contribute components to some of Microsoft’s premier and most innovative products such as SQL

Server, Office & Bing. The whole effort started in 2005, and during the last 7 years a number of products

came out as a result of great team work and effort.

Our development center is becoming widely recognized across Microsoft as a center of excellence for the

following domains: computational algebra engines, pattern recognition, object classification, computational

geometry and core database systems. The common theme uniting all of the efforts within the development

center is applied mathematics. MDCS teams maintain collaboration with engineers from various Microsoft

development centers around the world (Redmond, Israel, India, Ireland and China), and Microsoft

researchers from Redmond, Cambridge and Asia.

MDCS – Bubble Cup 7DC

8

Bubble Cup Finals 7DC

Problem set & Analysis

Taken from xkcd.com – A web comic of Romance, Sarcasm, Math, and Language

BubbleCup Finals 2012

MDCS – Bubble Cup 7DC

9

Finals 2012

The finals of BubbleCup 5 were held on September 8th 2012, with 17 teams competing at the Faculty of

Electrical Engineering in Belgrade. There were 9 problems and five hours to solve them.

The were no changes to the rules from the previous years. As a reminder: the team which solves the most

problems wins. In case of ties, the team with less penalty points (gained for incorrect submissions and

deducted based on qualification results) is preferred. Programming style is not taken into account.

The difficulty of the problems was relatively balanced – no problem was solved by more than 12 teams

(unlike last year, when 3 problems were solved by every team), and one problem remained unsolved. The

accent was mostly on problems which required original thinking, with only a few that were tricky to

implement.

Figure 1. Number of accepted solutions per problems

Figure 2. Number of submissions per problems

The competition was initially very close, but towards the end the team koko koko euro spoko pulled away

from the rest and had no problems winning the first place with 8 solved problems. The fight for second and

third was very exciting and continued until the last couple of minutes. In the end the second place went to

☺S-Force☺ and the third to Suit Up! (finishing in the top three for the third consecutive year).

0

2

4

6

8

10

12

14

Good Sets Wheel Of
Fortune

MaxDiff Cars Triangles Olympic
Games

Matrix String
covering

Polygons

0

10

20

30

40

50

60

Good Sets Wheel Of
Fortune

MaxDiff Cars Triangles Olympic
Games

Matrix String
covering

Polygons

Problem A: Good sets

MDCS – Bubble Cup 7DC

10

Similar to the previous year, the Scientific Committee decided to give some special awards:

 The first accepted solution - Silver lightning: koko koko euro spoko (Poland)

 The shortest accepted solution - Vertipaq coders: H-Rast (Croatia)

 The most persistent team - while (! accepted): The Code Breathers (Gemany)

 BubbleCup friend - The best mentor: Dusko Obradovic, team Gimnazija Sombor (Serbia)

ID Problem Name ACC/ SUB ratio Min elapsed until first
accepted solution

A Good Sets 0.39 33

B Wheel Of Fortune 0.34 15

C MaxDiff 0.24 17

D Cars 0.20 201

E Triangles 0.34 87

F Olympic Games 0.05 211

G Matrix 0.37 167

H String covering 0.17 104

I Polygons / /

Table 1. Statistic for time and accepted / submitted ratio

The Scientific Committee would like to thank all the teams and individuals for their interest, enthusiasm

and hard work.

BubbleCup Finals 2012

MDCS – Bubble Cup 7DC

11

Problem A: Good sets

Author: Milan Vugdelija Implementation and analysis: Milan Vugdelija

Statement:

Let be the set , where is a given natural number. Set B is called good if it has the following
properties:

a) is a subset of ;
b) For every , if belongs to , then doesn't belong to ;
c) No other set can have properties a) and b) and a greater number of elements than ;

For example, if , then , and the set is
good, while is not good (note that set from the third property doesn't have to be a
superset of).

Given positive integer numbers and compute the following:

 The number of elements in every good set;

 With how many zeros the total number of good sets ends, if written in base .

Input:

The first and only line of input contains two integers and , separated with one empty space,

representing cardinality of the set and the given base , respectively.

Output:

Output contains only one line with two integers, separated with one empty space: the number of elements

in every good set and number of zeros at the end of the total number of good sets in base , respectively.

Example input: Example output:

12 3 8 1

Example explanation:

All good sets consist of 8 elements and there are 6 of them - 6(10) = 20(3).

Constraints:

 Number is a prime number.

Time and memory limit: 0.5s / 64 MB

Solution and analysis:

Divide set into chains such that each chain starts with an odd number from and contains repeatedly

doubled values from . For example, if , set is and the chains

Problem A: Good sets

MDCS – Bubble Cup 7DC

12

are , , , , , . Here the first chain contains elements, the second chain

 , the third , and there are three one-element chains. Now elements are chosen from each chain

independently.

Let us denote with the maximal number of elements from a chain of length such that no two are

consecutive. It is not hard to see that if a chain has an odd number of elements, there is only one way to

pick the maximal number of elements from that chain (take every element with an odd index). So, for a

chain with elements, that maximal number is . In other words, we have that .

For chains with an even number of elements, say , maximal number of elements that can be taken is .

Can we apply some sort of induction here? For elements we see that we must use

exactly one element out of the last two (because otherwise we would have to select elements from

 , which is not possible by induction). If we choose the last one, then from the first we must select of

them and this can be done in ways. In the second case, if we do not select the last one, then we

would have to select elements from first . From prior discussion we have that there is only

one way to do this. Now we have:

Finally, from induction we have that , because .

It remains to count chains of each different length, add up maximal numbers of elements for each chain,

and multiply ways to choose such elements from each chain. Actually, instead of computing the exact

number of ways to form a good set, it is required only to compute how many times this number is divisible

by a given prime number .

Problem B: Wheel Of Fortune

MDCS – Bubble Cup 7DC

13

Problem B: Wheel Of Fortune

Author: Dražen Žarić Implementation and analysis: Dražen Žarić

Statement:

You are on a quiz show playing the game Wheel of Fortune. The wheel has fields of the same size, and

each field is associated with a value: . Each time you spin the wheel you have

equal probability of hitting any of the fields. You will spin the wheel times. When you spin the wheel

for the -th time and it stops on field , if it is your first time hitting that field, dollars is added to your

prize and field gets marked. If the wheel stops at a marked field, meaning you've hit that field in some of

your previous spins (), your score does not increase.

What is the expected value of the prize you'll take home?

Input:

The first line contains two integers, – number of fields on the wheel, and – number of times you get to

spin the wheel. The following lines contain one integer each, representing values of the fields -

 .

Output:

Output contains exactly one real number – expected value of your overall prize, rounded to 5 decimal

places.

Example input: Example output:

2 2
10
20

22.50

Constraints:

Time and memory limit: 0.5s / 64 MB

Solution and analysis:

In order to calculate the expected prize value, we can observe the expected value that we can gain from

each field. By the rules of the game, for each field we can get either 0 points if we never hit that field in

our

spins, or exactly points if we hit at least once (i.e. we get the same score for field no matter how

many times the wheel stops at that field). Thus, the expected overall prize can be calculated as the

expected sum of prizes each field will give us, so we have:

Problem B: Wheel Of Fortune

MDCS – Bubble Cup 7DC

14

 [∑

] ∑ []

Given that we have fields of the same size, and we are making random draws (i.e. wheel spins), it is

obvious that for each field of the wheel we have the same binomial distribution over the number of hits

after spins:

 (

)

Here stands for the probability of exactly hits after spins, and denotes probability of hitting the

field in a single spin, so

.

Now we can write the distribution over prize value for each field:

 (

 ∑

)

In order to avoid dealing with binomial coefficients, we can rewrite the above distribution in simpler terms:

 (

)

so we end up with:

 (

(

)

 (

)
)

Finally, we can calculate the expected overall prize as:

 ∑ []

 ∑

((

)

)

which yields an easy solution.

Problem C: MaxDiff

MDCS – Bubble Cup 7DC

15

Problem C: MaxDiff

Author: Milan Novaković Implementation and analysis: Andrija Jovanović

Statement:

You are given an array of integers of length . We will define as the sum of absolute differences

between all pairs of consecutive elements in . More formally, assuming that is zero-based:

 ∑| |

Your task is to find the permutation of the array for which the value is maximized.

Input:

The first line of input will contain one integer , representing the size of the array . The second line will

contain space-separated integers, representing the elements of the array.

Output:

The first and only line of output should contain a single integer equal to the largest sum of differences of

consecutive elements obtainable from as described in the problem statement.

Example input: Example output:

3
2 3 5

5

Example explanation:

There are six possible ways to reorder the array: .

The sums of differences are then respectively and , and the largest among them is .

Constraints:

Time and memory limit: 1.0s / 64 MB

Solution and analysis:

It is obviously infeasible to generate all permutations of , calculate the value for each one and pick the

maximum, so let’s try to observe some things about the problem that will help us reduce the space of

possible solutions.

We will assume that all elements in the array are distinct. The proofs for the case when equal elements are

allowed are slightly more difficult and there is a number of corner cases that have to be taken care of, so

they will be left to the reader as an exercise

First, let’s notice a relatively obvious but very important fact: there will always exist an optimal solution in

Problem C: MaxDiff

MDCS – Bubble Cup 7DC

16

which the elements are sorted in a “zig-zag” manner, i.e. it will not contain a triple of consecutive elements

such that (or). Proving this is easy: if we have a

triple satisfying this condition, we can just pull out its middle element and place it at the end of the array –

it is trivial to verify that cannot decrease after this transformation.

The other fact is slightly harder to notice. Let’s denote the median of with . (A reminder: the median of

an array is the middle element of the sorted array if the number of elements is odd, and the average of the

two middle elements if the number of elements is even). Clearly depends only on the elements of and

not on the permutation. We will prove the following:

Lemma. There is an optimal solution in which there are no two consecutive elements that are either both

larger or both smaller than the median.

Proof. The first thing to notice here is that, due to the “zig-zag” principle discussed above, an optimal

solution can’t contain a sequence of exactly two consecutive elements on the same side of the median.

Let’s assume that there are at least three such consecutive elements. It is easy to see that we can always

pick exactly three consecutive elements from this sequence such that . Since the

rest of the array now has at least two more elements that are under the median than elements that are

over it, we can use the same reasoning to conclude that somewhere else in the array there are three

consecutive elements under the median, ordered as . Since

(the former is over the median and the latter under it), we can swap these two elements and get a solution

that preserves all the inequalities and is strictly better than the previous one.

Now we have enough information to deduce the most important statement:

If the order of elements in A satisfies the two principles described above, its value of S is

 | | | | ∑ | |

where is the median of A.

It should be clear that this holds from the following argument: since for all elements and

aren’t on the same side of the median, their absolute difference is | | | |

| |. For each element except the first and the last one the term | | appears twice in the

final sum, while for the two edge elements it appears just once.

This gives us the final step in the solution: since all terms in the sum are non-negative, we just have to

minimize the value | | | |. If the total number of elements is even, we pick the two

middle elements for the ends – otherwise the zig-zag property would not hold. If it is odd, we pick the

median element at one end and the element closest to it by absolute value at the other.

Note that we don’t even have to generate the exact permutation, since all permutations constructed

in this way will have the same value and the above discussion gives us the guarantee that

permutations which don’t satisfy these conditions cannot possibly result in a better solution.

The implementation ends up being very simple: first we find the median of the array A, then we find the

edge elements as described in the previous paragraph, and finally we sum up the absolute differences of

the elements from the median, multiplying by two for all except the leftmost and the rightmost element.

There are still some traps that need to be avoided – edge cases with a very small number of elements need

to be dealt with, the solution has to be kept in a 64-bit value, repeating values can pose a problem for

Problem C: MaxDiff

MDCS – Bubble Cup 7DC

17

certain implementations. However, none of that should present a serious challenge for any competitor with

decent technique.

Complexity

There is a choice for the algorithm used to calculate the median. The simplest way is to sort all the

elements and pick the one(s) in the middle, which takes time. We can do better – the well-

known quickSelect algorithm gives expected time. Although its running time depends on the pivot

choice and its worst-case complexity is , median-of-three or just random pivot choice should be

enough since none of the test cases targeted this scenario (at least not intentionally). For the more

paranoid contestants, the pivot can be chosen using the median-of-medians algorithm, which guarantees

 running time but is tricky to implement and slower on average than simple quickSelect.

The rest of the algorithm can be done in a single pass of the array, giving an overall time complexity

of the algorithm. The memory complexity is obviously .

Problem D: Cars

MDCS – Bubble Cup 7DC

18

Problem D: Cars

Author: Mladen Radojević Implementation and analysis: Dimitrije Filipović

Statement:

There are cars parked at the parking lot and a new car is arriving. The parking lot is a space between two

walls and cars are parked along one line between those walls. The driver will park his car if there is a free

parking spot that is long enough (at least as long as the car). Otherwise, he will have to move a few cars in

order to make appropriate space for his car. The car can be moved to the left or to the right along the

parking lot, but at most until it reaches a wall or another car.

Your task is to find the minimal total distance by which currently parked cars have to be moved in order to

provide enough space for the arriving car.

Figure 1. Optimal car moves for the given example.

Input:

The first line of input contains three space-separated integers , and . They denote the number of

cars already parked, the coordinate of the left wall and the coordinate of the right wall, respectively. Each

of the following lines contains two integers, describing a parked car: – the coordinate of the leftmost

point of the car, and – the length of the car. The last line of the input contains one integer , the

length of the arriving car.

Output:

Output contains only one line with one integer – the sum of distances by which parked cars have to be

moved to provide enough space for the arriving car. If a solution doesn’t exist the output should be .

Example input: Example output:

4 0 22
2 3
7 3
11 2
16 4
7

5

Example explanation:

The best way is to push the second car to the left by 1, the third car to the left by 2 and the fourth car to

the right by 2. It will create an empty space of length 7, so the new car can be parked there. The sum of all

movement lengths is 5 (= 1 + 2 + 2).

Problem D: Cars

MDCS – Bubble Cup 7DC

19

Constraints:

Time and memory limit: 0.5s / 64 MB

Solution and analysis:

Let’s enumerate the cars with 1 to from left to right. (To be able to do that, we will need to sort the array

of cars first). Consider each car in turn. For each car , find the first car such that the sum of free

parking spots between and is greater than the length of the new car. For each such pair we will find

the optimal solution, and then use these to compute the global minimum.

Let’s consider a given pair of cars . In the case that the pair also satisfies the total empty

length constraint, we can narrow down the search space by removing car from the set of cars for which

we will consider moves. We will repeat this process as long as removing the leftmost car will still satisfy the

total empty space length constraint. Let’s denote the leftmost car remaining in this set with .

Let’s enumerate empty spaces between cars and with numbers . We will find the first empty

space such that ∑
 ∑

 . We will move every car in the direction of

whichever car (or) is closer to it, in order to reduce the total distance covered. In this way, the upper

bound on the distance any given car can move is ∑

 , whereas if we moved any car in the

other direction (to the car which is farther away from it) this upper bound would be greater.

Let’s define four values for every car:

 ∑ – Cost for moving car to the leftmost position possible

(if all cars before it were parked consecutively from the left wall, with no space between cars).

 ∑

 – total cost for moving all cars from 0 to (inclusive) to the left wall.

 Another pair of arrays , representing free space and total cost of moving to the right wall.

These values can be pre-computed in time with two passes through the array.

We would like to compute the cost of moving all cars between and away from the middle (), without

moving any other cars.

Problem D: Cars

MDCS – Bubble Cup 7DC

20

Consider only cars (The rightmost car moved to the left) and . We will separately calculate the cost

of moving cars to the left and to the right. The cost can be calculated in the following way:

The cost of moving car and all cars left of it to the left wall is .

If we moved all cars left of car (inclusive) to the left wall and all cars from to to the car , the cost

difference between this configuration and the previous is . (It is the cost of moving

cars to the right by the sum of empty spaces left of).

Now we can determine the cost of moving only cars from to to the left towards car . Since the cost

difference between this configuration and the previous is ,

This cost can be calculated as

In the same way (using pre-computed), we can determine the cost of moving remaining cars

between and to the right in the consecutive configuration without moving .

The only issue here is that we may have created more space than what is needed for the new car. To

reduce the cost we should first compare and (the number of cars we moved to the left and

the number of cars we moved to the right).

Let be the sum of empty spaces between cars and , and let be the space we created for the new car.

Let’s say that

In this case, the cost for creating the empty space to fit the new car should be reduced by

m

Problem D: Cars

MDCS – Bubble Cup 7DC

21

In the case that we moved more cars to the right than to the left the same logic applies using the values

from and

After calculating for each car as a first car (), we should easily be able to pick the best one.

The time complexity of the solution is dominated by the initial sort – the rest of the algorithm is linear. This

means that the overall time complexity is .

Problem E: Triangles

MDCS – Bubble Cup 7DC

22

Problem E: Triangles

Author: Mladen Radojević Implementation and analysis: Mladen Radojević
Milan Vugdelija

Statement:

You are given an array of positive integers. Find the maximal substring (i.e. a subset of at least three
consecutive elements of the array) so that any three distinct elements from that substring can form the
sides of a triangle. Also, find the maximal subsequence (a subset consisting of at least three elements, not

necessarily consecutive) with the same property.

Input:

The first line of input contains one integer , the number of elements in the array. The next lines contain

the elements of the array.

Output:

Output consists of exactly two lines, each containing one integer– the length of the maximal substring and

the maximal subsequence with the property described above, respectively. If such substring or

subsequence doesn’t exist, the corresponding value is zero.

Example input: Example output:

5
60
30
20
40
60

3
4

Constraints

 Elements of the array are positive integers, each less than or equal to .

Time and memory limit: 1.5s / 64 MB

Solution and analysis:

Input size limit 100000 suggests that any solution to this problem should work in time (or

faster).

Part a (substring):

To verify that some substring fulfills the requirement, it is enough to check if the sum of two smallest
numbers in a substring is greater than the largest number in that substring. Indeed, if the inequality holds
for these three elements, it will hold for any three numbers in that substring.
There are several ways to find the length of the longest such substring, two of which will be explained here.

Problem E: Triangles

MDCS – Bubble Cup 7DC

23

Solution 1:

Suppose that we want to check if there exists a substring of length with the described property. We can
divide input array into slots of length (the last slot may have less than elements). For each slot
 , we can compute the following arrays:

- Prefix maximum:

- Suffix maximum:

- Prefix minimum:

- Suffix minimum:

- Prefix second minimum:

- Suffix second minimum:

With this pre-calculation, we can find the maximum, minimum and second minimum of any substring of
input array of length in constant time. Namely, any substring of length covers entirely one slot or lies in
two consecutive slots, so min and max are straightforward to compute using suffix arrays of the left slot
and prefix arrays of the right slot, while computing second min requires several comparisons between
minima and second minima of two parts of the substring.

Acting as described, it is possible to check all substrings of length in linear time. Doing binary search on
gives us an algorithm for the original problem.

Solution 2:

We start with the substring consisting of the first three elements of the input array. If the current substring
has the required property, we move the right boundary of the substring forward, introducing a new
element into it; otherwise we move forward the left boundary of the substring, removing one element
form the substring.

