

BUBBLE CUP 2014
Student programming contest

Microsoft Development Center Serbia

Problem set & Analysis
from the Finals and Qualification rounds

Belgrade, 2014

3 MDCS – Bubble Cup 2014

Scientific committee – High school Scientific committee – University

Vanja Petrović Tanković Đorđe Maksimović

Danilo Vunjak Aleksandar Samardžija

Andrija Jovanović Andreja Ilić

Marko Rakita Aleksandar Tomić

Mladen Radojević Miloš Todić

Saket Bharambe Nikola Puzović

Dušan Zdravković Filip Panjević

Luka Milićević Stefan Tarana

Aleksandar Ivanović Abhijith Padmakumar

Lazar Milenković Vuk Jovanović

Qualification analyses

Karolis Kusas

Stefan Velja

Marko Baković

Lazar Milenković

Mislav Bradač

Bartłomiej Dudek

Ivan Stošić

Petar Veličković

Marko Stanković

Saša Vučković

Nikola Jovanović

Mislav Balunović

Encho Mishinev

Dragan Marković

Marek Sokołowski

Uglješa Stojanović

Aleksandar Ogrizović

Cover:

Sava Čajetinac

Typesetting:

Aleksandar Ivanović

Proofreader:

Vanja Petrović Tanković

Volume editor:

Dragan Tomić

4 MDCS – Bubble Cup 2014

Contents

Preface.. 6

About Bubble Cup and MDCS .. 7

Bubble Cup Finals 2014 .. 8

Bubble Run ... 9

Problem A: Battleships ... 11

Problem B: “Kontra tablic” (Counter-Table) card game ... 14

Problem C: Robo language ... 17

Problem D: Graph to Grid .. 19

Problem E: Kinect object recognition .. 22

Problem F: Integram ... 26

Problem G: Message decoding .. 28

Problem H: DNA Alignment .. 30

Bubble Cup ... 32

Problem A: Forest Snake .. 33

Problem B: Calculator... 35

Problem C: ForEST .. 39

Problem D: Search .. 41

Problem E: Cycles ... 43

Problem F: Compression .. 45

Problem G: Sticks ... 47

Problem H: Vectors... 49

Problem I: Queries on an array .. 51

Qualifications ... 54

Problem R1 01: Segment Tree (ID: 6578) ... 55

Problem R1 02: TRIVIADOR (ID: 10328) ... 59

Problem R1 03: Greens Land (ID: 10454) ... 61

Problem R1 04: Chemistry (ID: 7692) ... 63

Problem R1 05: Eight Directions Crossword (ID: 9857) .. 65

Problem R1 06: Another understanding of Super Dice Game (ID: 2877) 67

Problem R1 07: Snakes and Ladders Again (ID: 13092) ... 73

Problem R1 08: Pythagorean triples (medium) (ID: 14542) .. 74

Problem R1 09: Foxic Expressions (ID: 14975) ... 77

Problem R1 10: [CH] Japan Crossword (ID: 316) .. 80

Problem R2 01: Digital Image Recognition (ID: 3360) .. 83

Problem R2 02: FLING1 (ID: 13884) ... 86

5 MDCS – Bubble Cup 2014

Problem R2 03: One Instruction Computer Simulator (ID: 2023) .. 89

Problem R2 04: Fight with functions (ID: 3902) ... 93

Problem R2 05: Soccer Choreography (ID: 850) ... 95

Problem R2 06: Yet Another Assignment Problem (ID: 6819) ... 97

Problem R2 07: Illumination (ID: 2661).. 100

Problem R2 09: [CH] Guess The Number With Lies v2 (ID: 17308) ... 104

Problem R2 10: [CH] Colour Brick Game (ID: 18073) ... 108

6 MDCS – Bubble Cup 2014

Preface

Dear Finalist of Bubble Cup 7,

Thank you for participating in the seventh edition of the Bubble Cup. On behalf of Microsoft Development

Center Serbia (MDCS), I hope you had a great time in Belgrade and enjoyed yourself.

MDCS has a keen interest in putting together this world class event. Most of our team members participated

in similar competitions in the past and have passion for solving difficult technical problems.

This edition of the Bubble Cup was very special, since it was the most international competition that we have

had so far. For the second time competitors have competed in two categories. University students have battled

with problems in a 24 hour contest. High school students competed in our traditional format. Not only did we

have the participants from the region (Bulgaria, Croatia, Montenegro and Serbia) but also teams from

Lithuania and Poland fought their way to the Finals. This means that the Bubble Cup has increased its scope

and popularity every year in its history.

Given that we live in the world where technological innovation will shape coming decades, your potential

future impact on humankind will be great. Take this opportunity to advance your technical knowledge and to

build relationships that could last you a lifetime.

I thank you all for participating in Bubble Cup Finals.

Thanks,

Dragan Tomić

MDCS PARTNER Engineer manager/Director

7 MDCS – Bubble Cup 2014

About Bubble Cup and MDCS

Bubble Cup is a coding contest started by Microsoft Development Center Serbia in 2008 with a purpose of

creating a local competition similar to the ACM Collegiate Contest, but soon that idea was outgrown and the

vision was expanded to attracting talented programmers from the entire region and promoting the values of

communication, companionship and teamwork.