To check if the substring has the triangle property, we can use one heap that extracts maximum, and one
that extracts minimum - let’s call the heaps and respectively. When the right boundary moves, we just
put a new element into both heaps. Moving the left boundary requires removing one particular element
from both heaps. Instead of removing that element immediately, we can use two auxiliary heaps (again,
one for max and one for min, call them and) and put the element that should have been removed
there. As long as that element is not equal to max of the heap , it doesn’t matter if it is present in the
heap or not. So every time we extract the max of heap , we also extract the max of ; if they are not
equal, the max is regular and we can use it (we just put back the max of); if the two maxima are equal,
we do the (delayed) removal from both and , and get another max from both until they differ. We do
the same with heaps and for extraction of the minimal element.

Getting min/max from the heap and putting a new element into all 4 heaps requires time, so we
can check one particular substring in logarithmic time. Since after each check one of the substring’s
boundaries moves forward, there are substrings to check, so the total running time is again
 .

Part b (subsequence):

It is easy to prove that if some elements of a sorted array form a subset with the described property, then
the entire segment (from minimal to maximal element of the subset) also has the property. So, , the
maximal subset of the original array with the described property is a substring of the sorted array.

Therefore, to solve part b, it is enough to sort the input array and then search for the longest substring

Problem E: Triangles

MDCS – Bubble Cup 7DC

24

using (any) solution of part a. The running time of such algorithm would be for sorting and O(n
log n) for finding the longest substring, which gives in total.

It is also possible to find the longest substring with the given property in a sorted array more directly.
Obviously, the two smallest elements are the first two elements of a substring, and the largest is the last
one, so there is no need to use heaps or auxiliary prefix/suffix arrays to find minima and maxima of a
substring. The running time in this case is still due to sorting, even though finding the longest
substring in a sorted array can be done in linear time.

Problem F: Olympic Games

MDCS – Bubble Cup 7DC

25

Problem F: Olympic Games

Authors: Mladen Radojević

Implementation and analysis: Mladen Radojević

Statement:

Young boy, Oliver, has watched the Olympic Games this year for the first time. The number of countries

which participated in the Olympics is . There are different sports and each country had its own

representative in some of the sports. In each sport the gold medal is won by exactly one country among

the ones that have representatives for that sport. And, of course, for every sport there is at least one

country which competes in it.

Oliver noticed that a small number of countries won a huge number of gold medals, and that a lot of

countries didn’t win any. Now, he is wondering what could be the minimal difference in the number of gold

medals between the country which took the most and the country which took the least. Oliver is still too

young to figure out the answer to this question, so please help him.

Input:

The first line contains , the number of participating countries. The second line contains , the number of

sports. The third line contains the total number of competitors, . Each of the next m lines contains two

integers, and , which mean that country had a representative in sport .

Output:

Output contains only one integer – the minimal possible difference in the number of gold medals between

the country which took the most gold medals and the country which took the least.

Constraints:

 for each

 No pair is contained in the input more than once

Example input: Example output:

3
4
6
0 0
0 1
0 2
1 2
1 3
2 3

1

Time and memory limit: 0.5s / 64 MB

Problem F: Olympic Games

MDCS – Bubble Cup 7DC

26

Solution and analysis:

Let’s describe the algorithm for solving this problem. Initially, no sport is assigned to any country. Going

circularly through all countries we try to assign new sport to the currently considered country, while

maintaining the number of sports assigned to other countries (actually, we try to find an augmenting path

in a bipartite graph which starts from the country being considered and ends at some yet unused sport). If

at some moment no new augmenting path for a particular country exists, we can skip that country in all

subsequent iterations in order to save time. Since for every sport there is at least one country which

competes in it, after a certain number of iterations each sport will be assigned to some country.

By this algorithm we get a matching where the number of gold medals taken by country with the minimal

number of gold medals is maximal and the number of gold medals taken by the country with the maximal

number of gold medals is minimal. Therefore, this matching has the desired property that the difference

between these two values is minimal.

As the number of iterations which can find augmenting paths is at most (there are at most

unsuccessful findings) and each augmenting path can be found in time, where is the number of

edges, the time complexity of the solution is . The memory complexity is .

Problem G: Matrix

MDCS – Bubble Cup 7DC

27

Problem G: Matrix

Author: Andreja Ilić Implementation and analysis: Andreja Ilić

Statement:

You are given a square binary matrix of dimension . Elements on the main diagonal are all ones.

We want to compute the th power of this matrix (MDCS written in ASCII codes is

). To make things more interesting, we will define binary operations (addition) and

(multiplication) as the following:

+ 0 1

0 0 1

1 1 1

 0 1

0 0 0

1 0 1

So basically, addition is logical OR and multiplication is logical AND.

The input matrix is too big for normal time constraints, so it will be given by listing all positions of ones in it.

Also, for the output only the number of ones in the th power of the matrix is sufficient.

Input:

The first line contains two integers, and - dimension of the square matrix and the number of ones in

it. Each of the next lines contains two integers and – which means that is equal to

Output:

Output contains only one integer– the number of ones in the th power of the given matrix.

Example input: Example output:

4 8
1 1
1 3
1 4
2 2
2 3
3 1
3 3
4 4

11

Example explanation:

From the input we have that [

]. Its th power is [

], which has

ones in it.

Constraints:

Problem G: Matrix

MDCS – Bubble Cup 7DC

28

 Indices and from the input satisfy the condition and these pairs are unique.

 The matrix elements are or 1 and the elements on the main diagonal all ones. All elements that

are not listed in the input have zero value.

Note:

For two square matrices and with dimensions , we say that matrix , with the same dimension,

is product of these two matrices if:

 , for every

Time and memory limit: 2.0s / 64 MB

Solution and analysis:

At first glance, this problem requires fast multiplication of the sparse binary matrices with a given definition

for operations. This is known and very hard problem for implementation. The standard approach for matrix

multiplication gives as time complexity which is very big for the problem constraints. Logarithmic

powering is also too slow. But, in our case solution has nothing to do with this – this is a graph theory

problem.

Before we start the analysis of this problem, let’s look at the adjacency matrix of an arbitrary directed

graph . As we know, the adjacency matrix is a binary one and its element is equal to

if and only if there is an edge from vertex to vertex (directed edge). The adjacency matrix is a square

one, so it is allowed to consider powers of this matrix: for every . From now on we will assume

that operations are defined as in the problem statement.

Can we, with some corresponding graph property, define the square of the matrix ? The element at

position is going to be equal to one if and only if there is a vertex such that and

 . This means that is equal to if and only if there is a path of length in the starting

graph . Using mathematical induction we can prove the following property:

 if and only if there is a path from vertex to vertex of length .

We have an additional property of the start matrix: elements on the main diagonal are ones. This means

that all of the vertices have loops. In other words, we can “circle” around any vertex for an arbitrarily long

time. So, if there is a path of length between vertices and , then there is path of length between

them for every (we can just append a “circle” of length to path). This means that, with the

above property of matrix , we have

 if and only if there is a path from vertex to vertex of length less than or equal to .

Now we can go back to our original problem. In the input we have a directed graph with vertices and

edges, where every vertex has a loop. From the above definition of the element , we have that

starting from power of matrix is not going to change. This is very important, because in this way

we have to calculate the -th power, and of course . The problem can be reformulated as:

find the number of edges in the transitive closure of the given graph ,

i.e. for every vertex calculate the number of vertices that are reachable from it

Naïve approach for the transitive closure leads to complexity – graph tour, DFS or BFS, from every

Problem G: Matrix

MDCS – Bubble Cup 7DC

29

vertex separately. A better idea is to find the strongly connected components (SCC) first. In this way,

submatrices for every component have all elements equal to one (so we do not want to “waste” time

there). After finding the SCCs, we can shrink every component to just one “vertex”. In this way we can

obtain a directed acyclic graph (DAG).

Figure 1. Creating DAG graph from SCC components

Things are a little bit easier. If we assume that for every component we have a list of all components that

are reachable from it, we can easily transfer this to the start graph and calculate the final result. But how

can we initialize these lists with the given time constraints?

For DAG we can find its topological sort order. We can initialize the lists for every component in this order,

because it holds that by the time when we are examining some component, all components reachable from

it are already initialized. Let us denote with the current component for which we want to

initialize the list. Unfortunately, we cannot simply “connect” all lists from their neighbors, because there

can be some duplicates (see Figure 2 for example). On the other hand, these lists can be long, so the

union of these sets must require passing through them multiple times.

Figure 2. Example of a topological sort and mask arrays (for the case of 2-bit numbers)

The best way to maintain these “lists” is to store them in some sort of marked array (when a component is

in the “list” we are going to mark the corresponding element). If we use simple boolean arrays, complexity

will again be . Idea is to use bit masks. For every component we are going to store an array

 of length ⌈

⌉ of long type. This way we can mark some component in this

array as

Problem G: Matrix

MDCS – Bubble Cup 7DC

30

In other words, for each component there is a unique corresponding bit in every array. Now, we can

initialize the array for by simply -ing the arrays for its neighbors element-wise (which

represents union). Note that although the complexity remains , the reduction of the constant

factor is very significant.

Complexity:

In this problem we have quite a pipeline of graph algorithms. First, the complexity of finding SCCs and

building a DAG is . Finding the topological order has the same complexity. Finally, performing the

dynamic programming approach for initialization of bit mask arrays as described above has

complexity if we use a 64-bit integer type for bit masks. Indeed, every array is going to be iterated for every

component which has an edge directed at the corresponding component for that array. So, for every edge

we have one tour through some array. This brings us to the final complexity of

 .

Test data:

The data corpus for this problem consists of 24 test cases. Test cases are created with one (or more) of the

following methods:

 Random generation of a binary matrix with given probability for and

 Generation of a matrix that corresponds to a tree with some additional cross or / and up edges

 Generation of a matrix that corresponds to a path with some additional edges

 Creating a SCC graph from a tree with cross edges and blossoming a SCC components in every

vertex

 Special cases (triangle, all ones, only loops…)

Num Comment

00 4 8 test case from problem statement

01 10 31 by hand

02 100 5187 Random with

03 1000 1000 All zeros except on the main diagonal

04 500 125250 One in the upper triangle

05 2000 161804 Random with

06 2500 127736 Random upper triangle with

07 3000 5999 Random tree structure

08 3000 36871 Path with down edges

09 3000 193412 Expanded SCC graph with

10 5000 161017 Expanded SCC graph with

11 4000 67879 Random with

12 3000 182515 Random tree structure with cross edges

13 5000 9999 Random tree structure

14 5000 59870 Random tree structure with down cross edges

15 5000 194846 Expanded SCC graph with small

16 5000 179948 Random with

17 5000 196411 Path with down edges

18 5000 189283 Random tree structure with cross edges

19 5000 188570 Random tree structure with down cross edges

20 5000 184753 Expanded SCC graph with

21 1 1 Only one vertex

22 4500 118341 Components: SCC, Tree, Path, Random

23 5000 143657 Components: big SCC, Tree, Path, Random

Table 1. Test data description

Problem H: String covering

MDCS – Bubble Cup 7DC

31

Problem H: String covering

Author: Andreja Ilić Implementation and analysis: Andreja Ilić

Statement:

We say that string covers string if can be obtained by putting together several copies of string ,

where overlapping between two successive copies of is allowed but the overlapped parts must match.

After connecting these copies the whole generated string must match string .

For example, string covers string , with two copies (see Figure 1). String

does not cover , because the last character cannot be covered.

Figure 1. All possible coverings of string .

You are given string . Write a program that calculates how many strings exist that cover string in this

way.

Input:

The first and only line of the input contains string .

Output:

Output contains only one integer – the number of different strings that cover given string .

Constraints:

 String consists exclusively of letters ‘a’ - ‘z’.

 Output the final solution modulo .

Example input: Example output:

ababab 3

Time and memory limit: 1.0s / 64 MB

Solution and analysis:

Problem H on this year’s BubbleCup finals was a string problem. For a given string it was asked to find

how many strings there exist that covers this string. We say that string covers string if can be

Problem H: String covering

MDCS – Bubble Cup 7DC

32

obtained by putting several copies of string where overlapping between two successive copies of is

allowed but the overlapped parts must match. After connection of these copies whole generated string

must match string . First thing that we can observe is that necessary condition for string is that it is

some prefix of the string . So, the asked modulo in the task description is only a small trick.

Now we know that the final answer is going to be smaller or equal to (solution is equal to if and only if

all char in are equal). Naïve approach would be to check every prefix of the string . When testing for the

prefix we have to find all occurrences of it as substrings in and then see if these

occurrences covers whole string (here we can see that string has to be an suffix as well). Complexity of

this algorithm is approximately , but it can be reduces to quadratic with some hash functions for

substrings. In any case this is too big for our constraints.

Can we, in some other way, track these occurrences for prefixes? Let us assume that for the prefix

occurrences in the string starts at positions . For the prefix start positions

are subset of the start positions for . Idea is to store these occurrences in some nice way that can be

updated fast when adding new character on the end (moving to the next prefix).

For this we can use data structure: suffix array. Let us denote with suffix array - is equal to the start

position of the -th suffix in the lexicographic order. Then the positions for prefixes are successive in the

array . For every prefix we can define some segment in the suffix array which means that suffices in

this segment starts with given prefix. Nice thing is that these segments create an inclusive chain:

 . In this way we can easily obtain segments.

Figure 1. Example of suffix array and prefix check.

Now we have the start positions of occurrences for any prefix. Problem is to, in some efficient way, see if

they cover the whole string . For this we must use additional data structure – max heap. In heap we are

going to store the lengths between two successive positions - gaps. When we remove some occurrence, we

will remove two distances / gaps (from prior to current one and from current one to next occurrence) and

add the new one which is the sum of the removed ones (from prior to next). Finally, we can state that

current prefix covers the whole string if and only if the max element in the heap (max distance between

two successive occurrences) is smaller or equal to the prefix length.

==

01 initialization of the suffix array S;

02 sol = 0;

03 for k = 1 to n - 1 do

Problem H: String covering

MDCS – Bubble Cup 7DC

33

04 add in heap key-value pair (k, 1);

05 segmentLeft = 1; segmentRight = n;

06 for k = 1 to n do

07 while (char at position k of segmentLeft-th suffix is different from A [k]) do

08 remove from heap key prior and segmentLeft;

09 add in heap key-value pair (prior, next – prior);

10 inc(segmentLeft);

11 while (char at position k of segmentRight-th suffix is different from A [k]) do

12 remove from heap key prior and segmentLeft;

13 add in heap key-value pair (prior, next – prior);

14 dec(segmentRight);

15

16 if (max in heap <= k)

17 inc(sol);

18 endfor

==

Figure 1. Pseudo code for described algorithm

Complexity:

Sorting the suffixes with suffix array takes time. This can be implemented in the linear time but

in our case this is sufficient. After that for every prefix, in order as in the given string, we are going to

maintain the above segments in linear time overall (in every step we are going to shrink current segment

with only one compering of chars). For heap, every position is going to be added exactly one time and

removed at most one time. Taking all of this in to account we get the final complexity:

 .

Test data:

Test corpus consists of 15 test cases. In the random string we can expect only one covering string – the

string itself. Many ideas for test generation is to create some “recursive” string that has many occurrences

of prefixes in it. The “worst” case for this is to use small number of different chars. Description of the test

data with some comments is given below.

Num Solution Comment

00 6 3

01 45690 9138 Concatenation of the string

02 90010 10 Concatenation of the string

03 90000 10000 Concatenation of the string with random change

04 80.000 1 Many with random char

05 10.002 3334 Concatenation of the string

06 98.904 8242 Concatenation of the string

07 50.003 1 Random concatenation of strings and

08 96.048 16 Concatenation of the string with some

09 99.999 1 String is of the form

10 99.999 99.999 All chars are the same

11 78950 3158 Concatenation

12 100.000 1 Many with random char

13 1 1 Only one char

14 90.000 5628 Concatenation of the string

15 100.000 100 Concatenation of the string

Table 1. Test data description

Problem I: Polygons

MDCS – Bubble Cup 7DC

34

Problem I: Polygons

Author: Miroslav Bogdanović Implementation and analysis: Miroslav Bogdanović

Statement:

You are given points with integer coordinates in the plane. After that you are given queries.

Each query gives you a list of indices in the originally given set of points. The points in this list form a simple

polygon (one that does not intersect itself). For each query you should output how many points from the

original set are on the inside of the given polygon.

Input:

The first line of the input contains two integers and q, separated with an empty space. Next lines each

contain two numbers, and - coordinates of a point. The lines that come after that each start with a

number , the number of points that form that polygon. The rest of the line consists of space-separated

numbers that represent indices (indices are from to) of originally given points that form the

polygon.

Output:

You should output lines, one for each query. Output for each query should be just one integer number:

the number of points from the original set on the inside of the polygon given in that query.

Example input: Example output:

7 2
0 0
0 4
4 0
4 4
2 1
3 2
2 3
3 0 1 3
3 0 2 3

1
2

Example explanation:

First polygon is a triangle whose vertices are and . There is one point on its inside: .

Second triangle has the vertices and . There are two points on its inside and .

Figure 1. Visualization of the given example.

Problem I: Polygons

MDCS – Bubble Cup 7DC

35

Constraints:

 Coordinates of a point are in the segment .

 No two points are the same. Also, no three different points are on the same line.

 Vertices of the polygon do not count as being inside of it.

Time and memory limit: 6.0s / 64 MB

Solution and analysis:

Taking each query and checking each point is on the inside of that polygon in a straightforward manner

would take time, which is too slow for the given constraints.

We are going to deal with this by precalculating some things, which will allow us to answer each query in

linear time with respect to the number of vertices of the polygon. For each two points from the original set,

we calculate the number of points under the line segment connecting them (that are contained in the

quadriteral formed from the endpoints of the line segment and their projections on the axis; we don’t

count points on the edges of this quadriteral). Also, we calculate the number of points directly under each

point from the set (i.e. the ones that have equal and smaller coordinates).

A

B
under[A][B] = 3 directly_under[A] = 1

directly_under[B] = 0

A

B

Figure 1. What is precalculated.

First we sort the points by coordinate, sorting points with equal by . The number of points directly

under each point is easily calculated in linear time from this sorted array.

Now for each point (we’ll call it point A) we take all the points after it in this sorted array (those that have

larger , or equal and larger coordinate) and sort them by angle in respect to point A. We go through

these points in this order (we’ll call the current point B). For each point A we keep an array that counts the

number of times each coordinate has appeared in points B that we went through until now. We keep this

array as a cumulative table in order to be able to do insertions and calculations of the sum of the first

elements in time for each operation, where is the maximal value of coordinates

among the set of points. For each point B we do the following:

1. We add 1 to the cumulative table in the position of the coordinate of point B.

2. We calculate the number of points under the line segment A-B as sum in cumulative table to the

position of the coordinate of point B – 1.

Problem I: Polygons

MDCS – Bubble Cup 7DC

36

B
Current point

A

1 1 0 10 0

Done

Not done

Figure 2. A typical state of a precalculation step.

We respond to each query in the following way. We go through the polygon in clockwise direction and for

each edge, if it goes to the right (the coordinate of its second point is larger than the coordinate of its

first point) we add the number of points under that edge to the sum, otherwise we substract this number

from the sum. For each vertex, if we go through it going to the right (the edge coming into it and the one

going out of it are both to the right) we add the number of points under it to the sum, if we go through it

going to the left we substract the number from the sum.

Clockwise
direction

+ +
+

+
-

-
-

-

-

Figure 3. Responding to a query.

After going through all edges and vertices of the polygon, each point outside of the polygon is counted zero

times and each point on the inside of the polygon is counted exactly once, which is exactly what we need.

Complexity:

Time complexity of initial calculation is . After that each query is resolved in

 time. The total complexity is therefore .

Qualifications

MDCS – Bubble Cup 7DC

37

Qualification

The qualification rounds were originally intended to have the same format as in the previous years – two

rounds with 10 problems each, with each problem in the first round being worth 1 point and each second-

round problem being worth 2 points. The most important change was that the Timus online judge system

was no longer used - Sphere Online Judge (www.spoj.pl) provided the problems and the judging system this

year.

BubbleCup has continued getting more and more popular with every year, and this year’s edition again

broke all the records, with 109 teams submitting at least one correct solution. It also continued spreading

geographically, with teams from countries such as Germany, Poland, Taiwan and Vietnam participating for

the first time and having lots of success as well – one German and one Polish team ended up participating

in the finals.

The strength of the teams has increased as well. The tasks were not any easier than in the previous

editions, but the results were excellent. This meant that 29 teams solved all problems in the first round,

and 4 of those solved all problems in the second round as well, so for the first time in BubbleCup history

there was a team which got the maximal number of points in the qualifications. This record-breaking team

was “Vanja, Nenad and the sandwich maker”, and they were quickly followed by “S-Force”, “N0 Ex1t” and

“koko koko euro spoko”.

In the end, the problems from the qualification rounds were solved so well that it was not possible to

separate the teams. So the scientific committee decided to organize a third round for the first time in

BubbleCup history. In the third round, teams with 26 points were called upon to select tasks for each other

to solve, adding yet another strategic dimension to the contest.

The full statistics from the qualification rounds are shown in the tables below:

Num Problem name Code Accepted solutions

01 November Rain RAIN1 65

02 Ambiguous Permutations PERMUT2 172

03 Roll Playing Games RPGAMES 50

04 Manhattan Wire MMAHWIRE 44

05 Spheres KULE 67

06 Sightseeing GCPC11H 58

07 Segment Flip SFLIP 43

08 Building Construction KOPC12A 114

09 It’s a Murder! DCEPC206 104

10 Words on Graphs AMBIG 51

Table 1. Statistics for Round 1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Team results chart [overall]

http://www.spoj.pl/

Qualifications

MDCS – Bubble Cup 7DC

38

Num Problem name Code Accepted solutions

01 Zig-Zag Permutation ZZPERM 25

02 DEL Command II DELCOMM2 17

03 Boxes BOX 4

04 Cryptography CRYPTO 34

05 Slow Growing Bacteria SBACT 44

06 Reverse the Sequence REVSEQ 35

07 Cover the String MAIN8_E 48

08 Dynamic LCA DYNALCA 28

09 Magic Bitwise AND Operation AND 30

10 Contaminated City CONTCITY 32

Table 2. Statistics for Round 2

Num Problem name Code Accepted solutions

01 Four Mines MINES4 5

02 Lost in Madrid LIM 11

03 Circles MINES4 9

04 Bridges! More bridges! BRII 9

05 Polynomial f(x) to Polynomial h(x) MINES4 10

06 Factorial Challenge FUNFACT 10

07 Hi6 HISIX 8

08 Frequent Values FREQUENT 11

Table 3. Statistics for Round 3

The organizers would like to express their gratitude to everyone who participated in writing the

solutions.

Qualifications

MDCS – Bubble Cup 7DC

39

Problem R1 01: November Rain (code: RAIN1)

Resource: ACM Central European Programming Contest, Warsaw 2003

Time Limit: 13 second

Contemporary buildings can have very complicated roofs. If we take a vertical section of such a roof it

results in a number of sloping segments. When it is raining the drops are falling down on the roof straight

from the sky above. Some segments are completely exposed to the rain but there may be some segments

partially or even completely shielded by other segments. All the water falling onto a segment as a stream

straight down from the lower end of the segment on the ground or possibly onto some other segment. In

particular, if a stream of water is falling on an end of a segment then we consider it to be collected by this

segment.

For the purpose of designing a piping system it is desired to compute how much water is down from each

segment of the roof. To be prepared for a heavy November rain you should count one liter of rain water

falling on a meter of the horizontal plane during one second.

Write a program that:

 reads the description of a roof,

 computes the amount of water down in one second from each segment of the roof,

 writes the results.

Input

The input begins with the integer t, the number of test cases. Then t test cases follow.

For each test case the first line of the input contains one integer (being the number of

segments of the roof. Each of the next lines describes one segment of the roof and contains four integers

 (separated by single spaces. Integers

 are respectively the horizontal position and the height of the left end of the segment. Integers

 are respectively the horizontal position and the height of the right end of the segment. The

segments don't have common points and there are no horizontal segments. You can also assume that there

are at most 25 segments placed above any point on the ground level.

Output

For each test case the output consists of n lines. The -th line should contain the amount of water (in liters)

Qualifications

MDCS – Bubble Cup 7DC

40

down from the -th segment of the roof in one second

Sample

input output
1

6

13 7 15 6

3 8 7 7

1 7 5 6

5 5 9 3

6 3 8 2

9 6 12 8

2

4

2

11

0

3

Solution:

In this task we are asked to compute the amount of water that falls down from each segment of the roof.

First we want to calculate the amount of rain that is falling onto each segment directly from the sky above,

and then add the amount of all the water falling onto each segment from the lower end of some other one.

Notice that the coordinates are nonnegative integers less or equal then one million; this allows us to iterate

through all points on the ground level. While doing so we store the indexes of segments, which are located

somewhere above the current X coordinate on the ground, in a list (there will be at most 25 stored

segments at any moment during the iteration, as given in the task). So, for each step in this iteration we do

the following:

 If a left end of a roof is encountered add it to the list. (we are doing this by moving one pointer in

the sorted list of roof segments by X coordinate of left end)

 For each segment in the list whose lower end is equal to the current X coordinate determine the

segment under it which will collect the water falling from it. (this can be done by considering Y

coordinates of points located on the current segment and each one in the list, both with the

current X coordinate, in order to find the closest such point with lower Y coordinate than the point

on the current segment)

 If a right end of a roof is encountered remove it from the list. (Pass through all list elements and

remove the one with right end equal to the current X coordinate)

 Find the topmost segment from the current list and increase the rain counter for it by one. (similar

to the second step, we find the topmost point located on some segment from the list with the

current X coordinate)

Now the only thing left is adding the falling water from the segments above. Let’s consider each roof as a

node and each connection between two segments (two segments are connected if water is falling from one

to another) as a directed edge with an end in the one above. We end up with a directed acyclic graph in

which for each node we need to compute the sum of all rain in the nodes reachable from it. This can be

simply done using depth first search, iterate through all nodes and if we don’t have wanted information for

the current one calculate it by summing all rain collected in the child nodes recursively.

Solution by:
Name: Dimitrije Dimić
School: School of Computing, Belgrade
E-mail: dimke92@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

41

Problem R1 02: Ambiguous Permutations (code: PERMUT2)

Resource: Adrian Kuegel, used in University of Ulm Local Contest 2005

Time Limit: 10 second

Some programming contest problems are really tricky: not only do they require a different output format

from what you might have expected, but also the sample output does not show the difference. For an

example, let us look at permutations.

A permutation of the integers 1 to n is an ordering of these integers. So the natural way to represent a

permutation is to list the integers in this order. With n = 5, a permutation might look like 2, 3, 4, 5, 1.

However, there is another possibility of representing a permutation: You create a list of numbers where the

i-th number is the position of the integer i in the permutation. Let us call this second possibility an inverse

permutation. The inverse permutation for the sequence above is 5, 1, 2, 3, 4.

An ambiguous permutation is a permutation which cannot be distinguished from its inverse permutation.

The permutation 1, 4, 3, 2 for example is ambiguous, because its inverse permutation is the same. To get

rid of such annoying sample test cases, you have to write a program which detects if a given permutation is

ambiguous or not.

Input

The input contains several test cases.

The first line of each test case contains an integer . Then a permutation of the integers

 to follows in the next line. There is exactly one space character between consecutive integers. You can

assume that every integer between and appears exactly once in the permutation.

The last test case is followed by a zero.

Output

For each test case output whether the permutation is ambiguous or not. Adhere to the format shown in the

sample output.

Sample

input output
4

1 4 3 2

5

2 3 4 5 1

1

1

0

ambiguous

not ambiguous

ambiguous

Solution:

This was the easiest problem of all bubble cup qualification problems ever. You just need to make

inverse array from array A (defined as inverse[A[i]] = i for each i) and check if A[i] ==

inverse[i] for every i (1 i N). It’s easy to prove that it’s enough to check only that A[A[i]]

== i for every i (1 i N, A[i] i) so you can do this task with only one array and one loop

Qualifications

MDCS – Bubble Cup 7DC

42

through the array.

The code for this task is really short, so we can run a shortest code competition . Here is my shortest code

in C, which passed all test cases on SPOJ.

n,i,b;

main() {

 while(scanf("%d", &n), n) {

 int a[n];

 for(b=i=1; i<=n;) scanf("%d", a+i), b &= a[i] > i | a[a[i]]==i++;

 puts("not ambiguous" + b*4);

 }

 return 0;

}

The length of this code is only 135 non-whitespace characters, and I want to thank all the guys who helped

me shortening it.

Solution by:
Name: Dušan Zdravković
Organization: School of Computing, Belgrade.
E-mail: duxxud@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

43

Problem R1 03: Roll Playing Games (code: RPGAMES)

Resource: ACM East Central North America Regional Programming Contest 2004

Time Limit: 15 second

Phil Kropotnik is a game maker, and one common problem he runs into is determining the set of dice to use

in a game. In many current games, non-traditional dice are often required, that is, dice with more or fewer

sides than the traditional 6-sided cube. Typically, Phil will pick random values for all but the last die, then

try to determine specific values to put on the last die so that certain sums can be rolled with certain

probabilities (actually, instead of dealing with probabilities, Phil just deals with the total number of

different ways a given sum can be obtained by rolling all the dice). Currently he makes this determination

by hand, but needless to say he would love to see this process automated. That is your task.

For example, suppose Phil starts with a 4-sided die with face values 1, 10, 15, and 20 and he wishes to

determine how to label a 5-sided die so that there are a) 3 ways to obtain a sum of 2, b) 1 way to obtain a

sum of 3, c) 3 ways to obtain 11, d) 4 ways to obtain 16, and e)1 way to obtain 26. To get these results he

should label the faces of his 5-sided die with the values 1, 1, 1, 2, and 6. (For instance, the sum 16 may be

obtained as 10 +6 or as 15 +1, with three different “1” faces to choose from on the second die, for a total of

4 different ways.) Note that he sometimes only cares about a subset of the sums reachable by rolling all the

dices (like in the previous example).

Input

Input will consist of multiple input sets. Each input set will start with a single line containing an integer

 indicating the number of dice that are already specified. Each of the next lines describes one of these

dice. Each of these lines will start with an integer f (indicating the number of faces on the die) followed by

integers indicating the value of each face. The last line of each problem instance will have the form

where r is the number of faces required on the unspecified die, m is the number of sums of interest,

 are these sums, and are the counts of the desired number of different ways in which

to achieve each of the respective sums.

Input values will satisfy the following constraints: , and .

Values on the faces of all dice, both the specified ones and the unknown die, will be integers in the range

 , and values for the ’s and ’s are all non-negative and are strictly less than the maximum value of

a 32-bit signed integer.

The last input set is followed by a line containing a single 0; it should not be processed.

Output

For each input set, output a single line containing either the phrase “Final die face values are” followed by

the r face values in non-descending order, or the phrase “Impossible” if no die can be found meeting the

specifications of the problem. If there are multiple dice which will solve the problem, choose the one

whose lowest face value is the smallest; if there is still a tie, choose the one whose second-lowest face

value is smallest, etc.

Qualifications

MDCS – Bubble Cup 7DC

44

Sample

input output
1

4 1 10 15 20

5 5 2 3 3 1 11 3 16 4 26 1

1

6 1 2 3 4 5 6

6 3 7 6 2 1 13 1

4

6 1 2 3 4 5 6

4 1 2 2 3

3 3 7 9

8 1 4 5 9 23 24 30 38

4 4 48 57 51 37 56 31 63 11

0

Final die face values are 1 1 1 2 6

Impossible

Final die face values are 3 7 9 9

Solution:

Maybe the first impression was that this task is a little bit confusing, but considering the constraints that
were given in the task it turns out that you only needed to find a way to see if it is possible to create the last
die so it fits the conditions, while keeping in mind the time complexity of your algorithm.

First we create a 2D matrix in which we will keep the number of ways in which you could get all sums
with dice (there are given dice). In this matrix the rows would represent the number of dice, and
the columns would represent the numbers possible to get from the sum of the dice (e.g. if we had
 that would mean that we could find 5 ways to achieve the sum 2 with the first four dice). We
would calculate fields in this matrix like this:

for every die (with an index j),

and for all its sides

 [] , where is be the value of the -th side of the die

Then, for the last die, when we need to find out if we can create it, we can try all possible values for its
sides using brute force. If we have two arrays (like and from the input for the last die) then we would
after performing the operation

 (where is any index for the die side)

check if is negative. If that is the case then we know that we can't make the last die in this way. In the
other case, is a positive number and we would with a recursion try to find the value for the next side of
the last die. After the recursive call we would set back the value of c[j] so we can do another recursion in
the next iteration.

Next we would check if the combination is ok (just go through the given conditions and see if everything
fits).

After every recursion, if we found a combination of sides for the last die, we still need to check if the array

is empty. If it is, then we have a valid solution, and we are finished. If we went through all combinations

and didn't find a valid one then there is no solution.

Solution by:
Name: Uros Joksimovic, Milos Biljanovic, Dejan Pekter
School: School of Computing, Belgrade.
E-mail: uros.joksimovic92@gmail.com, miloshb92@hotmail.com, deximat@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

45

Problem R1 04: Manhattan Wire (code: MMAHWIRE)

Resource: Yokohama 2006

Time Limit: 3.0 second

There is a rectangular area containing cells. Two cells are marked with “2”, and another two with

“3”. Some cells are occupied by obstacles. You should connect the two “2”s and also the two “3”s with

non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without

obstacles.

Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line

cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two

lines should be minimized. The length of a line is defined as the number of cell borders it passes. In

particular, a line connecting cells sharing their border has length 1.

Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum

total length 18.

Figure 1: An example of setting and its solution

Input

The input consists of multiple datasets, each in the following format.

 n m

 row1

 …

 rown

 is the number of rows which satisfies . is the number of columns which satisfies .

Each is a sequence of m digits separated by a space. The digits mean the following.

 0: Empty

 1: Occupied by an obstacle

 2: Marked with “2”

 3: Marked with “3”

The end of the input is indicated with a line containing two zeros separated by a space.

Output

For each dataset, one line containing the minimum total length of the two lines should be output. If there is

Qualifications

MDCS – Bubble Cup 7DC

46

no pair of lines satisfying the requirement, answer “0” instead.

Sample

input output
5 5

0 0 0 0 0

0 0 0 3 0

2 0 2 0 0

1 0 1 1 1

0 0 0 0 3

2 3

2 2 0

0 3 3

6 5

2 0 0 0 0

0 3 0 0 0

0 0 0 0 0

1 1 1 0 0

0 0 0 0 0

0 0 2 3 0

0 0

18

2

17

Solution:

The approach for this problem is very straight-forward: let's try every possible placement of the line

connecting “2”s and then look at the shortest available line between “3”s and take the best result.

Of course, that solution is too slow and we need some optimizations to prune the search tree to fit the

time. Let's look at some situations which will surely lead to a suboptimal solution:

 a) U-shape turns (see Figure 1) - if there are no obstacles, it can be easily replaced by a shorter

piece of wire. Note: This optimization is the most important one!

 b) let's say that we are in field A and there is an adjacent field B that has been visited a long time

ago (meaning not in the previous step) - it's bad, because it would have been better to go straight from B to

A and avoid the loop – see Figure 2.

Qualifications

MDCS – Bubble Cup 7DC

47

 c) suppose that we have constructed some part of the line between “2”s. If at this moment there is

no path between “3”s (we can check this easily using breadth-first search) we can stop searching, backtrack

and try some different way. It turns out that checking for such situations in every step is quite slow, but if

we do it on every 300th step, for example, it will considerably speed up our program.

We can also deduce some steps in the very beginning – as long as there's only one possible movement from

any “2” or “3” - let's do it and mark it on the grid. It will always help our program.

Obviously, many more optimizations can be applied, but an efficient implementation of the

abovementioned ideas make our program easily fit the time limit.

Solution by:
Name: Bartek Dudek
Organization: XIV LO Wrocław

E-mail: bardek.dudek@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

48

Problem R1 05: Spheres (code: KULE)

Time Limit: 2.0 second

John has a certain number of spheres. Almost all of them have identical weight apart from one. There are a

lot of them and John cannot say which one differs from the other ones by himself. You can help him to

determine which sphere it is by using the pair of scales.

Input

In the first line of the input there is one integer (that stands for the number of

spheres which John has. The spheres are numbered from to .

You can give John two types of orders (just print them to standard output):

Weighting spheres. All numbers should be separated with a space and they stand for: - number

of spheres that should be put on one of the scales (there should be the same amount of spheres on

both of the scales), - identifiers of spheres that you want John to put on the left scale

and - identifiers of spheres that you want John to put on the right scale.

After conducting the weighting John will tell you about the outcome (which you will be able to read

from the standard input). Possible answers are LEFT - spheres on the left scale are heavier, RIGHT -

spheres on the right answer are heavier, EQUAL - spheres on both scales have equal weight.

After conducting the weighting John is ready right away to execute the next order.

However, you should remember that if the weighting's number is too high John can become quite

bored...

Answering. This order is to give information that is the identifier of the searched sphere; however

if the sphere we are looking for is lighter than the other ones you should precede that with a '-'

sign.

John no longer needs you after that command (your program should end).

Output

Output the month number the accountant-robot will rust in. Months are numerated 1 to .

Sample

input / output
John: 3

You: WEIGHT 1 1 2

John: LEFT

You: WEIGHT 1 1 3

John: EQUAL

You: ANSWER -2

Remark:

Program should clear the output buffer after printing each line. It can be done using fflush(stdout)

command or you can set the proper type of buffering at the beginning of the execution - setlinebuf(stdout).

Qualifications

MDCS – Bubble Cup 7DC

49

Solution:

The problem is one of the variants of the Coin-Weighting problem: Given coins, one of which is

counterfeit, and a pair of scales (two-pan balance) without weights, what is the minimum number of

weightings needed to find the counterfeit coin? There are variants in which we know/don’t know if the

counterfeit is lighter/heavier, in which we are required to only indicate counterfeit/determine its weight, in

which we have/don’t have some additional genuine coins etc. The following theorem gives us the required

minimum number of weightings for the corresponding variant of the problem and its constructive proof can

easily be implemented to obtain the required algorithm:

Theorem 1: Given coins, numbered from 1 through , of which are genuine and with exactly one

counterfeit among them, the minimum number of weightings needed to determine index of the counterfeit

and if it’s lighter or heavier than the others is ⌈ ⌉.

Proof: Let be the optimal number of weightings. Since we have candidates for counterfeit coin, and in

each case the counterfeit can be lighter or heavier than the genuine coin, there are possible outcomes

in total. On the other hand, let us mark the result of each weighting with a number from set ;

-1 denotes that the left pan of the scales was heavier, 0 denotes that the scales were balanced and 1

denotes that the right pan was heavier. The arrangement of the coins on the scale pans on the -th

weighting depends only on the results of previous weightings and previous rearrangements, which were

themselves induced by the previous weighting results. Therefore, after the arrangement of the coins on the

scale pads for the first weighting is fixed, the subsequent rearrangements depend only on the results of

previous weightings (with if-then conditions for new rearrangements) and the final outcome (counterfeit

coin) depends only on the weighting results. It follows that the outcome of the weightings can be

uniquely described as a sequence of individual weighting results .