Format of the competition has remained the same this year. All competitors battled for the place in finals

during two qualifications rounds. They were split into two categories in the finals, with top 10 university

teams competing in Bubble Run, the 24 hours long contest, and top 14 high school teams competing in Bubble

Cup, traditional 5 hours long contest.

Microsoft Development Center Serbia (MDCS) was created with a mission to take an active part in

conception of novel Microsoft technologies by hiring unique local talent from Serbia and the region. Our

teams contribute components to some of Microsoft’s premier and most innovative products such as SQL

Server, Office & Bing. The whole effort started in 2005, and during the last 8 years a number of products

came out as a result of great team work and effort.

Our development center is becoming widely recognized across Microsoft as a center of excellence for the

following domains: computational algebra engines, pattern recognition, object classification, computational

geometry and core database systems. The common theme uniting all of the efforts within the development

center is applied mathematics. MDCS teams maintain collaboration with engineers from various Microsoft

development centers around the world (Redmond, Israel, India, Ireland and China), and Microsoft

researchers from Redmond, Cambridge and Asia.

8 MDCS – Bubble Cup 2014

Bubble Cup Finals 2014

Problem set & Analysis

9 MDCS – Bubble Cup 2014

Bubble Run

Bubble Run finals were held on September 5th and 6th 2014 in Mikser House. Competition lasted for

24 hours and included top 10 university teams. Tasks on the finals were mostly open problems with

no known solution. Problems were from wide variety of areas, including artificial intelligence,

classification, sound and image processing, cryptography, DNA sequences, graph theory etc. The

competition was tough and competitors had to keep their concentration up all the time, whether to

improve their bots in a continuous running game, or to solve a new problem that appeared in the

middle of the night.

As the scoreboard froze couple of hours before the end of competition, there was no way of guessing

who the winner would be, as the points of top teams were really close to each other. Battle was tight

until the very end. After 24 hours of coding, final difference in points between the top 3 teams was

only around 400 points. The winners of the Bubble Cup category for university students were

Magowie Psychodelicznej Klawiatury (Poland), team KTU #1 (Lithuania) won the second place for

the second time in a row, and team Grafom plovi jedan mali Dijkstra (Serbia) were third.

Place Team Score

1. Magowie Psychodelicznej Klawiatury 7177

2. KTU #1 6982

3. Grafom plovi jedan mali Dijkstra 6762

4. Wroclaw Cheetahs 5025

5. skim ščim zbajagom 4574

6. ' OR '1'='1 4392

7. Young Padawans 3511

8. RAFnut 2844

9. 101010 2635

10. Zrakomlati++ 2548

Table 1. Final results of Bubble Run

10 MDCS – Bubble Cup 2014

Team A B C D E F G H

' OR '1'='1 880 424 290 320 546 400 923 609

101010 260 0 427 184 0 0 994 770

Grafom plovi jedan mali Dijkstra 1505 1407 651 394 856 200 994 755

KTU #1 2165 622 889 474 970 98 994 770

Magowie Psychodelicznej
Klawiatury

1720 1228 934 334 931 292 994 744

RAFnut 865 249 169 7 0 0 852 702

skim ščim zbajagom 710 482 265 539 584 200 994 800

Wroclaw Cheetahs 280 688 410 842 893 142 994 776

Young Padawans 325 322 317 220 632 0 994 701

Zrakomlati++ 270 332 573 305 206 0 710 152

Table 2. Final scores for each task

11 MDCS – Bubble Cup 2014

Problem A: Battleships

Authors

Abhijith Padmakumar

Points: 3000

Each team will be provided a bot, henceforth called a "battleship". Your task is to program your battleship
to shoot down and destroy other team's ships to score points.

Game Information

The game server updates the state of the game (moves bots, handles collisions, awards points etc) every
frame. You can view the GUI and see your battleship in real time on the projector at the front.

Arena information

The arena is two dimensional with length: 1920 and breadth: 1080. There is a 'wall' at the arena's
boundaries and colliding with the boundary will destroy the battleship.

Battleship Health

A battleship has a shield with health of 100. Each time your shield is hit, its health is reduced by 25. The
shield is destroyed when the health reaches 0. Health can be interpreted this way:

- 100% Full shield
- 75% Half of the shield
- 50% No shield
- 0% Ship is dying

Radius of the ship:

 Radius with Shield: 36
 Radius without Shield: 18

Battleship Movement

There is no friction or gravitational forces acting on the battleship. The battleship moves forward in the
direction it is facing. The maximum speed, acceleration and the turn speed are given below:

 Maximum speed: 5
 Maximum Acceleration: 0.05
 Turn Speed (Maximum degrees that the bot can rotate about it's own axis in an update cycle): 2

Negative acceleration will reduce the speed, but will not make the battleship move in the reverse direction.
Decelerating when the speed is 0 will have no effect and similarly, accelerating when the speed is at
maximum value will have no further effect.

12 MDCS – Bubble Cup 2014

Battleship Firing

A battleship can only fire a missile in the direction it is facing.

The speed of a missile is 10.

The firing is rate is 1 missiles per seconds. It is up to the player to track when he fired the last missile. If
more than 1 missile firing commands are given in 1s by the player, it will be ignored by the engine. There is
no penalty for this.

There is unlimited number of missiles for each battleship.