We just showed that weightings can distinguish between at most different outcomes; since we must

be able to recognize outcomes, it follows . Since is odd, we can rewrite the inequality as

 (instead of the parity argument, we could also notice that weighting sequence

cannot tell whether the counterfeit is lighter or heavier – because of that only sequences are valid).

However, this inequality is a bit weak; we will improve it.

Let be the number of coins which will be put in the first weighing on each pan. If in the first weighting

the pans are balanced, the counterfeit coin is one of coins not participating in this weighting. The

remaining weightings must be enough to identify the counterfeit among coins and to find

out if it is heavier or lighter. As before, it follows (because of the parity argument).

However, if in the first weighting the pans aren’t balanced, the counterfeit is among coins which

participated in this weighting. Unlike the previous case, this time it is enough to find only an index of a

counterfeit coin in the following weightings; its weight can be determined from the first weighting.

Therefore, we are only interested in outcomes (not) and it follows (parity

argument again). Adding and doubled results in ,

which is (using the fact that is an integer) equivalent to

 ⌈ ⌉

We will now prove that this bound is achievable by explicitly constructing the weightings. It suffices to

construct the required weightings for all (

] (for

, less than weightings are

Qualifications

MDCS – Bubble Cup 7DC

50

needed). It is assumed that since gives trivial cases with coins.

First, let us recall of a method for determining a counterfeit coin among coins, when it is known

whether the counterfeit is lighter/heavier than others, in weightings: we divide coins into 3 equal groups

of size and put any two groups on different pans. Since we know if the counterfeit is lighter/heavier,

result of weighting will identify the group with counterfeit and we will apply the same method recursively.

After weightings, the counterfeit will be identified. This also works for any number of

coins (i.e. weightings suffice): We divide coins into 3 as equal as possible groups: or

or (at least 2 of them will be equal) and weight the equal ones. After that, we will narrow

our search to a group of a size at most ⌊

⌋ (if) or

, if . In either case, the resulting group will

have less than or equal to coins, and we can apply the method recursively again. We will call this

method the simple method.

Back to the optimal weighting construction. First, let us assume that

 (which is an edge case, but is

the simplest for construction). We divide coins into 3 equal groups with

 coins each. Now, we divide each group into subgroups

 subgroups have coins each. In the first

weighting, we place group on the left pan and group on the right pan. Regardless of the result, in the

second weighting, we remove subgroup from the left pan, move subgroup from the right pan to

the left and put subgroup to the right pan.

If the result of the second weighting differs from the first one , then the counterfeit coin belongs

to some of the subgroups ; moreover, from these 2 weightings we can precisely deduce

which of the 3 subgroups contains the counterfeit and if the counterfeit is lighter/heavier than the

others. To see this, it suffices to consider all 6 possibilities (vs. vs. and lighter vs. heavier) –

they all give different weighting result sequence After these 2 weightings, we have a group of

coins with counterfeit coin of known weight – we can solve this using the simple method in

weightings, which gives weightings in total.

However, if the result of the second weighting remains the same , it follows that all the coins

from the subgroups are genuine. In that case, we repeat the same process as in the

second weighting, only this time with subgroups If , we use the simple method on

 coins as in the previous paragraph, otherwise we “rotate” subgroups etc.

This algorithm always uses weightings for identifying counterfeit and its weight: if counterfeit belongs to

one of the subgroups , we will use one starting weighting, subgroup “rotations” and

simple method’s weightings – weightings in total, as required.

What if

 ? Again, we divide coins into 3 groups : if then | | | |

| | ; if then | | | | | | ; if then | | | | | |

 . In either case, using

, we have

Qualifications

MDCS – Bubble Cup 7DC

51

 | | | |

Therefore, we can write | | | | , where . Now, just like in an

edge case, we divide each group into into subgroups

 subgroups have coins each, for

 , and subgroups have coins each. Since , a simple method can handle this

subgroup with at most weightings. Now, with the edge case algorithm, we are able to determine the

counterfeit coin in weightings.

However, note that the group might have fewer coins than the groups . This is not a problem – for

 we can leave subgroups and one coin short | | | | ; if, during an algorithm, we reach

those subgroups, it means that all coins in subgroups for are genuine, and we can use them

to fill those 2 subgroups. For , in particular for and , group division should be

and , respectively (the only cases with | |). This completes all steps of the algorithm.

With this, Theorem 1 is proved and the optimal weighting sequence is explicitly constructed.

Implementation:

Direct simulation of a mentioned algorithm with subgroup “rotations” and the simple method. Since

 , we can traverse all the coins during each weighting with a total complexity of .

Note:

The online judge system requires a sharp bond on weighting number for this task. If contestant’s code

exceeds the optimal number of weightings, John will not report the outcome of the weighting and TLE

(time limit exceeded) will occur.

Other variants of the Coin-Weighting problem and some different (and generalized) weighting

constructions can be found in [1].

References:

[1] Marcel Kolodziejczyk, Two-pan balance and generalized counterfeit coin problem

[2] http://www.cut-the-knot.org/blue/OddCoinProblems.shtml

[3] http://www.mathplayground.com/coinweighing.html

Solution by:
Name: Nikola Milosavljević
School: Faculty of Mathematics, University of Niš
E-mail: nikola5000@gmail.com

http://www.cut-the-knot.org/blue/OddCoinProblems.shtml
http://www.mathplayground.com/coinweighing.html

Qualifications

MDCS – Bubble Cup 7DC

52

Problem R1 06: Sightseeing (code: GCPC11H)

Resource: German Collegiate Programming Contest 2011 (Author: Moritz Kobitzsch)

Time Limit: 1.0 second

As a computer science student you are of course very outdoorsie, so you decided to go hiking. For your

vacation this year, you located an island full of nice places to visit. You already identified a number of very

promising tracks, but are still left with some problems. The number of choices is so overwhelming, that you

had to select only a "small" subset of at most 105 sights.

And if that is not enough, you are very picky about the order in which you want to visit the sights. So you

have already decided on an order in which you want to visit the preselected tracks. The problem you are

left with is to decide in which direction to travel along each single track, and whether you may have to

reduce your choice of tracks even further. After identifying the travel time between the endpoints of

different tracks, you decide to write a program to figure out if you can make all your trips within the time

you have planned for your vacation. Since you also do not want to waste any precious time, you only care

about an optimal solution to your problem. Furthermore, the tracks can get pretty challenging. Thats why

you do not want to hike along a track more than once.

Input

The first line of the input gives the number of test cases . The first line of each such test

case holds two integers the number of tracks of the current hiker () and the maximal

time spent hiking throughout the vacation . Each of the following N lines holds five integers

 and that describe a track (in order of importance). gives the length of the track in

minutes. gives the travel time of the official begin or end of a track to the beginning or end of the next

most important track, where and are either b or e. All values given are non-negative integers not

greater than 106. Since you have to get back to your car, the list is circular. Furthermore, we will ignore the

time it takes you to get to the start of your trip with your car.

Output

For each test case print one line. The output should contain a list of either or for every track (in order)

indicating whether you have to hike the track in forward direction or backward direction. If you cannot

make the full trip within the planned time , you should print IMPOSSIBLE to indicate that these trips are

just too much hiking. You can assume that the optimal solution is always unique.

Sample

input output
3

2 100

4 7 8 2 3

1 4 6 1 2

2 20

4 2 3 7 8

1 1 2 4 6

3 5

1 2 2 2 1

1 1 2 2 2

1 2 2 1 2

FF

BB

IMPOSSIBLE

Qualifications

MDCS – Bubble Cup 7DC

53

Solution:

At the first glance, this appears to be a problem requiring finding the shortest path. The issue is to find the

correct vertices. Obviously, keeping the index of the road is not enough, as there are two ends. Plus, you

need to keep track of whether you have traveled across that road or not.

Thus, define a new graph , where each vertex is described by a triple

which uniquely identifies your current position:

- is the index of the track you are currently in.

- is a boolean value which describes whether you are at the beginning or the end of the

track.

- is a boolean value describing whether you have hiked the corresponding track or not.

The set of edges can be found quite easily. This is left for the readers as an exercise.

A sightseeing tour now becomes a path from the vertex to itself. (can be true

or false).

First solution: Dijkstra’s algorithm

This is the direct way to solve the problem, and the implementation is quite straightforward The time

complexity is , as the number of edges is proportional to . It should be enough to pass all of

the test cases.

Second solution: Dynamic programming

For readers who don’t like ‘slow’ solutions, there are more to explore.

It’s not difficult to recognize that the state depends solely on , and similarly, the

state is dependent on – .

The DP solution shares the same idea as the first solution. The recursion is not difficult and is performed by

calculating in the following order:

As any state is visited exactly once, the time complexity of the algorithm should be .

Solution by:
Name: Linh Nguyen
School: Vietnam National University
E-mail: ll931110@yahoo.com

Qualifications

MDCS – Bubble Cup 7DC

54

Problem R1 07: Segment Flip (code: SFLIP)

Resource: Proposed by venkateshb

Time Limit: 1.0 second

You are given number . In a segment flip, you can pick a contiguous segment

 of these numbers, where and negate all the numbers in this segment.

You are permitted at most K segment flip operations overall. Also, no segments that you pick can overlap.

That is, if you flip and then either or .

Your aim is to maximize the sum of all the numbers in the resulting sequence by applying appropriate

segment flip operations meeting these constraints.

For instance, suppose the sequence is and you are allowed a single segment flip. The best sum

you can achieve is , by flipping all numbers as a single segment to .

Input

The first line contains integers and . The next line contains integers, the initial values of

 .

Output

A single integer denoting the maximum possible sum of the final array.

Constraints

Sample

input output
3 1

-5 2 -3

6

Solution:

This interesting problem was definitely one of the hardest ones on Round 1, and the fact it had the lowest

amount of correct solutions out of all the problems of the round confirms that. The main idea is not very

hard to conceive but implementing it correctly can get a bit frustrating.

The problem statement sticks to formal mathematics and hence doesn’t require any particular decoding:

we are asked to determine the maximal sum of a sequence of integers after performing no more than K

“segment flip” operations on disjoint segments (where one operation negates an entire range of the

sequence). This problem is not extensively covered in literature, however there exists one paper which

names this kind of problem the Maximal-Scoring Segment K-Set problem. It is a problem that arises

commonly in bioinformatics, most notably DNA and RNA analysis.

Before implementing the main algorithm, it’s wise to first transform the given sequence into a more special

case, which is equivalent to the initial sequence but will make our calculations simpler. First of all, it is fairly

Qualifications

MDCS – Bubble Cup 7DC

55

easy to notice that if there are positive integers on the ends of the sequence, they certainly won’t need to

be flipped, hence we can immediately exclude them from the range we’re observing and add them to the

final solution. That way we’re left with negatives on both ends of the observed range, and this is a property

we can constantly maintain as we build our set of segments; it will later be clarified how. The next

transformation we can immediately apply is to “compress” successive runs of positive/negative integers

into a single integer with the value of the sum of all integers in that run. Why can we do this? Let’s say a

negative integer is contained in the final set of flipped segments; it is obvious that including all the

negatives adjacent to it can only benefit to the solution. Analogously, the only reason why we would want

to flip a positive integer is to join together two segments of negatives, and we can’t do this if we don’t flip

all the other positives in that run as well. In the end we are left with an alternating sequence of negative

and positive integers. For visualization, refer to Fig. 1.

Let’s say that after the given transformations are applied, there are exactly M negative integers in the

sequence. What is the maximal sum we can obtain with M segment flips? It is obviously the sum obtained

when we flip all the negatives separately. If , then this is also the optimal solution to the problem.

Otherwise, the solution is derived from the M-segment solution using a theorem that is formally stated

in [1], albeit with its proof omitted. It states that a solution for segment flips can be obtained from

the solution for segment flips by either merging two segment flips or excluding one. Using this we can

find the solution for segment flips in iterations.

It is easy to conclude that the segment to be excluded/merged through in any iteration must be the

segment with the minimal absolute value (its removal/flipping would pose minimal “damage” to the sum

obtained with M flips), so we are required to store segments we are observing in a structure which will

efficiently provide this segment; one of the possible data structures we can use for this is a min-heap.

Now let’s discuss the algorithm itself; in every iteration, the algorithm extracts the segment with the

currently minimal absolute value from the heap. In the case that this segment is on one of the ends of the

currently observed range, we know that we have run into a negative segment and that we will never have

to re-include it again; hence, it is optimal to remove both it and the positive run adjacent to it from

consideration, so we are left with a negative segment at both ends again. If the extracted segment is not at

either end, the action taken depends on the sign of the segment:

 - If the segment is positive, we flip it to merge the two negative segments adjacent to it;

 - If the segment is negative, we exclude it for now; it is possible to re-include it, but only together with
both positive segments adjacent to it.

If we look at this a little closer, we can conclude that same actions can be performed regardless of the

sign: subtract the segment’s absolute value from the optimal solution obtained in the previous

Qualifications

MDCS – Bubble Cup 7DC

56

iteration, remove the segment and its two adjacent segments from the heap and insert a segment which is

obtained by merging those three. With a little optimization to assign an ID to each segment, and to

constantly store the IDs of segments directly to the left and right of them, the updates described above can

be done quite efficiently. This concludes the algorithm description, and it turns out to be fairly short and

easy to code (requiring only ~50 lines of code for the main algorithm).

The time complexity of each iteration of the algorithm is for updating the heap, hence the overall

asymptotic time complexity of this solution is . The memory complexity of the solution is .

For a more in-depth look at the Maximal-Scoring Segment K-Set problem, its generalizations, as well as

formal statements of the theorem and algorithm mentioned here and the algorithm’s application in

analyzing biomolecules, refer to [1].

References:
[1] Miklós Csűrös: Algorithms for Finding Maximal-Scoring Segment Sets (extended abstract), IEEE/ACM

Transactions on Computational Biology and Bioinformatics (2004)

Solution by:
Name: Petar Veličković
School: Matematička Gimnazija
E-mail: petrovy.velickovic@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

57

Problem R1 08: K12 - Building Construction (code: KOPC12A)

Time Limit: 1.0 second

Given N buildings of height , the objective is to make every building has equal height. This

can be done by removing bricks from a building or adding some bricks to a building.Removing a brick or

adding a brick is done at certain cost which will be given along with the heights of the buildings.Find the

minimal cost at which you can make the buildings look beautiful by re-constructing the buildings such that

the buildings satisfy

 (can be any number).

For convenience, all buildings are considered to be vertical piles of bricks, which are of same dimensions.

Input

The first line of input contains an integer which denotes number of test cases .This will be followed by

 lines , 3 lines per test case. The first line of each test case contains an integer n and the second line

contains n integers which denotes the heights of the buildings and the third line contains

n integers which denotes the cost of adding or removing one unit of brick from the

corresponding building.

Output

The output must contain lines each line corresponding to a testcase.

Sample

input output
1

3

1 2 3

10 100 1000

120

Solution:

First, let be the height of the shortest building, and let be the height of the tallest building. It isn't

hard to notice that the solution will satisfy the inequality . This is easy to prove - if

there is a solution smaller than low, then we need to remove bricks from every single building. The

solution is guaranteed not to be optimal because removing a brick from each building will cost less. The

proof of the latter, , is analogous.

Since the limitations for heights for this problem are quite low, the following algorithm with time

complexity solves the problem.

Let be the cost of changing the height of the i-th building to . Clearly, | | . Let

 be equal to ∑
 . Clearly, the total cost to change the heights of all buildings to k will be .

Now we define . Similarly, we define ∑
 . Notice that this

is also equal to The reason why we are doing this is because we want to be able to

Qualifications

MDCS – Bubble Cup 7DC

58

quickly calculate if we know and , for some x. We can calculate in , but, how

can we calculate for some x? Since for and otherwise (in other words, it

decreases by every time we increase the target height if it's smaller than the original height, and

increases otherwise), we can calculate from its definition as ∑
 . This leads to an

algorithm, which is still too slow.

So, let's revisit the above procedure. Define as . Notice that for

 , and 0 otherwise. Now define, yes - you guessed it: D ∑
 . We observe that

 . Now, if we could quickly calculate for every x, then we could calculate

 in constant time if we knew and . Also, we can calculate in linear time by simply

iterating through all buildings.

Now, back to computing the function . Initialize the array D to all zeros. Iterating through the

buildings, increase by for every building encountered. From all this information, one can

compute for all and then simply choose the value of where the function has a minimum.

Complexity: time and space.

Solution by:
Name: Ivan Stošić
School: Gymnasium “Svetozar Marković”, Niš
E-mail: ivan100sic@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

59

Problem R1 09: Its a Murder! (code: DCEPC206)

Time Limit: 0.5 second

Once detective Saikat was solving a murder case. While going to the crime scene he took the stairs and saw

that a number is written on every stair. He found it suspicious and decides to remember all the numbers

that he has seen till now. While remembering the numbers he found that he can find some pattern in those

numbers. So he decides that for each number on the stairs he will note down the sum of all the numbers

previously seen on the stairs which are smaller than the present number. Calculate the sum of all the

numbers written on his notes diary.

Input

First line gives , number of test cases. lines follow. First line gives you the number of stairs . Next line

gives you N numbers written on the stairs.

 ; ; All numbers will be between and .

Output

For each test case output one line giving the final sum for each test case.

Sample

input output
1

5

1 5 3 6 4

15

Solution:

All you needed to do to solve this task is to sum up for every given number all past numbers which are

smaller than that number. Sounds simple enough.

So a naive solution would be that you have an array of numbers so that every given number is added in

 time to that array, and after that the required sum can be computed in time. This algorithm is

slow given the constraints (there can be numbers per test case) so we need to think of another way to

implement these two operations.

This can be solved by cumulative tables, where cumulative stands for “how much so far” and that is what

we need. The time complexity for add and sum operations are , which is fast enough to pass.

The whole idea behind the cumulative tables is if we can represent a number in a binary notation (e.g .

 or 1110 in binary) , then we can also represent any sum of numbers as a sum of

specific subtotals.

For an example if we need the sum of numbers that are less than 14, then we would have a dynamic array

where we would keep our subtotals, so for that sum we would only need to look at a few subtotals to get

the result, which can be done in . Why is the complexity logarithmic? The binary presentation of 14

is 1110, so to get the subtotals, we would delete the rightmost one in binary and with that new number we

would use it as index to get the subtotal from the dynamic array. We would repeat the process until we

Qualifications

MDCS – Bubble Cup 7DC

60

delete all ones (get zero as index) and along the way sum up all the subtotals. There are about

operations to execute because there can be at most digits in the binary representation of .

For adding an element to our dynamic array, so the subtotals that we have are correct, we will do the

opposite of what we were doing when we were getting the required sum. We only need to update

subtotals that depend on the number we are adding so to speak, so there are at most subtotals that

need to be updated, so the time complexity for adding is too.

Solution by:
 Name: Uros Joksimovic, Milos Biljanovic, Dejan Pekter
School: Racunarski fakultet (RAF)
 E-mail: uros.joksimovic92@gmail.com, miloshb92@hotmail.com, deximat@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

61

Problem R1 10: Words on graphs (code: AMBIG)

Time Limit: 1.0 second

Input

The input is a directed (multi)graph. The first line gives the number of edges M and the number of nodes

 . Then each edge is described by a line of the form "FROM TO LABEL". Nodes (FROM, TO) are

numbers in the range and labels are also numbers. All numbers in the input are nonnegative

integers .

Output

Print "YES" if there are two distinct walks with the same labelling from node 0 to node 1, otherwise print

"NO".

Sample

input output
4 4

0 2 0

0 3 0

2 1 1

3 1 2

NO

10 9

0 2 0

2 1 0

2 3 0

3 4 0

4 2 0

2 5 0

5 6 0

6 7 0

7 8 0

8 2 0

YES

Solution:

The problem statement is very brief, but there is a lot of information hidden among the test cases. Let’s
first dissect what we should do. We are given a directed labeled multigraph and we need to find out if
there are at least two distinct paths from node 0 to node 1, such that we can only traverse edges with the
same labeling. The previous sentence needs some explanations: when you traverse edges finding requested
paths you need to have the same sequence of edge labelling, e.g. if you have a path that contains edges
with labeling 1-5-10-10, the other path also must have 1-5-10-10 labeling of its edges. The distinction
criteria is based on the visited nodes, so in the above example if we did have two paths with same labeling
but at least one node differs, we do have two distinct paths and the answer is YES.

So now that we understand what we should do, let’s talk about possible solutions.

Let’s consider a naïve solution first. Let us find all the paths, select pairs of paths that have the same
labeling and check if there is a difference in visited nodes. As you may guess this is way too slow, it has
exponential time of execution and for 2000 nodes/edges it wouldn’t produce a solution even if we had
1000 years of spare time.

We need to abstract things a bit so that we can prune paths that we don’t need.

Qualifications

MDCS – Bubble Cup 7DC

62

The question is: Do we even need whole paths?

The answer is: No, well after thinking a bit on this problem you would probably come to the same kind of
abstraction. The key point here is to search for distinct paths in parallel. Let’s consider that we have two
paths, but we don’t really need all the information: what nodes path contain, what edges path contains,
and so on... We only need to know what are the nodes of path at some point, and if the paths contained
different nodes at some point. Let’s define state in two paths after traversing N edges as:

● Current node on path 1
● Current node on path 2
● Did we have a distinction (any state so far has distinct property or if current nodes differ in this

state)

This state can be described as three-parameter function f(node, node, bool), where we have states,
which is about 8 million at most.

So what you need to do is perform a breadth-first search (or an iterative depth-first search, because
recursive DFS will fail due to stack overflow when it tries to call itself several million times) which is going to
traverse graph in parallel. So the BFS should look like this:

parallel_bfs(0, 0, false)
 queue.add(state(0, 0, false));
 state = getStateFromQueue();
 for every pair of state.node1’s and state.node2’s neighbor whose edges have same labeling
 if (state (node1, node2, distinct || (node1 != node2) is not visited)
 mark state as visited
 put that state in the queue

You should keep all the states in a boolean matrix . In the end the solution
to this problem will be contained in , if it is true it means that we made it to a state
where we finished both of our paths in node 1 and we did at some point have distinction in nodes (it
doesn’t matter where).

This solution has quadratic complexity and should pass the time constraint, but if it is not implemented well
you will need some optimisations, and here is a nice one.

Let’s think if there is way not to do all the computation, but to make a conclusion a bit earlier. If we could
transform our graph before all this processing to a graph that always contains the path from every node to
node 1 we could conclude that we found distinct path if we are in state
 , where and are equal, otherwise there is no
such path. So there is no need to go to node 1 if we know that there is a path from every node to node 1.
When we come to the state with equivalent current nodes and distinct paths we can connect that path
with node 1 in any way we want to.

How to do this transformation?

Pretty easy, we only need to delete all the nodes from which we can’t reach node 1. That can be done by

reversing all the edges of the graph, and running regular BFS on that graph. After the BFS is done the visited

nodes are the only ones we are interested in. Our new graph, with only the selected nodes and edges

reversed back, has the property described above. Now we can run our parallel BFS algorithm and break out

from it as soon as we hit the state with the same nodes and the flag on. This optimisation speeds

up the algorithm a lot, but its complexity is a bit hard to prove.

Solution by:
Name: Uros Joksimovic, Milos Biljanovic, Dejan Pekter
School: Racunarski fakultet (RAF)
E-mail: uros.joksimovic92@gmail.com, miloshb92@hotmail.com, deximat@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

63

Problem R2 01: Zig-Zag Permutation (code: ZZPERM)

Time Limit: 1.0 second

In the following we will deal with nonempty words consists only of lower case letters 'a','b',..., 'j' and we will

use the natural 'a' < 'b' < ... < 'j' ordering. Your task is to write a program that generates almost all zig-zag

words (zig-zag permutations) from a given collection of letters. We say that a word W=W(1)W(2)...W(n) is

zig-zag iff n = 1 or and for all odd and for all even 0 < j < n

or and for all even and for all odd . For example:

"aabcc" is not zig-zag, "acacb" is zig-zag, "cac" is zig-zag, "abababc" is not zig-zag. If you imagine all possible

zig-zag permutations of a word in increasing lexicographic order, you can assign a serial number (rank) to

each one. For example: the word "aabcc" generates the sequence: 1 <-> "acacb", 2 <-> "acbca", 3 <->

"bacac", 4 <-> "bcaca", 5 <-> "cabac", 6 <-> "cacab".

Input

The input file consists several test cases. Each case contains a word (W) not longer than 64 letters and one

positive number (D). The letters of each word are in increasing order. Input terminated by EOF.

Output

For each case in the input file, the output file must contain all of the zig-zag permutations of W whose zig-

zag serial is divisible by D, in increasing lexicographic order - one word per line. In the next line you have to

print the total number of zig-zag permutations of W. There is no case that produces more than 365 lines of

output. Print an empty line after each case.

Sample

input output
j 1

abc 2

aaabc 1

aaabb 2

aaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbcccdd

123456

j

1

bac

cab

4

abaca

acaba

2

1

babacbcabacabadabababababababababadab

213216

Solution:

The first thing you should notice about the problem is that there are at most only | |

 distinct letters in the word W. After that, let's first focus our efforts on solving the first part of the

problem: counting the number of zig-zag permutations of .

The solution will be an application of dynamic programming. Let's say we constructed the first characters

Qualifications

MDCS – Bubble Cup 7DC

64

of a specific zig-zag permutation and we need to construct more of them. The only things we need

to know are: what's the last (-th) character, whether the next character should be greater or lesser then

the -th, and how many characters of which kind are remaining. Given that data, we can count the number

of ways we can extend the word to form a complete zig-zag permutation.

For example, let's say we constructed the prefix and the state is now

We can obviously transition from that state to and .

Associating the number of zig-zag permutations with the state enables us to calculate the first required

number. The only thing left to do is to pick the first character and the relationship between the first two

characters and sum up the numbers for each choice.

From a complexity point of view, the solution isn't perfect. If the original word had 6 occurences of each

of the 10 letters, then the number of states would be , because there are 10 possibilities for

the last character, 2 possible directions and every character can occur from 0 to 6 times, yielding a total of

 states. The said number is about and is generally too big to handle within the time limit. Luckily,

no such test cases exist and the said algorithm is good enough to run within the allowed time.

As for the second part of the problem (finding the -th zig-zag permutation), it's amazingly simple to

implement after we know how to solve the first part via dynamic programming. You can easily find the first

character of the string by counting how many permutations there are with a certain first character and

stopping when the cumulative number exceeds . A similar algorithm can be used to find the second

character, etc. Such an algorithm is sufficient to solve the problem.

Solution by:
Name: Goran Žužić
School: FER, Zagreb
E-mail: zuza777@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

65

Problem R2 02: DEL Command II (code: DELCOMM2)

Resource:Chinese National Olympiad in Informatics 1997,Day 1

Time Limit: 35 second

It is required to find out what's the maximum number of files that can be deleted from MS-DOS directory

executing the DEL command of MS-DOS operation system only once. There are no nested subdirectories.

DEL command has the following format: DEL wildcard

The actual wildcard as well as a full file name can be made up of a name containing 1 up to 8 case-sensitive

characters. In a wildcard the characters '?' and '*' can be used. A question mark substitutes exactly one

character of the full file name, an asterisk any sequence of characters even empty one.

MS-DOS system can permit maybe other wildcards but they can not be used in this task. File names consist

only of Latin letters and digits.

Input

The first line of the input is an integer M, then a blank line followed by M datasets. There is a blank line

between datasets.

Input data for each dataset contains a list of full file names without any extra empty lines and spaces. Each

name is written in a separate line of input data file and ended with a control sign: '+' for delete or '-' for

keep. Full file names are not repeated. The list comprises at least one file, and at least one file is marked to

be deleted. There are no more than 250 files.

Output

For each dataset, write to the first line of output the maximum number of files one DEL command can

delete.

Sample

input output
2

BP +

BPC +

TURBO -

EXCHANGE +

EXT +

HARDWARE +

MOUSE –

NETWORK –

2

2

For the two tests above,the corresponding DEL commands are DEL BP* and DEL EX*.

Solution:

This problem requires of us to find a wildcard pattern which matches the largest amount of files, but not

any of the files which are marked as “need to be saved”. It means that we can create a list for each file,

containing all patterns which match it. Then we just need to find the pattern which is contained in the

Qualifications

MDCS – Bubble Cup 7DC

66

maximal number of “safe” lists, but in none of the “unsafe” ones.

The first problem with this idea is that the list of patterns can get really big, so we have to leave out some

of them. Let’s see which patterns can be safely left out. For example, if a pattern contains “**” it’s

equivalent to the pattern where one of the “*” is left out. Further, a pattern such as “?*?*?” is equivalent

to “???***”, which is then equivalent to “???*“. Generalizing this insight, we conclude that we don’t have

to look at any patterns containing consecutive “*”s or a “?” immediately following a “*”. This gives us a

more manageable list – for example, a file named “AB” is matched by the following list of wildcard

patterns:

??

??*

?B

?B*

?*B

?*B*

?*

A?

A?*

AB

AB*

A*B

A*B*

A*

*A?

A?

*AB

AB

*A*B

*A*B*

A

*B

B

*

It can be calculated that the worst case is when we have a file name containing 8 different characters, and

that for this case, taking into account that the maximum allowed length of a pattern is 8 characters as well,

the pattern list contains somewhere around 8000 elements.

 To find a pattern which is contained in the maximal number of lists, we will make use of the trie data

structure. Each pattern from each list is added to the trie, and we add 1 to the value of the node in the trie

if the pattern was pulled out from a list corresponding to a file which can be deleted, and a – value

is added if the list was for a file that is not allowed to be deleted. we

In the end we just have to go through the trie and find the node with the maximal value.

The time complexity of inserting a pattern to the trie is , which gives us the total

time complexity (where denotes the number of files ()

and the maximal number of wildcard patterns for some file (, as discussed)). The memory

complexity has the same order as the number of nodes in the trie, so some care has to be taken not to

allocate any unnecessary memory.

Solution by:
Name: Dušan Zdravković
School: Računarski fakultet (RAF)
E-mail: duxxud@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

67

Problem R2 03: Boxes (code: BOX)

Resource: POI III, stage 3; Special thanks to Lei Huang

Time Limit: 0.5 - 15 second

There are n boxes on the circle. The boxes are numbered from 1 to n in clock wise order. There are balls in

the boxes, and the number of all the balls in the boxes is not greater than n.

The balls should be displaced in such a way that in each box there remains no more than one ball. In one

move we can shift a ball from one box to one of it's neighboring boxes.

Write a program that: reads from the standard input the number of boxes n and the arrangement of balls in

the boxes, computes the minimal number of moves necessary to displace the balls in such a way that in

each box there remains no more than one ball, writes the result in the standard output.

Input

The first line of the input file contains an integer t representing the number of test cases. Then t test cases

follows. Each test case has the following form:

 The first line contains one positive integer n - the number of boxes

 The second line contains n nonnegative integer separated by single spaces. The i-th number is the

number of balls in the i-th box.

Output

For each test case, output one nonnegative integer - the number of moves necessary to displace the balls in

such a way that in each box there remains no more than one ball.

Sample

input output
1

12

0 0 2 4 3 1 0 0 0 0 0 1

19

Note

There are two input files. In the first input file, t=19, n<=1000, time limit=0.5 second; In the second input

file, t=3, n<=200000, time limit=15 seconds.

Solution:

In order to solve the problem above, we will first reformulate it.

We number the boxes in a clockwise order from 1 to , beginning from an arbitrary box. Let denote

the box in which ball number

was placed at the beginning. We number the balls so that

 . Then we “stretch” the boxes

into a line and add infinitely many boxes before and after the line

(they are numbered and respectively).

Qualifications

MDCS – Bubble Cup 7DC

68

We displace the balls so that at most one ball remains in each box. The new position of each ball will be

denoted b0(i). We will call b0(i) for a solution for balls . Furthermore, a solution will be

called optimal if its cost ∑ | |
 is minimal.

We will call the distance between the first and the last occupied box in a given solution (i.e. the number of

the boxes between them plus 1) span. We want to find the optimal solution for balls 1,...,m with span at

most .

Before we do that, we will define an operation and introduce four lemmas.

We define an operation “push left” on a given solution. We take the rightmost ball and move it one box to

the left. If the box is not empty, we take the ball from it and again move one box to the left. We continue

this process until a ball is inserted into an empty box. In other words, we move the rightmost continuous

block of balls one box to the left. This operation changes the cost of the solution by . If is a negative

number, than the solution is improved. “Push right” is defined in an analogous way.

Lemma 1 There exists an optimal solution in which (1).

Let us take any optimal solution and assume that there exists such a pair that and .

Since , | | | | | – | | – |. Therefore we may swap

 and and we obtain another optimal solution. Continuing this process for different pairs, like

during a sorting algorithm, we may finally obtain an optimal solution where (1) is satisfied.

Lemma 2 When we perform subsequent “push left” operations, each time the change of the cost is

greater or equal than the change last time. (The same holds for the “push right” operation.)

Let us assume that in the rightmost continuous block of balls there are balls such that ,

and balls such that . The “push left” operation changes the cost of the solution by

Qualifications

MDCS – Bubble Cup 7DC

69

 After the operation can increase or stay the same and can decrease or stay the same. This

proves the lemma.

Lemma 3 Let us consider all solutions such that boxes with indices greater than are empty. We choose the

optimal one among them and call it . Now we want to find the optimal solution among all solutions in

which boxes with indices greater than are empty. If box number was free in solution A, then we

may take . Else we may obtain by performing “push left” on . This follows from Lemmas 1 and 2.

Lemma 4 If is the leftmost occupied box and is the rightmost occupied box in an optimal solution with

span , then there exists an optimal solution with span such that all occupied boxes are either

in range or .

Lemma 4 will be left without a proof. It can be proven by contradiction, when we consider rightmost

continuous blocks of balls in both solutions and estimate their lengths.

Algorithm

We may use these lemmas to construct the algorithm.

1. Firstly, we want to find an optimal solution with any span. We keep in memory an optimal solution
with a cost for the balls , (if there is more than one, we assume that we have any of them).

Now we consider the ball number . According to (1) we know that it is the rightmost ball in the
optimal solution for the balls .

If is free we set and the new solution’s cost is , so it is optimal.

If is occupied, then we place the ball number to the right of the rightmost ball in the previous

solution. We perform “push left” as long as it decreases the cost of the solution. According to Lemma

3 this leads to an optimal solution.

2. After adding all balls we get an optimal solution with span . As long as s is greater than n− 1 we
perform either “push left” or “push right”, each time we choose the operation that makes a smaller
increase in the cost of the solution. According to the Lemmas 4 it leads to an optimal solution with a

span .

Implementation

Let us assign the same colour to balls which were in the same box at the beginning (which have the same

). Balls in the same colour form one continuous block in the solution produced by the algorithm — this

is an observation based on Lemma 1 and the workflow of the algorithm. The block of balls of the same

colour (from the same box) will be called simply a colour. Each colour

in the solution may be characterized

by three parameters: — its leftmost ball, — its rightmost ball and — the primary position

(box) of all the balls in that colour. Instead of considering single balls, we will consider colours. The figure

below shows an example of an initial and final placement of the balls.

Furthermore, we will create a structure which will store information about continuous blocks of balls in the

Qualifications

MDCS – Bubble Cup 7DC

70

solution. We will call them large blocks. Large blocks consist of one or more colours.

We will divide colours in each large block into three groups:

•

— colours entirely to the left of their box of origin () ,

• — colours entirely to the right of their box of origin () ,

• — one of the balls in the colour x is in its box of origin ().

When we perform the operation “push left”, we move the rightmost large block one box to the left. It may

make the colours in the large block change their groups ().

If there is only a one-box distance between the rightmost and the second rightmost large block, than after

“push left” we have to merge these two into one large block. In order to make the algorithm sufficiently

fast, we have to concentrate on performing “push left”, updating the current cost of the solution and

merging large blocks.

When we perform “push left”, we have to change the cost of the solution by

• for each colour

in

• for each colour

in

• for each colour

in

To update the cost of the solution in a fast way, we remember the sum of the lengths of the colours in in

 . Thanks to that, we calculate this part of in constant time. We calculate the change of the cost for

each colour in separately. This is performed in amortized constant time, because each colour may be

pushed left at most (its length) times when it is in group , then it will travel left to its primary

position and end up in group . The sum of the lengths of all colours equals .

For each large block, we may store information about colours from L and R in binary search trees (e.g. set

from the C++ STL) and colours from the group M in a dynamic array (e.g. vector from the C++ STL). The

colours in the BST structures are ordered by the number of remaining “push left” operations which will

make them change their group. If this number for the minimal colour in is equal to the number of

Qualifications

MDCS – Bubble Cup 7DC

71

operations performed, than that colour is deleted from and added to . Colours in are updated

separately after each “push left”, they are added to when they leave . Colours in cannot change their

group any more after “push left”. However, it is useful to store information about them in a BST — we use

it to construct a similar data structure to enable the “push right” operation in the second part of the

algorithm.

The last thing that remains to be done is merging two large blocks. When we merge two groups of the same

kind, we always add elements from a smaller container to a larger one. Thanks to this, every element will

be inserted at most times. The most time-consuming operation in the algorithm is merging binary

search trees, which in total takes time (insertion of a single element into a BST takes

 time).

Solution by:
Name: Bartosz Tarnawski
School: Szramek High School Katowice

 E-mail: bartek.tarnawski@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

72

Problem R2 04: Cryptography (code: CRYPTO)

Time Limit: 1 – 11 second

Your task is to work as a cryptographer for some time, the reason is ...

Blue Mary has set a problem using English. Since the problem is too easy and it will be boring when solving

it, she has deleted all the whitespaces and punctuations in the original problem description, and

lowercased all the capital latin letters. Then, she randomly chose a permutation of the English lowercase

letter alphabet, and then used the corresponding letters in place of the letters in the original text.

The encrypted text can be downloaded here.

There is no example for this problem.

Blue Mary's note: some tricky test cases were added on Nov. 25th, 2007 and the time limit has been

changed. Programs have been rejudged and some "accepted" solutions got Wrong Answer. However, this

problem can still be solved by quite clean code with length less than 1KB.

Solution:

This task is a bit different from the others, since we are given an encrypted problem statement. Therefore,
to solve the task, we need to decipher the statement. This also happens to be the main and interesting part
of this problem, since the task itself is rather easy (except for some ambiguity in the real statement).

In the introduction to the task statement, we are provided with some important facts – we are dealing with
lowercase Latin letters, the language is English and, the most important fact, the method of encryption is a
form of substitution cipher.