Networking and How to Control your bot

This game is played over the network using UDP. The server will continuously broadcast a message
containing information about the state of the game. All clients should listen for the broadcast on port 9000.
Message broadcast by the server is in the format:

teamName,Position.x,Position.y,Rotation,speed,shieldHealth;teamName...;teamName....shieldHealth;
missilePosition.x,missilePosition.y,missileRotation,missileSpeed;missile....;missile...;
team1Score;team2Score;.....'team10Score;
team1Name;team2Name;.....;team10Name;

First line contains battleship informations, second line is for missiles, third for score and fourth for team
names

Team's state information are delimited by ';'.
Position.x - Current x coordinate of the the team's battleship.
Position.y - Current y coordinate of the the team's battleship.
Rotation - Angle between the direction the battleship is facing and the 'y' axis in the clock wise direction.
speed - Current speed of the battleship.
health - Current health.

Missile's information are delimited by ';'.
missilePosition.x - Current x coordinate of the the team's battleship.
missilePosition.y - Current y coordinate of the the team's battleship.
missileRotation - Angle between the direction the battleship is facing and the 'y' axis in the clock wise
direction.
missilespeed - Current speed of the battleship.

Team scores are delimited by ';'.

Team names are delimited by ';'.

Each team needs to send messages to the server to control your bot. The port the server is listening is
55678. The message should be in the following format:

"teamPassword,acceleration,rotation,shoot"

teamPassword - Unique Handle provided to your team. Do not share with other teams!
acceleration - Value between [-1,1]. A value of 1 indicates that your should increase it's acceleration to max
value in the next frame.
rotation - Value between [-1,1]. A value of 0.5 indicates that your bot rotate 0.5*turnSpeed degrees in the

13 MDCS – Bubble Cup 2014

next frame.
Shoot - Value in {0,1}. 1 indicates that you bot fires a missile.

When bot is dead and waiting to response its state info won't be sent as broadcast message

Any parameter for which the client sends a value which is not in the domain specified above will be ignored
and defaulted to '0' (no movement). Also please not that if a team doesn’t send a message in a particular
interval, the server will continue executing the last received message.

Sample UDPClient with code for sending and receiving messages is provided below.

Scoring and GameInfo

The game will be played over the course of the 24h of BubbleRun and will be on display in the main
projector. There will be 20 rounds, each 60 minute long, with a 10 minute interval between rounds. In each
round, you get points as follows:

Missile hitting another battleship: +100 points
Missile destroying another battleship: +200 points
Colliding into another battleship (and destroying both): 0 points
Colliding with the wall (screen boundary) and self-destructing: -50 points

At the end of a round, the teams will be ranked by the total score they obtained in the round. Score will be
allocated based on the rank as follows:

 1st - 150
 2nd - 100
 3rd - 75
 4th - 50
 5th - 40
 6th - 30
 7th - 20
 8th - 15
 9th - 10
 10th - 5

At the end of the competition (after all the rounds are completed), a team's net score will calculated by
aggregating scores across all rounds.

14 MDCS – Bubble Cup 2014

Problem B: “Kontra tablic” (Counter-Table) card game

Authors

Stefan Tarana

Saket Bharambe

Points: 1500

Rules
Serbian: http://www.igrajkarte.com/kontra-tablic

Kontra-Tablic is played with a standard deck of 52 cards. It can be played between 2, 3 or 4 players. For the
purpose it will be played between 2 players only.

The goal is the opposite of game 'Tablic'. Each player strives to take less.

Card evaluation
 2 Club, 10, 1/11(aces), 12, 13, 14: worth 1 point
 10 Diamond: worth 2 points
 Others: 0 points

The flow of the game
 Game is played until one player reach 101. First one who reaches 101 loses the game.
 Game consists of rounds. One round will be played until deck is flushed of one of the players reach

101.
 Each round starts by putting 4 cards on the table and giving each players 6 cards.
 In single round one players is always playing the first move. Next round players will be switched.
 When players are out of cards they will be given another 6 cards until deck is empty or one of the

players reach 101.
 Move of Player1 consists of:

o Player1 selecting a card A from cards given to him and shows it to Player2.
o Player2 picks multiple groups of cards (0 - n) C1, C2, … Cn, D1, D2, … Dn, … from the table that

satisfy formula:
 Value(A) = Value(C1) + Value(C2) + …. + Value(Cn) = Value(D1) + Value(D2) + … + Value(Dn)
 Each group can be single card and there can be arbitrary number of group selected

including none.
o If groups are non-empty than all cards A, C1 - Cn, D1 - DN will be accounted to Player1.
o If groups are empty than card A is placed on table.
o Player2 makes a move the move…

 When the deck is exhausted all remaining cards on the table will be accounted to the player that was
accounted last (or to the player who played first if all cards are on the table).

Competition
1. Each contestant submits source code on bubble run portal.
2. Code is compiled on portal and run against other team bots.
3. Bot that has less points in each game is a game winner.
4. Match between two bots consists of 21 games. The winner of the match is bot that has more game

wins.
5. All bots will play one match with each other every 4 hours. Number of wins will be summed on

normalized with scoring function to gain final score.

http://www.igrajkarte.com/kontra-tablic

15 MDCS – Bubble Cup 2014

Bot Constraints

1. Bot communicates with game engine through standard input and output.
2. After every game bot will be restarted.
3. If bot doesn't reply to server message after 1 second it will lose the game.
4. If bot dies it loses the game.
5. Each bot is accounted for CPU time (aprox 60000ms) and 1GB of memory. When CPU limit is reached

bot is killed. When memory cap is reached any memory allocation will fail.
6. If format of response to the server is invalid or action is invalid bot will lose the game. (not the

match!)
7. Bot will lose a game in case of any invalid move.
8. Messages from the server to the bot are in format:

a. <Command> <DATA> <NEW LINE>
9. Each message to the game engine is in format:

a. TRUE|FALSE <DATA> <NEW LINE>

Communication protocol

<number>:= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 13 | 14
<Suit>:= 0 | 1 | 2 - diamond | 3 - clubs

Command Parameters Response Description Advise

PUT_ON_TABLE <number> <suit> TRUE Put card on table Update in-
memory state

REMOVE_FROM_TABLE <number> <suit> TRUE Remove card
from table. This
happens when
the deck is empty
and cards from
the table are
accounted to the
player who was
accounted last

Update in-
memory state.

GIVE <number> <suit> TRUE Player is given a
card

Update in-
memory state.

MOVE TRUE <number>
<suit>

Select a card
previously given
to a player to
show the other
player

You can
update in-
memory state
here or in
COMMIT
command. The
same card will
be supplied in
COMMIT
command.

PICK <number> <suit> TRUE
<num_of_groups>
<num_of_el> el el …

Based on card
shown select
cards from table

Update in
memory state.

16 MDCS – Bubble Cup 2014

< num_of_el> el el
…

that in sum gives
<number>

COMMIT <number> <suit>
<num_of_groups>
<num_of_el> el el …
< num_of_el> el el …
->

TRUE Sum of cards
previously
selected in MOVE
phase and PICK
phase by the
other layer.

Update in
memory state.

CLOSE TRUE Politely terminate

Example: Bot1 vs Bot2

 Receives Sends

Bot1 PUT_ON_TABLE 3 0 TRUE

Bot1 PUT_ON_TABLE 1 1 TRUE

Bot1 PUT_ON_TABLE 13 0 TRUE

Bot1 PUT_ON_TABLE 10 2 TRUE

Bot1 GIVE 3 1 TRUE

Bot1 GIVE 3 2 TRUE

Bot1 GIVE 13 3 TRUE

Bot1 GIVE 10 3 TRUE

Bot1 GIVE 7 3 TRUE

Bot1 GIVE 6 3 TRUE

Bot2 PUT_ON_TABLE 3 0 TRUE

Bot2 PUT_ON_TABLE 1 1 TRUE

Bot2 PUT_ON_TABLE 13 0 TRUE

Bot2 PUT_ON_TABLE 10 2 TRUE

Bot2 GIVE 4 1 TRUE

Bot2 GIVE 4 2 TRUE

Bot2 GIVE 5 1 TRUE

Bot2 GIVE 6 1 TRUE

Bot2 GIVE 7 2 TRUE

Bot2 GIVE 8 1 TRUE

Bot1 MOVE TRUE 13 3

Bot2 PICK 13 3 TRUE 2 2 3 0 10 2 1 13 0

Bot1 COMMIT 13 3 2 2 3 0 10 2 1 13 0 TRUE

17 MDCS – Bubble Cup 2014

Problem C: Robo language

Authors

Andreja Ilić

Points: 1200

You are given a field where robot can enjoy afternoon walks. Field can be
represented as a matrix where each cell can be of form: empty space (robot
can walk / be on that cell) or an obstacle. There are two special empty cells
which are start and finish cells of a robot walk.
The robot is a very simple one and only commands that he understands are
rotations. These commands are:

 “s” - stay at this direction

 “r” - rotate for 90 degrees on the right

 “l” - rotate for 90 degrees on the left

 “b” - rotate for 180 degrees

After each of these commands (rotations) robot will make one move in the
direction which he is heading at. If other words, he will first perform
rotation and that move one cell in the direction he is facing. We want to

generate command list which will take robot from start to finish cell. Robot can hit an obstacle which will
be interpreted as staying in the same cell. You can assume that around the field is a fence which can be
interpreted as obstacles (he can’t escape).
But there is a small problem . We do not want just give a command list to a robot because that strings can
be very long, so we want to compress it as much as we can. We need to write a program in Robo-language,
in such way that output of that program is a list of commands which will be executed by a robot. Idea is to
minimize length of this code.
Good thing is that the Robo-language is pretty simple. We will have informal description of this language:

 Program contains one command line, one or more method definitions and one or more constant

definitions. There should be no empty lines and spaces in Robo program.

 Command line, and each of method and constant definitions should be in separate lines.

 Command line is a list composed from simple commands, methods calls and constant referencing.

 Simple commands are: “s”, “b”, “r” and “l”. At the beginning robot is looking up (north).

 Method parameters can be string parameters or integer parameters.

 String parameters are denoted with “A”, “B”, “C” and “S”. Integer parameters are denoted with “N”,

“M” and “K”.

 Method names are denoted with “f”, “g”, “h”, “u”, “v” and “w”.

 Constant names are denoted with “a”, “c”, “x”, “y” and “z”.

 Method is defined with method header, after which follows sign “=” and after that command list.

 Method can be called with math expressions for integer parameter and command list for string

parameters. Math expressions can be created using integers and operators “+”, “-“ and “*”.

 Recursive method will stop recursion when at least one of the integer parameters is zero or negative

and return empty command list.