One of the simplest and most commonly used methods for breaking the substitution cipher is frequency
analysis. This method, coupled with some manual tweaking, is enough to decipher the task statement. It
consists of counting the number of occurences of each letter in the ciphertext – analysis of the frequency of
each letter in the ciphertext. Then, the more frequent letters in the ciphertext are mapped to the more
frequent letters in the English alphabet, while the less frequent are mapped to the less frequent letters in
the English alphabet. For this, we will, of course, need relative frequencies of letters in the English alphabet.
Then, in the best case, the most frequent letter in our ciphertext will map to the letter ‘e’ (the most
frequent letter in English language), the second most frequent letter will map to the letter ‘t’ and so on... Of
course, the process of decryption would be too easy then, so this is not the best case and we will have to
do some guessing. We can start by mapping the most frequent letters in the given text to the most
frequent letters in the alphabet, and then build it up from there by looking at the text we are getting when
applying our partial key, mixing the mappings a little bit, trying to get meaningful words and parts of words.
We can also use the frequency analysis of bigrams (two adjacent letters in the string) or trigrams. For
example, the most frequent trigram in the given text is ‘nte’, and it maps to the most frequent trigram in
the English language ‘the’. Slowly, by correctly guessing the parts of the needed key (permutation), we will
be getting more and more meaningful words, ultimately leading to this (spaces and punctuation included
additionally to show the real beauty of the statement):

“I have told you that this problem is very easy, just like the problem life the universe and everything.

Yes, it's very easy, but you will have some trouble to get accepted if you don't care with the problem
description.

A very easy problem is not always a very boring problem.

Qualifications

MDCS – Bubble Cup 7DC

73

Sometimes it will be interesting from the time you try it to the time you solve it because after lots of WA/TLE
you will feel very well.

The sun is shining outside the window. The birds are singing in the tree. The nature is harmonious.

What's the first problem of an online judge?

It's A plus B problem in common except sphere online judge.

This problem will be the first problem of most of the online judges.

The data limitations are multiple test cases.

All the numbers are separated by some whitespaces. A and B are integers and less than MAX_LONG_INT in
C or C++ language.

The input file will less than four megabytes.

I hope you can solve it as fast as possible because it's very very easy and the test cases are very weak. But if
you got WA/TLE you will work for a long time to find the mistake of your program possibly.

Enjoy this problem “

Alright, the text may not be so beautiful at the end, and actually, it does not describe the problem very
well. Most of the people probably felt excitement and relief after successfully deciphering the text, but it
was only the beginning of a bumpy road to ‘Accepted’. The task is to print the sum of two numbers, but the
format of the input (and output) is still unknown, and the constraints are vague. Therefore, the method of
trial and error would have to continue to find out all the tricks that are hidden in this task. The first, and the
easier problem is to find out how the input looks like. By testing different solutions, it turns out that the
input consists of an array of 2N integers (there is no number in the input that tells us the value of N). Let V
be the given array. You have to print exactly N integers (separated by some whitespace), where each
integer represents the value of expression V[2i-1]+V[2i], for each i=1,…,N. The second and more tricky part
of solving this problem is figuring out the constraints. It is stated that all the integers will be less than
MAX_LONG_INT. A lot of people initially assumed that their absolute value is less than MAX_LONG_INT.
But, it is a very wrong assumption, and, as it turns out, there is no lower bound on the value of numbers,
other than the size of the input file. Therefore, big integer arithmetics has to be used to solve the task.
Since the only operation is addition (and subtraction in case of two numbers with different signs), the
implementation is straightforward. Time limit should not be an issue in this task, since the time complexity
of the solution is linear, but reading the input should be done with care.

Solution by:
Name: Vanja Petrović Tanković
School: School of Computing, Belgrade
E-mail: vpetrovictankovic@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

74

Problem R2 05: Slow Growing Bacteria (code: SBACT)

Resource: MNNIT IOPC 2010, Co-author: jitendra_kumar

Time Limit: 2.0 second

Given an n x n grid of cells, a bacteria colony can colonize these cells. Their growth after every second is

governed by the following rules:

1) One new bacteria is born in cell (i ,j) if and only if either one of its four neighboring cells or the

cell(i,j) itself has a bacteria population more than or equal to the threshold value, k.

2) Already living bacterias do not die.

Given, the initial state of the n x n cell grid, you need to accurately estimate the time by when the total

bacteria population reaches m.

Input

First line contains t, number of test cases. Each test case starts with n (side length of grid) , k (growth

threshold) and m (final population). Next n lines contain an nxn grid of integers, where ith row,jth column

has an integer representing the number of bacteria's present initially at cell(i,j).

 ; There are no more than n cells with initial population equal to or greater than k.

Output

For each test case print the number of seconds required for the total bacteria population to reach m. If m

can never be reached print "Not possible" (quotes for clarity).

Sample

input output
1

3 5 15

0 0 0

0 3 0

0 0 5

3

Solution:

Given an array of integers called and an integer , find the first moment when the sum of the

elements in the array is greater or equal to a given integer . Each second we apply the rule: if the value in

the cell or its neighbours is greater or equal to , increase it by one.

Basic idea:

The first thing to notice is that the constraints on are relatively small , while and can be huge. So the

complexity of the solution must not depend on and much (maybe logarithmically proportional, but not

more).

There are two basic ideas on similar problems – do a binary search on the answer or just simulate the

process. The binary search doesn’t seem to be a good idea because when we fix the answer, there is no

easy way (at least I couldn't find one) to check if the answer is achievable (the only thing which comes to

mind is again simulation). So, our next stop is to think whether simple simulation is possible within the

Qualifications

MDCS – Bubble Cup 7DC

75

constraints.

With up to 100 we can easily simulate each step, but the problem is that we may need to simulate billions

of steps. But, many of them will do the same thing – in fact we will have only steps in which

something changes. Really, the only change occurs when the value of a cell becomes greater or equal to

(because it activates its neighbours), and this can happen at most once per cell. This idea must be enough

to solve the problem!

So, we are ready with the basis of the solution – group the steps and use a single iteration to simulate the

whole group.

Implementation:

There are different ways to implement the above idea with complexities ranging from to

 , and maybe even better. I will explain the solution I used.

I maintain three groups of cells:

● already with value greater or equal to
● With value less then , but increasing
● The rest of the cells.

Apparently, the work we do each moment only changes when something from 2) moves to 1). I remember

this (future) moment for each item in 2) and in each step choose the group in 2) with the smallest moment

(I group the elements in 2) with equal "move" times; this is not necessary). Then, for the time from the

previous interesting point (of course, the first interesting point is 0) to this one I know how the total count

has changed because it depends only on the sizes of 1) and 2) and the interval of time between the two

points. After finishing with this, I update the information for the neighbours of the current cells. If I use a

data structure which supports the priority queue operations in time (for example, set in the C++

STL) , I get the desired complexity.

Also, when 2) becomes empty, nothing will change from then to infinity, so it is easy to count the

remaining time (if any) for the sum to reach . There are some things to be careful about:

1) Not to forget to use long long (or similar)
2) If the sum in the table is fine in the beginning, we should just print 0 and stop
3) If in the beginning we do not have active elements and 2) is not satisfied , print "Not possible"
4) Be careful in the initialisation – it is easy to send an element not in the right group
5) Also , remember to round up when dividing
6) One last thing - we must not forget to break the simulation when the sum reaches

A final note about the complexity:

For each of the cells we will look at most once at its four neighbours and maybe put them in the priority

queue (if they are not already there). This takes time. This time dominates all other steps, so

the total complexity is as well.

Solution by:
Name: Vladislav Haralampiev
School: SU "St. Kliment Ohridski"
E-mail: vladislav_haralampiev@abv.bg

Qualifications

MDCS – Bubble Cup 7DC

76

Problem R2 06: Reverse the sequence (code: REVSEQ)

Time Limit: 1 second

This is a very ad-hoc problem. Consider a sequence (N, N-1, ..., 2, 1). You have to reverse it, that is, make it

become (1, 2, ..., N-1, N). And how do you do this? By making operations of the following kind.

Writing three natural numbers A, B, C such that 1 ≤ A ≤ B < C ≤ N means that you are swapping the block

(block = consecutive subsequence) of elements occupying positions A...B with the block of elements

occupying positions B+1..C. Of course, the order of elements in a particular block does not change.

This means that you can pick any two adjacent blocks (each of an arbitrary length) and swap them. The

problem can easily be solved in N-1 operations, but to make it more difficult, you must think of a faster

way.

Input

A natural number 1 < N < 100.

Output

Output at most 50 operations, one per line. Each opearations is represented by three numbers as described

above.

Sample

input output
5 2 3 5

1 2 4

2 3 5

Explanation of the sample output: (5 4 3 2 1) --> (5 2 1 4 3) --> (1 4 5 2 3) --> (1 2 3 4 5)

Solution:

Since the limitations for N are , and we shouldn't output more than 50 operations, we're

looking for a solution which will take around N/2 steps. We will describe an algorithm which takes N/2 + 1

steps for even N and (N-1)/2 + 1 for odd N (or, simply, N div 2 + 1 steps for all N), except for N=2 where 1

step is sufficient.

Even N

To demonstrate how the algorithm reverses the sequence in the given number of steps, let N=10. The

sequence looks like this at first:

10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1

Phase 1
Starting from the number with the index N/2 - 2, we let the first sequence be that number and the next

one, and we let the second sequence be the following N/2 - 1 numbers. We then swap those two

sequences.

10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 => 10 , 9 , 6 , 5 , 4 , 3 , 8 , 7 , 2 , 1

Now, we swap the sequences of the same length (two and N/2 - 1), but, this time the starting index will be

N/2 - 3.

Qualifications

MDCS – Bubble Cup 7DC

77

10 , 9 , 6 , 5 , 4 , 3 , 8 , 7 , 2 , 1 => 10 , 5 , 4 , 3 , 8 , 9 , 6 , 7 , 2 , 1

We repeat this procedure - the lengths of the sequences to be taken are not changed, and the index of the

number from the beginning of the first sequence is decreased by 1 until we run out of indices. That means

this phase takes N/2 - 2 steps.

10 , 5 , 4 , 3 , 8 , 9 , 6 , 7 , 2 , 1 => 4 , 3 , 8 , 9 , 10 , 5 , 6 , 7 , 2 , 1

After these steps the sequence will, in general, look like this:

4 , 3 , N/2 + 3 , N/2 + 4 , N/2 + 5 , ... , N , 5 , 6 , 7 , ... , N/2 + 2 , 2 , 1

For N=10: 4 , 3 , 8 , 9 , 10 , 5 , 6 , 7 , 2 , 1

Phase 2

Now we are just three steps away from reversing the sequence!

First, swap the sequences [2, N/2] and [N/2 + 1 , N] :

4 , 3 , 8 , 9 , 10 , 5 , 6 , 7 , 2 , 1 => 4 , 5 , 6 , 7 , 2 , 1 , 3 , 8 , 9 , 10

Now, swap [1, N/2 - 1] and [N/2, N/2 + 2] :

4 , 5 , 6 , 7 , 2 , 1 , 3 , 8 , 9 , 10 => 2 , 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10

Now swap the first two numbers, and you're done! The first phase takes N/2 - 2 steps, and the second

phase takes 3 steps, for a total of N/2 + 1 steps.

Odd N

The general idea for odd N is the same as for even N. In phase 1, we start reversing sequences of lengths 2

and (N+1)/2 from the index (N-1)/2 - 1. This takes (N-1)/2 - 1 steps, that is, N div 2 - 1 steps. The sequence

will look like this after phase 1:

3 , 2 , (N-1)/2 + 3 , (N-1)/2 + 4 , ... , N , 4 , 5 , 6 , 7 , ... , (N-1)/2 + 2 , 1

The phase two, however, takes just two steps - swap [2 , (N+1)/2] and [(N+1)/2 + 1 , N] and [1 , (N-1) / 2]

and [(N+1)/2 , (N+1)/2 + 1].

Demonstration of phase 2 for N=11:

3 , 2 , 8 , 9 , 10 , 11 , 4 , 5 , 6 , 7 , 1 => 3 , 4 , 5 , 6 , 7 , 1 , 2 , 8 , 9 , 10 , 11

3 , 4 , 5 , 6 , 7 , 1 , 2 , 8 , 9 , 10 , 11 => 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11

The phase 1 takes (N-1)/2 - 1 steps, and phase two takes 2 steps, for a total of N div 2 + 1 steps.

Small N

For N=3 and N=4, phase 1 is omitted. For N=2, we just swap those two numbers.

Conclusion

The implementation of the algorithm is easy, although reaching it is far more difficult. The complexity of

the program itself is O(N) - it doesn't compute anything, just prints some predetermined numbers.

Solution by:
Name: Ivan Stošić
School: Gymnasium “Svetozar Marković”, Niš
E-mail: ivan100sic@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

78

Problem R2 07: Cover the string (code: MAIN8_E)

Resource: Mahesh Chandra Sharma, used for NSIT-IIITA Main contest #8

Time Limit: 4.0 second

Given two strings A and B. You have to find the length of the smallest substring of A, such that B is the

subsequence of this substing.

Formally speaking: you have to find the length of smallest possible string S such that

S is the substring of A

B is the subsequence S

Note: Subsequence of an string S is obtained by deleting some (possibly none) of the characters from it. for

example "ah" is the subsequence of "aohol"

Input

First line contains T, the number of test cases. Then T test cases follow, 2 lines for each test case, 1st

contains A and 2nd contain B.

|A|<=20000, |B|<=100

Output

For each test case print the answer in a new line. if no such substring exists print -1 instead.

Sample

input output
2

aaddddcckhssdd

acs

ghkkhllhjkhthkjjht

hh

10

3

Solution:

Since we are looking for the smallest possible string it is quite obvious that will start with the first

character of string and end with the last character of string . Let all strings be zero-indexed and let be

equal to | | and be equal to | |. We will try to build the solution from any occurrence of character]

in string . Observe that there is no point in skipping characters of string B in string A.

For example, let’s say that string is equal to and string is equal to . The solution

will of course be and not , so we conclude that we need to use some kind of a greedy

algorithm to solve this task. The main idea of the algorithm is that after we have string , which is a

substring of string and has first characters of string as its subsequence, we try to build string

which will be a substring of string and will have first characters of string as its subsequence and

string will be prefix of string .

 So how do we do that?

We can expand string to string by concatenating all characters that come after the last character of

string until we reach character (and that character will be the last character of string).

From all strings the one with the smallest length will be the solution.

Qualifications

MDCS – Bubble Cup 7DC

79

Now we just need to find some quick way to expand any string to string . We will need some matrix

 and will tell us the position of the first occurrence of -th character of the alphabet

() after position in string .

How to build matrix ?

We traverse the string in reverse and we update array where i] is equal to the last

position of -th character while traversing the string in reverse and we can see that when we get to position

 , the array Last will represent row .

Now let’s summarize the solution:

 Build matrix

 Try to build string starting from any occurrence of character in string

 Use matrix to expand any string to

If we were unable to build any string we output – , otherwise we output the length of the smallest

string .

Solution by:
Name: Aleksandar Ivanović
School: Prva kragujevačka gimnazija
E-mail: aleksandar.ivanovic.94@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

80

Problem R2 08: Dynamic LCA (code: DYNALCA)

Time Limit: 0.5 second

A forest of rooted trees initially consists of N (1 ≤ N ≤ 100,000) single-vertex trees. The vertices are

numbered from 1 to N.

You must process the following queries, where (1 ≤ A, B ≤ N) :

 link A B : add an edge from vertex A to B, making A a child of B, where initially A is a root vertex, A

and B are in different trees.

 cut A : remove edge from A to its parent, where initially A is a non-root vertex.

 lca A B : print the lowest common ancestor of A and B, where A and B are in the same tree.

Input

The first line of input contains the number of initial single-vertex trees N and the number of queries M (1 ≤

M ≤ 100,000). The following M lines contain queries.

Output

For each lca query output the lowest common ancestor (vertex number between 1 and N)

Sample

input output
5 9

lca 1 1

link 1 2

link 3 2

link 4 3

lca 1 4

lca 3 4

cut 4

link 5 3

lca 1 5

1

2

3

2

Solution:

First of all, if there were no "cut" and "link" operations, and all nodes were connected, how would we solve

the problem? One of the methods to find LCA is this: create an empty array and make a DFS order of the

tree. As we traverse edges (either forwards or backwards), whenever we enter a node, append that node to

the end of the array. This array will contain elements in the end. Note that this does not mean each

node appears twice in the array! Now to find LCA of nodes A and B, pick any of their occurrences in the

array and find the node with minimal depth between them. This can be done in using any range-

minimum-query (RMQ) data structure.

Let's see what happens to the array containing nodes in DFS order on operation "cut": if we cut node A, the

interval beginning from the first occurrence of node A and ending at the last occurrence of node A is being

cut from the array and becomes a new array. What about operation "link A B"? The array starting and

ending with node A is plugged in the array containing node B between two consecutive B's. Note that

cutting and linking may require slight modifications like duplicating a node or removing a duplicate to fix

Qualifications

MDCS – Bubble Cup 7DC

81

the DFS order.

The last obstacle to solving this problem is making all operations fast. There's an awesome data structure

called the splay tree. Using splay trees we can easily cut and paste intervals and query for minimum in an

interval. The idea is to just naively implement operations, and make sure that we splay any node we were

looking for by traversing any tree from the root. This magically gives per operation.

Solution by:
Name: Stjepan Glavina
School: FER Zagreb
E-mail: stjepang@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

82

Problem R2 09: Magic Bitwise AND Operation (code: AND)

Resource: Fudan University Local Contest #3, by g201513

Time Limit: 23 second

Given n integers, your task is to pick k out of them so that the picked number are minimum when do

bitwise AND among all of them.

Input

There are multiple test cases for this problem. The first line of the input contains an integer denoting the

number of test cases.

For each test case, there are two integers in the first line: n and k, denoting the number of given integers

and the number of integers you are asked to pick out. (1<= n <=40, 1<= k <= n)

The second line contains the n integers. You may assume that all integers are smaller than 260.

Note: There are about one thousand randomly generated test cases. Fortunately 90% of them are relatively

small.

Output

For each test case, output only one integer - the smallest possible value.

Sample

input output
2

3 2

5 6 7

8 2

238 153 223 247 111 252 253 247

Case #1: 4

Case #2: 9

Solution:

For solving this task we will require some basic knowledge of binary numbers and bitwise operations. The

solution for this task is some kind of a pruning search. We will use the most basic recursion for finding all

the -combinations of elements and use some optimizations to make it faster. Observe that for all

numbers and the following inequality holds: , where represents the bitwise AND

operation. So first of all, we will sort the numbers in non-decreasing order. We set the initial solution to be

some very large number (for the limits in this task will suffice). We use the following optimizations:

if we select exactly numbers or we reach the end of the array we don’t go any further in the recursion.