18 MDCS – Bubble Cup 2014

Program in Robo language Output Code length Visualization

sssrss sssrss 6

x=ll

f(N,S)=Sf(N-1,S)

xrf(5,s)

llrsssss 28

f(N)=sf(N-1)

g(S)=rSr

g(f(3))lf(2)

rsssrlss 32

Given program 𝑝 we say that it solves given Robo-problem if simulation of its output leads robot from start
to end position in less than 10.000 simple commands. If output contains more than 10.000 comands, robot
will simulate only first 10.000 simple commands and then he will stop. Also, maximal depth of recursion,
stack, should be smaller than 10000.

f(N)=sf(N-1)

rf(19)lf(19)

Code length is 24, and this code is a solution for example
given on the right (black colored cells are obstacles and
white ones are empty cells).

Code below is also a solution.

f(N)=sf(N-1)

rf(100)lf(100)

F

S

Input
First line of input file contains two integers 𝑛 and 𝑚, which are dimension of a matrix. Next 𝑛 lines contains
strings of length 𝑚, which represents matrix cells: “S” for start cell, “F” for finish cell, “#” for obstacle and “.”
for empty cell.
All inputs are available through our system.

Output
For each input file, output should be textual file with program written in Robo-language which solves
corresponding Robo-problem from input files.

Scoring
For each test case, score will be equal to the number of characters (code length) used in solution written in
Robo-languages. New lines are not counted as characters.
Number of points that you receive for each test case depend on other teams' score on that test case and is
calculated as

𝑁𝑢𝑚𝑃𝑜𝑖𝑛𝑡 = (1 − (1 −
𝑀𝐼𝑁

𝑆𝐶𝑂𝑅𝐸
)

0.5

) ⋅ 𝑃𝑜𝑖𝑛𝑡𝑃𝑒𝑟𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒

In above formula 𝑀𝐼𝑁 is minimum score for that test case among all other teams. Each test case is worth the
same number of points.

19 MDCS – Bubble Cup 2014

Problem D: Graph to Grid

Authors

Aleksandar Tomić

Andreja Ilić

Points: 1000

You are given an undirected graph with N vertices and K edges, and a MxL dimensional grid. Each point on
the grid has a cost Cij. Your task is to find the projection of the graph to the grid that has the lowest cost.
The graph is projected on to the grid by mapping each vertex on to one point on the grid. No 2 vertices may
be mapped to the same point.
The cost of a projection is calculated with the following formula:

𝐶𝑜𝑠𝑡 = ∑ 𝐶𝑖

𝑁−1

𝑖=0

+ ∑ 𝑀𝐷(𝐸𝑖 . 𝐹𝑖𝑟𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥, 𝐸𝑗. 𝑆𝑒𝑐𝑜𝑛𝑑𝑉𝑒𝑟𝑡𝑒𝑥)

𝐾−1

𝑖=0

Where:
- 𝐶𝑖 is the cost of the grid point where the 𝑖 − 𝑡ℎ vertex is located

- 𝑀𝐷 is the function for the Manhattan distance between two points on the grid. Manhattan distance

between points with coordinates (A,B) and (C,D) is equal to |A - C| + |B - D|.

- 𝐸𝑖 the 𝑖 − 𝑡ℎ edge.

You are given 20 input files, and for each input file your task is to submit an output file that contains a
description of the mapping needed to project each node to each grid point.
Note that this is an output-only problem, and no program needs to be provided.

Input files
Files that describe a graph and a grid will be in the following format:

- The first line will contain the non-negative integers N, K, M and L separated by spaces.

- The next K lines will contain 2 non-negative integers, that will correspond to 2 vertices on the graph

that are connected. Verticies are denoted by indexed from the range [0, N-1].

- The next M lines will contain L non-negative integers between 0 and 1 000 000 000 that correspond

to the cost of the grid points.

Output files
The output files will be expected to be in the next format:

- N lines which contain 2 non-negative integers separated by spaces. The integers in the 𝑖 − 𝑡ℎ line

will correspond to the coordinates where the 𝑖 − 𝑡ℎ vertex is located.

Example:

Input file:
5 6 5 7
0 1
0 2
1 2
2 3
3 4
1 4
8 5 6 7 5 9 8

20 MDCS – Bubble Cup 2014

7 9 9 7 6 7 8
8 7 9 6 7 9 6
6 7 8 9 5 3 9
7 1 9 8 4 5 7

Output File Example:
5 3
4 3
5 4
4 4
1 4

Solution Cost:
30

Explanation:
The input file corresponds to the following grid and graph:

0

2

1

3 4

8 5 6 7 5 9 8

7 9 9 7 6 7 8

8 7 9 6 7 9 6

6 7 8 9 5 3 9

7 1 9 8 4 5 7

The solution corresponds to the following layout:

8 5 6 7 5 9 8

7 9 9 7 6 7 8

8 7 9 6 7 9 6

6 7 8 9 5 3 9

7 1 9 8 4 5 7

The cost for the node positions are:
Node0 : 3
Node1 : 5
Node2 : 5
Node3 : 4
Node4 : 1

The cost for the edges are:
Edge(0-1) : 1
Edge(0-2) : 1
Edge(1-2) : 2
Edge(2-3) : 1

21 MDCS – Bubble Cup 2014

Edge(3-4) : 3
Edge(1-4) : 4

Scoring
For each test case, your score is calculated by the followig formula:

𝑆𝑐𝑜𝑟𝑒 = 1 − (1 −
𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑠𝑡

𝑇𝑒𝑎𝑚𝐶𝑜𝑠𝑡
)

0.5

∗ 50

Where:
- 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑠𝑡 is the minimum cost that among all participating teams.

- 𝑇𝑒𝑎𝑚𝐶𝑜𝑠𝑡 the minimum cost that the current team achieved on the given test case

22 MDCS – Bubble Cup 2014

Problem E: Kinect object recognition

Authors

Filip Panjević

Srđan Rilak

Points: 2000

Given a short recording of depth images from a Kinect camera, your task it to determine which object (from
a given set) the camera is looking at.

Objects
Kinect camera will be looking at one of the following objects:

Object (ID #) Mug shots

Fl
o

o
r/

N
o

 o
b

je
ct

 (
0

)

C
u

b
e

(1
)

B
al

l (
2

)

23 MDCS – Bubble Cup 2014

C
u

p
 (

3
)

To
ile

t
p

ap
er

 (
4

)

Sh
o

e
(5

)

Object will always lie on a flat surface (floor) and there will always be one or no objects in field of view of
the Kinect.

24 MDCS – Bubble Cup 2014

Kinect depth sensor
Kinect depth sensor outputs a 640x480 frame where each pixel represents distance from object in view to
camera plane, in millimeters (Figure 1). Depth value 0 indicates unknown distance.

Figure 1. Depth stream values

For pixel (𝑢, 𝑣) with depth value 𝑍, it’s position in the real world is (in millimeters):

(𝑋, 𝑌, 𝑍) = (
(𝑢 − 320)

𝑓
𝑍,

(𝑣 − 240)

𝑓
𝑍, 𝑍)

Where 𝑓 is the focal length of the depth sensor (in pixels), and has the value 𝑓 = 571.26.

Problem format
During the course of 24 hours, server will continuously broadcast a stream of depth video over UDP. The
stream is composed of 5 second clips looking at a single object. For each 5 second clip you can respond with
the ID of the object being shown. If the ID is correct you will receive points, if it’s incorrect you will receive
negative points. In case the server doesn’t receive a response, you will receive 0 points for the given clip.
Set of possible objects will change during the course of the competition, as well as the scoring, according to
the following scheme:

Time Objects Correct answer Incorrect answer

0 h – 1 h Floor, Cube 1 point -1 point
1 h – 6 h Floor, Cube, Ball 2 points -1 point
6 h – 12 h Floor, Cube, Ball, Cup 3 points -1 point
12 h – 18 h Floor, Cube, Ball, Cup, Toilet

paper
4 points -1 point

18 h – 24 h Floor, Cube, Ball, Cup, Toilet
paper, Shoe

5 points -1 point

Communication
Clients should listen for depth frame broadcast on port 9090. Message broadcasted by the server has the
following format:

Data Size [bytes]

unsigned int video_clip_id 4

unsigned int frame_id 4

unsigned int frame_chunk_id 4

25 MDCS – Bubble Cup 2014

unsigned short
pixels[640 * 480 / 10]

2 * 640 * 480 /

10

Each video clip will be 5 seconds long, recorded at 20 frames per second. Each frame will be split into 10
pieces of size 640 * 48, ordered from top to bottom.
Your response should be as single string in the following format:
“object <video_clip_id> <object_id> <password>”
For example, string “object 10 5 tortilla” means there is a shoe in clip number 10, and team password is
‘tortilla’.
Your response must be received no later than 5 seconds after the clip has completed streaming. The
response should be sent to port 9091. You may send multiple answers for one video clip, but only the first
one will be scored. Please don’t spam the server.
Note: Sensor data is stored in little-endian format. X86 machines are little-endian, but be carefull if you’re
using Java.

26 MDCS – Bubble Cup 2014

Problem F: Integram

Authors

Miloš Todić

Points: 800

Albert Einstein wrote a riddle and said that at most 2% of the world population is able to solve it.
In this puzzle, there are 5 houses marked with numbers 1 to 5. Each house has a different color. In each
house lives a person with a different nationality. Each person drinks a different kind of beverage, smokes a
different brand of cigars and has a different pet.
There is a number of clues given, revealing relationships between items from described categories, like:
 The British person lives in red house
 The owner of the dog doesn't drink tea
 The number on the yellow house is by 2 less than a bird's owner's house number
 …

The goal is to match each person with his house number and color, beverage he drinks, cigars he smokes
and a pet he owns.

Let's make this more general:
Let there be N categories, each with M items. The first category is always a number category, containing
numbers from 1 to M. Other categories are marked with letters: A, B, C… Items in each category are
marked like this:

1 2 3 … M Items in the first category

A1 A2 A3 … AM Items in category A

B1 B2 B3 … BM Items in category B

...

Hints are given in these forms:

Item1=Item2 Means that items are a match (e.g. A3=C2)

Item1!=Item2 Means that items are not a match (e.g. B2!=D4)

Item1!=Item2!=Item3... Neither pair of the items is a match (shorter for:
Item1!=Item2
Item1!=Item3
Item2!=Item3
…)

Item1<Item2 The number from the first category that matches
Item1 is smaller than the one that matches Item2

Item1-Item2=K The number from the first category that matches
Item1 is greater by K than the one that matches Item2.
K>0.

Item1~Item2 Numbers from the first category that match Item1 and
Item2, are next to each other.