Also, since we concluded that including larger numbers in the combination will make that combination less

or equal to the previous one, we can check if including all the numbers after the current position will give

us some number that is greater or equal to the solution and if that is the case we don’t go further in the

recursion either. For that optimization we will need to use some preprocessed array , where is

equal to (all arrays are zero-indexed). We can preprocess array in

either linear or quadratic complexity, it doesn’t affect the total time that much. One more optimization is to

check in every step if the current combination is smaller than the best solution so far and update the

solution if that is the case. Using all of the above optimizations will be enough to solve the task within the

Qualifications

MDCS – Bubble Cup 7DC

83

given time limit. The recursion itself is very simple to code and very short. The implementation follows:

void Solve (int idx, int Cnt, lld Curr)

{

 if (Curr < Sol) Sol = Curr;

 if ((Cnt == K) || (idx == N)) return;

 if ((Curr & DP[idx]) >= Sol) return;

 Solve (idx + 1, Cnt + 1, Curr & A[idx]);

 Solve (idx + 1, Cnt, Curr);

}

(represents the current position in the array, represents the quantity of numbers that we take in

the combination and represents the value of the combination.)

Solution by:
Name: Aleksandar Ivanović
School: Prva kragujevačka gimnazija
E-mail: aleksandar.ivanovic.94@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

84

Problem R2 10: Contaminated City (code: 1CONTCITY 19)

Time Limit: 2.0 second

In a far away country there is a city facing a big problem. The city is plagued by a deadly gas. Many people

have died, but there are groups of survivors at places around the city. Between these places there are roads

connecting two distinct places that can still be traversed safely. These roads can be traversed in both

directions. It's known the number of days necessary to traverse each road and the two places that it

connects. It's also known the number of survivors at each location. Each survivor can get to other places

following a sequence of roads.

The mayor will send several helicopters to rescue these people, each having a capacity, a limit on the

number of crew (people that it can rescue). Each helicopter will land on a certain day and place.

You should answer an important question for the mayor. How many days are needed to rescue all

survivors? If it's not possible to rescue all people you should answer how many of them can be rescued.

Input

The first line of input file have the number of test cases T (T <= 40). The first line of each test case have N,

M, and H, the number of places considered, the number of roads between the places and the number of

helicopters that will be sent, respectively. Each place is uniquely identified by a number between 1 and N.

The next N lines will have N integers, the i-th line have the number of survivors in place i, Xi. Each of next M

lines will have three numbers Aj, Bj and Dj, meaning that there is a way between places Aj and Bj that last

Dj days to traverse. The input can contain several roads between the same pair of places. Each of next H

lines will have three integers Dh, Ph, and Ch (in this order), meaning that a helicopter with capacity Ch will

arrive at place Ph at day Dh. The sum of survivors will not be more than 200. If a survivor can get a

helicopter following a sequence of roads, the total time to get the helicopter will not be more than 1000.

Constraints

Output

For each test case there is one line in output. If all people can be rescued "All people can be rescued in D

day(s) ." should be printed, where D is the minimum number of days to rescue all people. If it is impossible

to rescue all people "X survivor(s) can be rescued." should be printed, where X is the maximum number of

survivors that can be rescued.

Qualifications

MDCS – Bubble Cup 7DC

85

Sample

input output
2

4 4 4

3

4

5

6

1 2 7

2 3 3

3 4 3

4 1 4

4 4 7

6 3 2

5 2 3

3 1 6

4 2 3

2

2

3

1

1 4 3

2 3 3

2 4 2

3 2 4

3 3 2

All people can be rescued in 6 day(s).

7 survivor(s) can be rescued.

Solution:

Let’s reformulate this task in graph theory. Cities and helicopters will represent vertices in this graph and

there will be an edge between city and helicopter if there is a path between and the city that

helicopter lands on.

Firstly, let’s find the maximum number of people that can be rescued without regard for the time needed.

This subproblem can be easily solved using the well-known max flow algorithm. We can see that costs of

edges and times of helicopter landing don’t play any role here, so we can forget about them. Let’s create

two new vertices: and , with being connected to each city through an edge with

capacity equal to the number of people in city and being connected to every helicopter through

an edge with capacity equal to the capacity of helicopter . We will set the capacity of edges between cities

and helicopters to infinity. Now it’s easy to see that the flow between and will be the

maximum number of people that can be rescued.

Now, if not all people can be rescued, we should just output this number. Otherwise we need to find the

minimal time needed to rescue all the people. In order to do that, we will make a use of the previous idea.

Let’s try to answer the question whether we can save all the people within time D. If we remove all the

helicopters that land after time D, and if we remove all the edges between the city and the

helicopter where there is no path of a distance no more than D, then the flow between and

will tell us maximum number of people that can be rescued within time D.

Finally, let’s note that if we can save all the people within time D, then we can save all the people within

time D+1, D+2, … as well. Because of this we can do a binary search over time D, and find the minimal time

Qualifications

MDCS – Bubble Cup 7DC

86

needed to save all the people.

Time complexity of this algorithm is: where

 is the maximal number of people that can be saved (up to 200), and is the

maximal time needed to reach a helicopter from a city (no more than 1000). The factor is there

because we have to find the minimal distance between each two cities, and it can be done using the Floyd-

Warshall algorithm.

Solution by:
Name: Boris Grubić
School: Gimnazija Jovan Jovanovic Zmaj
E-mail: borisgrubic@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

87

Problem R3 01: Four Mines (code: MINES4)

Resource: ThreeMines from TopCoder SRM 315 extended

Time Limit: 16 second

A Company that Makes Everything (ACME) has entered the surface mining business. They bought a

rectangular field which is split into cells, with each cell having a profit value. A mine is a non-empty

rectangular region, and the profit of a mine is equal to the sum of the values of all its cells. ACME wants to

extract ore from four different non-overlapping mines. You are to choose these mines to maximize the total

profit.

Input

The first line contains an integer T (1 ≤ T ≤ 5), denoting the number of test cases.

For each test case, the first line contains two positive integers R and C (2 ≤ R,C ≤ 100), denoting the number

of rows and columns of a rectangular field.

Each of next R lines contain C integers between -10000 and 10000, denoting a profit value for each cell in

that row.

Output

For each test case, print a number on its own line, denoting the maximum total profit that can be extracted

from four mines.

Sample

input output
2

5 5

10 10 -1 -1 10

10 -1 -1 -1 10

-1 -1 -1 -1 -1

-1 -1 -1 10 10

10 -1 -1 10 10

2 3

-1 -2 -3

-4 -5 66

99

60

Solution:

As it turned out, this was the hardest problem in the BubbleCup qualification rounds. Here we are asked to

put four rectangles on a given rectangular field without overlapping such that the sum of values inside

those four rectangles is maximized.

This problem can be solved using dynamic programming. It’s easy to see that a “state” can be easily

represented by 5 numbers where represents upper left and bottom right

corner of a rectangle in a given rectangular field where we are trying to put number of rectangles such

that we maximize the sum of numbers inside those rectangles. Let’s represent these values by a matrix

 .

For we can see that however we set two rectangles, there will always exists such a vertical or

horizontal line that doesn’t pass through any rectangle (see figure 1). The same holds for , as

Qualifications

MDCS – Bubble Cup 7DC

88

shown in figure 2. For there exist only 2 cases where this is not possible and those two cases are

shown in figure 3. Let’s first solve the problem not considering those 2 cases.

Figure 1

To solve this we will make a use of this property we have just noted. So, since every case can be

“separated” by a vertical or horizontal line, we can just simply try every possible way. So, we can derive the

following recurrent equations (for :

for and

Figure 2

Figure 3

For , we can note that we will either take the whole observed rectangle, or we will remove the first

or the last column or the first or the last row. So if we represent the sum of cells in rectangle

Qualifications

MDCS – Bubble Cup 7DC

89

 by a function we have:

Please note that in the given equations we should take care of special cases where or . In

the former case we should set and and in the latter

 and .

Now let’s deal with this sum function. This is well known and used really often. Let’s represent by

the sum of cells in the rectangle . How to calculate it? Well it’s easy to see that the following

holds:

 , for

 for

 , for

 , for

where represents the value of the cell in row column in the given rectangular field.

So, how can we make a use of this matrix to calculate the sum in rectangle ? Well, we

can use the inclusion-exclusion principle and derive the following:

 for

 , for

 , for

 , for

Let’s analyze the running time of this solution so far… One thing to note is that starting from rectangle

 , where and represent number of rows and number of columns of a given rectangular

field respectively, in one cut we can get to one of the following rectangles (see figure 4):

 , , ,

Note that here we have states.

Figure 4

Following this, in two cuts we can get into following configurations (see figure 5):

 , , , , ,

Qualifications

MDCS – Bubble Cup 7DC

90

Here we’ve got different states.

Again… in three cuts we can get into following configurations (see figure 6):

 , , ,

And finally here we have different states.

Figure 5

Figure 6

Note that after three cuts we have and we have pretty nice dynamic there in (we aren’t

looping through rows or columns to find a cut line), but in other cases we do have that loop and it takes

 time. So the running time is . This is pretty good, but we can

do better. Note that the only thing that is slowing out program is the case for and there we

haven’t used the property that we need only different states.

How to speed that case up? Here we will solve only for the case , and the other 3 cases are

solved similarly. Let’s represent the solution of this case by dp1[x1][x2][y]. Note that we will either take the

whole rectangle, or we will erase the first or last column or the first or last row. Let’s forget for a moment

about erasing the first or the last column. So we’ve got:

Of course, for case , we should set .

Qualifications

MDCS – Bubble Cup 7DC

91

Now after we’ve got this solution, let’s get back to erasing columns. After erasing first or last column

multiple times, we will end up with a rectangle of type . Note that our rows are fixed. So,

the solution will be the sum of consecutive columns where rows are fixed. Let’s say

 . The sum of rectangle will be ∑
 , and we are looking for

maximum value. This is pretty well known problem. As we increase from to we keep a track of

maximum sum of consecutive columns ending at . Once this sum goes below 0, we set it to 0. The

following pseudocode describes this fully:

For d->1 to n:

 For x1->1 to n-d:

 x2 = x1 + d

 best = -infinity

 sum = 0

 For y->1 to m:

 sum = sum + p[y]

 best = max(best, sum)

 dp1[x1][x2][y]= best

 if d > 1:

 dp1[x1][x2][y]=max(dp1[x1][x2][y],dp1[x1+1][x2][y])

 dp1[x1][x2][y]=max(dp1[x1][x2][y],dp1[x1][x2-1][y])

 if sum < 0:

 sum = 0

 endfor

 endfor

endfor

Note that the running time of this algorithm is . So the total running time is now, which is

great.

Now let’s crack those two cases in picture 3. Here we will “crack” only the first case, because the second

one can be solved similarly. Here we will use more dynamic programming. Let’s fix two columns and one

row, like in Figure 7. Now we would like to compute the best way to put the left and the bottom rectangle

such that the sum of cells inside them is maximal, the left rectangle is bounded by column and the

bottom rectangle is bounded by row and column .

Figure 7

Let’s represent this value by . It’s easy to see that is at least as .

This is really nice, because the only thing that’s left to be checked is if bottom rectangle is as large as

possible. So, we have the following recurrent relation:

Qualifications

MDCS – Bubble Cup 7DC

92

Of course, for we set , and note that .

Figure 8

We are almost there. Now again, fix two columns and a row for the top rectangle, as shown in Figure 8, and

make a use of previously calculated values to calculate best profit. In pseudocode:

res1 = -infinity

For c1 -> 2 to m – 1:

 For c2 -> c1 to m – 1:

 For r -> 1 to n – 1:

 A = dp[1][c1+1][r][m] + dp[r+1][c2+1][n][m]

 B = f[c1][c2][r+1]

 res1 = max(res, A + B)

The running time of this part of algorithm is and the whole solution has time complexity of .

One last thing to worry about in this problem is the memory limit. Memory complexity in this solution is

 , which is too high. But note that we are using memory only in matrix, and we know that at

least one of the parameters of of has some nice value. Either

 or or or , so we can make a use of it, by representing all the states where

 by , all the states where by , all the states

where by and finally all the states where by

 . Note that in this way we decreased our memory complexity to , which is

sufficient for this problem and completes the solution.

Solution by:
Name: Boris Grubić
School: Gimnazija Jovan Jovanovic Zmaj
E-mail: borisgrubic@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

93

Problem R3 02: Lost in Madrid (code: LIM)

Time Limit: 10 second

Programming contests can be very exhausting. After five hours of intensive programming, you want to get

some well-deserved rest and make yourself on the way to your hotel. Unfortunately, you don't quite

remember the way to get there... but that doesn't matter: In good spirits (due to a successful contest?) you

set out.

As you don't know the exact way, you decide to walk around in the following fashion: Start at the contest

site (denoted by id 0) and choose a street at random. Follow the street to the next intersection, and choose

another street at random. Every street at an intersection has the same probability of being chosen. You

might even decide to take the street back where you came from. As you're on foot, you can use the streets

in both directions, unlike in "Madrid's One Way Streets".

Your walk stops once you encounter your hotel (id = 300) or one of the tourist information booths (id >

290) where you can ask for the way. You can assume there is at least one path connecting you to either

type of object.

Because you don't speak a lot of spanish (apart from some verbs that you can conjugate thanks to problem

"Spanish Verbs"), you'd like to know the probability that you arrive at your hotel directly, without first

arriving at a tourist information booth.

Input

The input consists of several testcases, separated by an empty line.

Each testcase starts with S, the number of streets. The following S lines contain two numbers 0 ≤ A, B ≤ 300

each. This means that there is a street connecting intersection A to intersection B. The same street will not

appear multiple times in the input.

The input ends with S=0. This testcase should not be processed.

Output

For each testcase, print the probability to arrive directly at the hotel, rounded to three decimal places.

Qualifications

MDCS – Bubble Cup 7DC

94

Sample

input output
3

0 291

0 292

0 300

2

0 300

291 300

2

0 291

291 300

7

0 292

0 88

0 14

0 300

292 88

88 300

14 300

0

0.333

1.000

0.000

0.579

Solution:

The problem seems to be quite difficult when you look at it for the first time. Nearly instantly, simulation

comes into mind. If we begin at one position of the graph and choose our way according to the probabilities

of the graph randomly the algorithm should work for a small graph. But there are some problems, since we

cannot be sure how often we have to run the algorithm to get good results, especially, because we do not

know very much about the structure of the graph.

So we have to look at the problem differently. Let’s call the -th node and the probability that one arrives

at the hostel directly from the -th node . If the node we look at is the hostel the probability is one and

if it is a tourist information it is zero. For the other nodes, we look at the neighbors. According to the

problem statement, each way has the same probability of being chosen. That is why we can use the

following simple formula:

 ∑

| |

For each node we get one linear equation. All in all we have equations with at most unknown values.

These equations are always solvable, since it is guaranteed that we can reach either a tourist information or

the hostel from our start position. If we have solved all the equations we know the probability of our start

position.

Figure 1 shows a small example. The graph is taken from the last test case in the problem statement. We
have the following equations which we need to solve.

()

Qualifications

MDCS – Bubble Cup 7DC

95

If we solve these equations, we get the required result. The time complexity of the solution is if we
use the standard Gauss algorithm, which one learns at school.

Figure 1: example graph

Solution by:
Name: Patrick Klitzke
School: Saarland University
E-mail: philologos14@googlemail.com

0 292

88

14 300

Qualifications

MDCS – Bubble Cup 7DC

96

Problem R3 03: Circles (code: CIRCLES)

Resource: POI III, stage 3; Special thanks to Lei Huang

Time Limit: 30 second

Little Gary plays the following video game. Circles pop up on the screen and disappear from it. When the

screen flashes, Gary can draw a straight line on the screen and win as many points as there are circles

intersected by the line. As a born-to-be-winner, Gary wants to maximize his score. Please, help him, and

write a program that will determine the maximum number of points he can win each time the screen

flashes.

Input

The first line of the input contains M (1 ≤ M ≤ 1000), the number of events during the game. The next

Mlines contain descriptions of the events, one per line. They can be in one of the following three formats:

1 x y r

representing a circle of radius r popping up with the position of its center at (x, y) in the plane

2 i

representing a circle i disappearing, where circle i is the ith circle that popped up since the beginning of the

game; and

3

representing the screen flashing.

x, y, and r are real numbers with at most two decimals, -106 < x, y, r < 106, r > 0.

Notes: A line intersects a circle if it has at least two common points with it. At any time, no two Circles on

the screen have a common point. At any time, there is no line that "touches" more than two circles (a line

touches a circle if they have exactly one common point). At any time, there are no more than 100 circles on

the screen. Each i determines a circle that is on the screen at the moment of removal. No circle is removed

twice.

Output

Each time the screen flashes, write an integer to a separate line, which is the maximum number of circles

Gary can intersect.

Sample

input output
9

1 3.00 0.00 1.00

1 -2.00 0.00 1.00

3

1 2.00 3.00 1.50

3

1 2.00 -4.00 1.00

3

2 3

3

2

2

3

2

Qualifications

MDCS – Bubble Cup 7DC

97

Solution:

Here we are presented with a rather interesting problem which is clearly geometric in nature. It doesn't

seem easy at first glance, however its solution is relatively simple to obtain (although formally proving the

mathematics behind it might be tough). Like most geometry-related problems, CIRCLES can be solved in a

number of ways; the approach we will explain here seems intuitively the easiest to comprehend.

Let's first analyze what the problem gives us, and what we must calculate. We are required to support

three kinds of operations: adding/removing a circle from the visible set, and answer queries asking for

the maximal amount of currently visible circles which can be intersected by an arbitrarily drawn straight

line.

Before going any further with the analysis, let's prove a theorem which will be the basis of our solution.

Theorem: For all possible placements of circles (with respect to the task's constraints), at least one of the

lines which intersects the maximal amount of them is infinitesimally “close” to one of the common

tangents for one of the pairs of circles.

Proof: Let be an arbitrary line of the form which intersects the maximal amount of circles,

and let be a function such that is true if is a line which intersects the

maximal amount of circles, and false otherwise. As we start off with and increase / decrease the

parameter , after some time there will certainly be a value of the parameter, for which .

Since this function covers the entire real number line (which is continuous by definition), we can

use Dedekind's Axiom (Axiom of Continuity) to deduce that there exists a specific real number where this

function changes its value. It is obvious that this real number marks the moment when is

a tangent to one of the circles. If we move the parameter infinitesimally in the other direction, we will once

again have a line which intersects the maximal amount of circles. Hence, we have proven that one of the

sought lines must be infinitesimally “close” to a tangent of one of the circles.

Let be the point of tangency of the line . If we exclude the circle which this line is a tangent to

(and we can easily re-include it by infinitesimally shifting this line), we still have a line which intersects the

maximal amount of circles. Now, let's shift the point of tangency in one direction (“rotate” the tangent

around the circle). Analogously as in the first paragraph (by introducing a new function and applying

Dedekind's Axiom to it), we can deduce that at one particular moment this tangent will no longer intersect

the maximal amount of circles. It is obvious that at this point, this line is tangent to another circle, i.e. it is a

common tangent of two circles. If we were to infinitesimally shift/rotate (depending on whether the

common tangent is internal or external) this line in the proper direction, we would again obtain a line which

intersects the maximal amount of circles. This concludes the proof.

This theorem is of great importance, as by proving it we have greatly reduced the amount of lines we need

to consider: when we check for intersections, we will only check the lines which are common tangents to

each pair of circles. Since no pair of circles has common points, each pair will have four common tangents:

two internal and two external ones. Now we have to come up with a correct way of getting those tangents.

Let and be the centers of the circles, and their respective radii, the distance between the

centers, and the points of tangency for one of the common tangents, and ⃗ the unit vector

perpendicular to that tangent.

In this situation we have the following system of equations:

Qualifications

MDCS – Bubble Cup 7DC

98

 ⃗ ⃗ (⃗ is a unit vector)

 ⃗ (radius at point of tangency is parallel to ⃗)

 ⃗⃗ ⃗ ⃗ (same as prev.)