Item1=Item2|Item3 Item1 matches exactly one of the items from the right

27 MDCS – Bubble Cup 2014

Item1|Item2=Item3|Item4 Item1 matches exactly one of the items from the right,
Item2 matches the other

Input:
First line of the input holds the values N and M separated by space (3<=N<=9, 4<=M<=8).
Second line holds a number of hints, H.
The next H lines contain hints.
Write a program that finds and prints matching items.

Output:
Each line of the output should contain matching items separated by space, like:
1 A2 B1 C3
2 A1 B3 C2
3 A4 B4 C4
4 A3 B2 C1
Each item should be printed at most once. Order of the items is not important. Partial solutions are
accepted.

Example input:
3 4
4
A1=2
B4-A2=1
A3-B3=2
A1!=1!=B1!=B4

Example output:
1 A4 B2
2 A1 B3
3 A2 B1
4 A3 B4

28 MDCS – Bubble Cup 2014

Problem G: Message decoding

Authors

Vuk Jovanović

Andrija Jovanović

Points: 1000

In beautiful meadows of Iron Hills resided two prosperous kingdoms of Elves on adjacent hills. Their skilled
archers successfully defended their kingdoms from attacks. However, this time they face the mighty dwarfs
who have already conquered the valley. For defeating the dwarfs, they need a coordinated attack from both
the kingdoms. Communicating by sending messengers was out of question as the dwarfs would conquer
them. Hence, they decided to communicate by blowing trumpets in tune of the Morse encoding of the
message. Knowing that dwarfs also have a copy of the Elves language dictionary, they increased security by
using a substitution cipher.
You are now being contacted by the dwarfs to help them decode the message. They have provided you with
the recordings of the trumpets and the dictionary they have. It is known that Elves only use the 26
lowercase Latin letters and put spaces between the words.

Input:
Wav file containing recording of coded message. Speed of Morse code can vary across input files. Input file
will contain only lowercase letters and a space between words. Message starts with a letter and ends with
one.
There will be a text file (dictionary) containing one word per line and it is shared for all inputs.

Output:
Decoded message written only in lowercase letters with single space between words.

Example:

Sample dictionary:
and, at, be, not, or, to

Sample input:
Listen to in.00.example.wav.
Morse code representation of wav file:
.-.. ..-. / -..- --.- / ..-. -.. /-. .-.. / .-.. ..-. / -..- --.-

Text written inside the encrypted message:
lf xq fd ifl lf xq

Sample output:
Decoded text message:
to be or not to be

Permutation used in substitution cipher:
b x
e q
n i
o f
r d
t l

29 MDCS – Bubble Cup 2014

Help (from Wikipedia):
International Morse code is composed of five elements:

 short mark, dot or "dit" (·) — "dot duration" is one time unit long

 longer mark, dash or "dah" (–) — three time units long

 inter-element gap between the dots and dashes within a character — one dot duration or one unit

long

 short gap (between letters) — three time units long

 medium gap (between words) — seven time units long

International Morse code letters:

30 MDCS – Bubble Cup 2014

Problem H: DNA Alignment

Authors

Nikola Puzović

Points: 800

DNA is a molecule that encodes the genetic instructions for development and functioning of all living
organisms. The information in DNA is stored in as a code that is made of four nucleotides (chemical bases):
Guanine (G), Adenine (A), Thymine (T), or Cytosine (C). The order (sequence) in which these bases are
organized is important, since the sequence itself is the information that is used for building an organism.
In order to determine if two living organisms are similar, we can align the sequences of DNA and determine
if there is evolutionary relationship between them. When two sequences are aligned, identical characters or
gaps must be aligned in the same column. A gap is a special symbol (‘-‘) that is used when a match cannot be
found in the column. An example alignment is given here:

 Original Aligned

Sequence 1: ACACACTA A – C A C A C T A

Sequence 2: AGCACACA A G C A C A C - A

In the example above, we inserted one gap (-) into each sequence so that the remaining characters match. If
we want to find evolutionary relationship (or lack of it) in a sample that contains more than one sequence,
then we have to perform multiple sequence alignment according to the same rules: identical characters or
gaps must be aligned in the same column. The following example shows the alignment of three sequences:

 Original Matched

Sequence 1: ACACACTA A – C A C A C T A

Sequence 2: AGCACACA A G C A C A C – A

Sequence 3: AGACACA A G - A C A C - A

When constructing the alignment of multiple DNA sequences that are related to each other, the number of
gaps is going to be smaller than when unrelated sequences are aligned. Hence, the goal of multiple sequence
alignment is to use as little gaps as possible when aligning the sequences.

Problem and scoring
You are given 𝑁 sequences of maximum length 𝐿 (1 <= 𝑁, 𝐿 <= 10000). You need to output the
aligned sequences that have the following characteristics:

- All sequences in the output must have the same length.

- When gaps are removed from the output sequences they must be identical to the input sequences

with the same name.

- Aligned sequences must have the same symbol or a gap in each column of the output.

Each correct solution will be awarded points according to the following rules:
- Score for each solution is the number of gaps in the solution.

- Solution with the minimal number of gaps will score maximum number of points for the test case.

- Every other solution is scaled according to the formula 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝐴 ∙ (1 − (
𝑀𝑖𝑛

𝑆𝑐𝑜𝑟𝑒
)

0.5
), where 𝐴 is

the maximum number of points for the test case.