 ⃗ ⃗⃗⃗⃗ ⃗ (orthogonality)

Deducing from this system:

 ⃗ ⃗⃗⃗⃗ ⃗ ⃗ (⃗⃗⃗⃗ ⃗ ⃗ ⃗) ⃗⃗⃗⃗ ⃗ ⃗

 ⃗⃗⃗⃗ ⃗ ⃗

 ⃗

 ⃗⃗⃗⃗ ⃗

| |

We have obtained a linear equation where the unknown is the vector ⃗ . Once we obtain ⃗ it is easy to

obtain the desired points of tangency:

When we have the points of tangency for each of the four possible tangents, it's easy to reformulate each

tangent in the form , which we can use to handle the lines more easily later on.

A new question arises now: how can we correctly check whether a line intersects a circle? There are many

ways in which this can be done; here we will present a trigonometric approach. What we do essentially is

calculate the distance between the center and the line, and compare it to the radius. If it is lesser, then the

line intersects the circle. To calculate the distance we will construct a right triangle using the distance we

are looking for as one of the catheti, and the vertical distance (following the Y axis) between the center and

the line as the hypotenuse.

The vertical distance can be calculated easily; if we were to draw a line parallel to the given one which

intersects the center, this distance is the change in the y-intercept parameter (since the slope doesn't

change):

And now we involve some trigonometry to calculate the final distance:

 (complementary angles)

√

 (definition of slope)

√

To avoid precision errors with the square root and possible sign issues, it is wise to calculate the square of

this distance instead, and compare it with the square of the radius. When we get the final amount of

Qualifications

MDCS – Bubble Cup 7DC

99

intersections, we should return the result plus 2, because as described in the theorem, we can

infinitesimally shift or rotate the tangent to include the two circles it is common to, without excluding any

other circle.

Now the only remaining issue is how to store the circles efficiently. A good structure for this in C++ is

a map, since we can use it to easily assign IDs to circles with insertion and removal times of . To

avoid calculating tangents each time, we can store their parameters (and) in a four-dimensional

array of size , where will store the fth (1st is , 2nd is) parameter of

the zth tangent between circles with IDs and . This narrowly fits our memory limits, so it is a plausible

optimization.

Our algorithm is now easy to construct: when we receive an insertion command we insert a new circle in

the map and store common tangents between this circle and all other currently visible ones. When we

receive a deletion command we simply erase the given ID from the map, and when we are given a query we

calculate the amount of intersected circles for each common tangent of pairs of visible circles, and output

the maximum. An obvious optimization would simply output the previously calculated solution immediately

if we receive two query commands in a row.

The time complexity of extracting common tangents is , and the time complexity of checking the

amount of intersections for a single line is . This means that insertion commands are processed in

 time, deletion commands in time, and queries in time. Hence, the overall asymptotic

time complexity of our algorithm is , where is the amount of queries. With the given

constraints, this solves the problem well ahead of the time limit. The memory complexity is if we opt

to store all the previously calculated tangents, and otherwise.

Solution by:
Name: Petar Veličković, Teodor Von Burg
School: Matematička Gimnazija

 E-mail: petrovy.velickovic@gmail.com, teodor.vonburg@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

100

Problem R3 04: Bridges! More bridges! (code: BRII)

Time Limit: 7 second

Problem BRIDGE has shown that you are able to build the cheap bridge through the river very quickly. Now

you will not have problems with time limit. You will have problems with number of bridges.

Input

There is a single positive integer T on the first line of input. It stands for the number of test cases to follow.

Each test case is exactly five lines, containing description of the route between two cities A and B, located

on opposite sides of the rivers.

n

a0 a1 a2 ... an

h1 h2 ... hn

c

s0 s1 s2 ... sn

Here n is the number of the rivers which are parallel to each other, ai - the distances between rivers or

between rivers and cities, hi - the widths of the rivers, c - the distance between A and B along the axis

parallel to the river, si - the costs of the unit of the bridge through ith river and s0 - the cost of the unit of

the road. Example for n=2 you can see on the picture.

All integers in input are positive and less than 50, except c - it is less than 2000.

Output

For each test case your program should write a single number to the standard output, equal to the minimal

total cost of the route between A and B, accurate up to two digits after the decimal dot.

Qualifications

MDCS – Bubble Cup 7DC

101

Sample

input output
1

2

1 1 1

1 1

1

1 1 1

5.10

Solution:

Let’s first denote things differently than in the problem statement in order to simplify the expressions

which come after. Let stand for costs of building bridges or roads in tracks starting from the upper

one and let be track widths. Imagine now we've built bridges and roads in each track. Let

denote their projections on horizontal axis. We can observe that and that there will never

exist a 'zigzag' structure while building the roads (meaning we'll never drive back with respect to the

horizontal axis). It is obvious that .

Now we can state the problem formally. We want to minimize cost function

 √

 √

given the constraint

 .

This problem can be solved by using Lagrange multipliers [1][2]. Let’s define Lagrangian function as

In a point of optimal solution has to hold.

So let’s look at the partial derivative of G with respect to :

√

This has to be zero in a point of optimum so:

√

Let’s use the above observation to express :

√

Note that, in order for to be real, must hold for all . One more important fact is that is a

monotonic function of (if increases the numerator increases and the denominator decreases, so it

follows that increases, and the other way around).

Let’s plug in expressions for into .

Qualifications

MDCS – Bubble Cup 7DC

102

Now we have a sum of monotonic functions which has to be equal to a constant c. We can simply binary

search and find when the equality holds. From this point on it is trivial to reconstruct the solution - when

we found just calculate all and then the total cost using the expressions given above.

References:

1. http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
2. http://en.wikipedia.org/wiki/Lagrange_multiplier

Solution by:
Name: Filip Pavetić
School: FER Zagreb
E-mail: fpavetic@gmail.com

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://en.wikipedia.org/wiki/Lagrange_multiplier

Qualifications

MDCS – Bubble Cup 7DC

103

Problem R3 05: Polynomial f(x) to Polynomial h(x) (code: POLTOPOL)

Resource: Tjandra Satria Gunawan

Time Limit: 20 second

Given polynomial of degree , . For each polynomial there exists

polynomial such that:

 for each integer

Your task is to calculate polynomial

.

Note : degree of polynomial = degree of polynomial .

Input

The first line of input contain an integer T, T is number of test cases . Each test case consist

of 2 lines:

 First line of the test case contain an integer d, d is degree of polynomial (0≤ d ≤ 18)

 Next line contains integers separated by space, represent the coefficient of

polynomial

Output

For each test case, output the coefficient of polynomial h(x) separated by space. Each coefficient of

polynomial h(x) is guaranteed to be an integer.

Sample

input output
5

0

13

1

-1 2

1

0 2

2

2 -5 9

3

23 9 21 104

13

0 1

1 1

1 2 3

31 41 59 26

Solution:

Since we have that the free member of the polynomial is 0, so

 is a polynomial,

and it is obvious that their degrees are equal: .

Let us define coefficients of the polynomial respectively with . Since

 for every integer we have:

Qualifications

MDCS – Bubble Cup 7DC

104

 –

Using the binomial formula

 ∑ (

)

 for , we get that :

 –

 ((

) (

)) ((

) (

))

 for every integer .

Polynomials and must be equal for every integer , so their coefficients must be

the equal, therefore it is necessary to hold:

 (

)

 (

) (

)

…

 (

) (

) (

)

 (1) …

ci = ad+1 (-1)d-i(

)+ ad (-1)d-i-1(

)+…+ ai+1 (

)

From the last formula we can easily see that if we know coefficients , we can easily

calculate coefficient (it is guaranteed that every coefficient is an integer, so (

)

 (

) (

) must be divisible by).

 From here it is easy to find the polynomial .

Since | | , from formulas (1) we can prove | | .

Complexity:

Given the total number of test cases and , binomial coefficients must be determined

before calculating the coefficients . Then the overall complexity is .

Solution by:
Name: Predrag Milošević
School: Gymnasium “Svetozar Marković”, Niš
E-mail: predrag_93@live.com

Qualifications

MDCS – Bubble Cup 7DC

105

Problem R3 06: Factorial challenge (code: FUNFACT)

Time Limit: 15 second

ing: Stir, let's go out and play our favorite game.

Stir: I am already having fun with my first factorial program.

Ling: Than I will give you a challenge on factorials. If you fail in it, you will have to come.

Stir: ok..

Ling gives Stir a number x and the challenge is to find the largest value of n such that n! is not greater than

the largest value that can be formed by x digits. Stir is stuck with the problem and needs your help. Now,

it's your turn to make sure that Stir can continue having fun with factorials.

Input

The first line of the input contains a number t (about 10^5), the number of the test cases. The next t lines

contain a number x (1 <= x <= 10^9).

Output

Output a total of t lines with each line containing the value n corresponding to the input case.

Sample

input output
2

1

7

3

10

Solution:

This problem turned out to be one of the easiest in special round. It is obvious that any iterative calculation

of factorial will time out. We can use Stirling’s formula (approximation) to calculate the factorial faster.

Stirling's formula is in fact the first approximation to the following series:

 √ (

)

(

)

Once we can calculate n!, it is easy to calculate number of digits of n! as , so

 (

) . The last observation needed is that is a

monotonically increasing function, so we can use binary search to speed up the solution. A properly

implemented solution should work in time, but there are still some possible mistakes. Pay attention to how

you are rounding. I prefer rounding up. And pay attention to the base case of the binary search. There can

be several numbers such that number of digits of their factorials is the same for those distinct numbers.

This can cause WA.

Solution by:
Name: Danilo Vunjak
School: Faculty of technical science
E-mail: kingarthurie@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

106

Problem R3 07: Hi6 (code: HISIX)

Resource: Daniel Ampuero

Time Limit: 7 - 15 second

"I read somewhere that everybody on this planet is separated by only six other people. Six degrees of

separation between us and everyone else on this planet. The President of the United States, a gondolier in

Venice, just ll in the names. I find it A) extremely comforting that we're so close, and B) like Chinese water

torture that we're so close because you have to find the right six people to make the right connection... I

am bound to everyone on this planet by a trail of six people." - Ouisa Kitteridge, "Six Degrees of Separation"

Is widely know that one is separated from everyone in the world in no more than 6 degrees of separation. A

degree of separation is defined by the minimum numbers of connections you need to make to contact

someone else. For instance, if you know personally another person, then you are separated by one degree.

If you know somebody through some friend but not directly (a friend of a friend), then you are separated

by two degrees, and so on.

Nevertheless, young Kevin Smith is not convinced about this theory and wants to probe it false. To achieve

this, he has hacked the Hi6! social network and requested you to help him knock down the theory of six

degrees of separation.

Input

The first line contains an integer T, which specifies the number of test cases. Then, T test case descriptions

will follow. Each test case will start with a line with one positive integer, N meaning the number of

connections. The next N lines will contain the following pattern:

<name_1> <name_2> <D>

meaning that person "<name_1>" is connected with the person "<name_2>" by making D connections and

viceversa. Note that both persons can know each other by a lower degree of separation using other

connections.

Output

For each input case you must print the string "Case #i: ", where i is the test case number, starting from 1,

following by the maximum degree of separation between the specified people. If there is someone that

cannot connect to another person, print "INFINITE" instead.

Constraints

 All names will be non-empty strings composed only by lowercase characters.

 All names will have between 1 and 10 characters, inclusive.

 "<name_1>" will be different than "<name_2>" for all connections.

 There will be no pair of connections between the same pair of persons.

 D will be an integer between 1 and 1000, inclusive, for all connections.

 T will be between 1 and 100, inclusive.

 N will be between 1 and 10^5, inclusive.

Qualifications

MDCS – Bubble Cup 7DC

107

Sample

input output
3

2

john judy 1

mary peter 1

3

john judy 7

john peter 2

judy peter 2

7

john judy 3

katie peter 4

john peter 2

judy mary 1

peter mary 2

john katie 1

katie mary 1

Case #1: INFINITE

Case #2: 4

Case #3: 3

Solution:

This problem is a very fine example of how a seemingly “straightforward” algorithm fails to perform in time
without some necessary optimization. It did prove to be one of the harder tasks of the round, even though
the ideas behind it are all relatively simple and easy to implement.

First of all let's analyze the problem and reformulate it. The introductory part is backstory and not relevant
to the solution. From the input explanation one can easily conclude that what we are given in the problem's
input is an undirected weighted graph, where each node corresponds to a person, each edge represents a
connection between two people, and its weight is the connection level between them. The output
explanation tells us what we are required to do. The task at hand is to find the lengths of the shortest
paths (smallest “degree of separation”) for each pair of people, and output the maximal length out of
those (or 'INFINITE' if there exists a disconnected pair).

Before getting to the main algorithm, let's first discuss the way we can easily (and effectively) transform the
input data into a graph. It is clearly inconvenient for the nodes to be stored as strings. So the first thing we
want to do is to transform each string into an integer; to do this we use hashing. The constraints on the
string lengths and the characters it can contain in this problem make hashing an ideal option, because we
can make a perfect hashing function (which is a one-to-one function – two different strings can't map into
the same integer). There are at most 10 characters in each name, and they only consist of lowercase
characters of the English alphabet. By observing each character as a number from 1 – 26 (where 'a'
corresponds to 1, 'b' to 2, etc...) we can observe each string as an integer in base 27. Hence, the largest
mapped integer value we can get, knowing the constraints (if we were to map the string 'zzzzzzzzzz'), is
2710 – 1. This easily fits in a single 64-bit integer variable, so we have no need for any kind of modular
arithmetic here. It is obvious why the hashing function described here is perfect.

There are numerous ways in which we can use the obtained integers to assign an ID (ranging from 1 to N,
where N is the number of nodes) to each node in the graph. One of the ways is to store all the integers
obtained so far in a binary search tree, while storing the ID within each node of the tree as well as the
integer that represents it. For each new edge we are given, we take the mapped values for the names
involved in that edge and try to insert them in the tree; if they are already inserted then we know which ID
corresponds to them, and if not then they are assigned the first unused ID (for this we can use a variable
which starts off at 1 and increases every time a new leaf is added to the tree). This code can be typed very
quickly in C++ using the map structure, which is essentially a RB-Tree (balanced binary search tree) and

Qualifications

MDCS – Bubble Cup 7DC

108

easily maps one value to another. The time complexity of the hashing is linear on the length of the string
(essentially constant with this task's constraints), and the time complexity of each insertion in the tree is
 | | . This is done for each edge, so the overall complexity of the input processing is O(|E| ∙ log |V|),
where |E| is the amount of edges in the graph.

Now that we have a “normalized” graph, we can start discussing the solution to the problem. Let's first get
the case when the answer is 'INFINITE' out of the way; this is the answer iff the graph is not
connected. Connectivity can easily be checked in O(|V|) time complexity using a depth-first
search algorithm - a graph is connected iff a depth-first search visits all the nodes in a single
execution. Once we are sure that our graph is connected, we can carry on. There are two algorithms that
come to mind for solving this problem – Floyd-Warshall algorithm and Dijkstra's algorithm with a binary
heap-implemented priority queue. Both of these algorithms, in their naïve form, will likely fail to solve the
problem in time. Here we will mention a key optimization to Dijkstra's algorithm which makes it
successfully process the given test data a few seconds before the time limit.

Dijkstra's algorithm, unlike Floyd-Warshall, is a single-source shortest path algorithm, meaning that in one
execution it's going to find the shortest paths from one node to all others. It is clear that for this problem
we need to execute Dijkstra's algorithm N – 1 times, to get all the possible shortest path lengths. However,
with each next execution we have more information than before, which we can use to lessen the amount
of operations the algorithm will do. When it is executed for the first time, Dijkstra's algorithm will initially
only put one node in the priority queue (the first source we picked), while setting the distances associated
with all others to infinity. When we execute Dijkstra's algorithm for the K-th time, we can use the shortest
path lengths from nodes {1, 2, …, K-1} to node K as their initial distance (since the shortest path from node
A to node B in an undirected graph has the same length as the shortest path from B to A), and immediately
insert them in the priority queue and mark them as visited. This will avoid repeating any unnecessary
calculations we have done before while calculating the mentioned path lengths, and is sufficient to pass the
given time limit. It should be noted, however, that this is in no way the only (or the best, for that matter)
optimization which solves this task in time. It is simply one of the most obvious ones and it is very easy to
modify the already-made code for Dijkstra's algorithm to support it.

The asymptotic time complexity of a single execution of Dijkstra's algorithm is O((|E| + |V|) ∙log |V|), and

we have to execute the algorithm once for each node in the graph, which gives the total complexity

of O(|V| ∙ (|E| + |V|) ∙ log |V|), which dominates the time required for processing the input and checking

for connectivity, so this is the overall asymptotic time complexity of the solution. The memory complexity

(for storing the previously calculated shortest path lengths) is O(|V|2).

Solution by:
Name: Petar Veličković
School: Matematička Gimnazija
E-mail: petrovy.velickovic@gmail.com

Qualifications

MDCS – Bubble Cup 7DC

109

Problem R3 08: Frequent values (code: FREQUENT)

Resource: University of Ulm Local Contest 2007

Time Limit: 5 second

You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are

given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent

value among the integers ai , ... , aj.

Input

The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤

n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i {1, ..., n})

separated by spaces. You can assume that for each i {1, ..., n-1}: ai ≤ ai+1. The following q lines contain

one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the

query.

The last test case is followed by a line containing a single 0.

Output

For each query, print one line with one integer: The number of occurrences of the most frequent value

within the given range.

Sample

input output
10 3

-1 -1 1 1 1 1 3 10 10 10

2 3

1 10

5 10

0

1

4

3

Solution:

It’s important to notice that the array is in order, so equal values are in a group. Assume we are given “from

i to j” query. Let be the number of appearances of the most frequent number in the given interval. We

split the interval into two parts, and . It’s easy to notice that:

 If then

 If then number of appearances of in + number of

appearances of in)

Answering the queries can be done using a data structure known as the segment tree. Every node of the

tree will contain the following:

 Number of appearances of the most frequent number in the nodes interval ()

 Value and number of appearances of the left end number (,)

Qualifications

MDCS – Bubble Cup 7DC

110

 Value and number of appearances of the right end number (,)

Also, by we denote of the node in the segment tree which contains the interval

 . The same goes for other values of nodes (, , ...)

Initialization of the tree: For every node which contains the interval it’s clear that

 , . If we had initialized nodes which contain intervals

and , we can initialize a node which contains the interval . It’s obvious that

 and . If

 , it’s clear that all the values from to are equal (since the array is in order), hence

 . If not, is equal to . The same

holds for . Finally, the number of appearances of the most frequent number:

 If () we notice that intervals and

 do not contain the same numbers, hence .

 If not, .

The only thing left now is answering the queries, which is easy once we have all the information from the

segment tree. All we have to do is to split the interval until we get intervals for which we have information

from the segment tree, and then we combine informations in the same way as we initialize the segment

tree.

Let’s summarize:

 Initialization of the segment tree takes time. Answering the queries by going down the

tree and combining the data takes time per query.

So the time complexity is . Memory complexity is .

Solution by:
Name: Marko Baković
School: First gymnasium in Kragujevac
E-mail: markobakovic95@gmail.com

MDCS – Bubble Cup 7DC

111

The scientific committee would like to thank everyone

who did important behind-the-scenes work.

We couldn't have done it without you.

For the next year, BubbleCup Crew have many ideas.

A lot of changes will happen. Stay with us and see you next year.

We’ll be back…

Bubble Cup Crew