31 MDCS – Bubble Cup 2014

Input and output
Input for one test case is provided in a single input file that contains all sequences. Each sequence is
represented with two lines:

- First line contains the name of the sequence. This line must start with a symbol ‘>’.

- Second line contains the sequence itself and can contain only symbols A, G, C, T and -.

An example of valid input and output file is:

Input file:
>sequence Foo

ACACACTA

>Bar sequence

AGCACACA

Output file:
>Bar sequence

AGCACAC-A

>sequence Foo

A–CACACTA

32 MDCS – Bubble Cup 2014

Bubble Cup

Bubble Cup finals were held on September 6th 2014 in Mikser House. Competition remained in the

traditional format, similar to ACM ICPC. Top 14 high school teams tried to solve 9 problems. Three

problems remained unsolved, with no submissions for two of them. Every team solved at least one

task.

Winners of Bubble Cup were Me[N]talci Inc. (Serbia) for the second time in a row. They solved 6

tasks before the four hours mark and start of scoreboard freeze time, which was enough to hold the

top position until the end. Second place went to team .deathSatanBunny (Serbia), that solved their

sixth task during freeze time, getting in front of team Aroni (Croatia) that ended the competition

third, with 5 solved tasks.

Place Team Score Penalty Total
submissions

Accepted
submissions

Rejected
submissions

1 Me[N]talci Inc. 6 751 12 6 6

2 .deathSatanBunny 6 891 6 6 0

3 Aroni 5 595 11 5 6

4 The Falcons 4 538 8 4 4

5 Neprelazni B.V. 4 653 11 4 7

6 B Cup 4 743 11 4 7

7 Desarrolladores 4 974 21 4 17

8 Team 17 3 476 7 3 4

9
Even so we are on IOI, we are
here.

2 226 4 2 2

10 Cosa Nostra 2 450 4 2 2

11 ExponentialComplexity 2 488 7 2 5

12 Shtepsel 2 554 7 2 5

13 Gimnazija Sombor 1 110 1 1 0

14 NaN 1 313 4 1 3

Table 2. Final results of Bubble Cup

33 MDCS – Bubble Cup 2014

Problem A: Forest Snake

Authors

Lazar Milenković

Implementation and analysis

Lazar Milenković

Dušan Zdravković

Forest Snake lives somewhere in the big forest of Rudnik and he loves to travel a lot. This summer he decided
to visit the famous Micro forest which has many tourist attractions. The most popular among those attractions
is Soft tree because of its interesting property. This tree contains a lot of different types of fruits and every
fruit has a letter on it. Forest Snake loves palindromes and he decided to make palindrome from the letters
of Soft tree. Amount of his happiness is equal to the length of palindrome he makes.

Soft tree can be represented as a connected acyclic graph with 𝑁 nodes and 𝑁 − 1 edges where each node
is one fruit and some fruits are connected with edges. Forest snake can choose some node and walk to some
other node, but he can visit every edge exactly once. Help him and determine the tour with maximum amount
of happiness.

Input

The first line contains number of nodes 𝑁. The second line contains string of length 𝑁 where 𝑖𝑡ℎ character is
written on node with index 𝑖. Each of the next 𝑁 − 1 lines contains two integers 𝑢 and 𝑣, indicating that there
is an edge between nodes 𝑢 and 𝑣.

Output

Output should contain a single integer which represents the maximum amount of Forest Snake’s happiness.

Constraints

 1 ≤ 𝑁 ≤ 5000

 1 ≤ 𝑢, 𝑣 ≤ 𝑁

 All characters are lowercase English letters

Example input Example output

6
badbca
1 2
1 3
1 4
4 5
4 6

4

Time and memory limit: 3s / 256MB

Solution and analysis:

Solution 1

The first solution is using trie data structure.

Suppose that the longest palindrome has odd length and its middle is at the current node. Now problem
consist of finding two node-disjoint chains which are adjacent to the current node and the strings they form

34 MDCS – Bubble Cup 2014

are the same. We build trie from every subtree rooted at node adjacent to the current node. The trie is built
such that it contains all strings which start at the root and end at some leaf. If two tries contain the same
strings they are candidates for the solution because they are node-disjoint. We can check whether a string
occurs in more than one trie by merging all tries and keeping track of how many times each node occurred.
This can be done efficiently by keeping only current trie and union of all tries so far. When the current trie is
built we merge it with union. The whole procedure has linear time complexity and when we pick every node
as middle overall complexity is quadratic on number of nodes. Memory complexity is linear. Solution is similar
for the strings with even length: for every edge build two tries from its endpoints, merge them and check if
some string occurs in both tries.

Solution 2

The second solution is using dynamic programming.

For every two nodes 𝑢 and 𝑣 calculate

𝑑𝑝𝑢,𝑣 = {

1, 𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙
0, 𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑑𝑖𝑓𝑓𝑒𝑟

𝑑𝑝𝑓(𝑢,𝑣),𝑓(𝑣,𝑢) + 2 𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑎𝑛𝑑 𝑑𝑝𝑓(𝑢,𝑣),𝑓(𝑣,𝑢) > 0

where 𝑓(𝑢, 𝑣) is the first node on path from 𝑢 to 𝑣. Calculating all values of 𝑓 has quadratic time

complexity, and all 𝑑𝑝 values can be calculated in quadratic time using memoization. Overall, this

solution has quadratic memory and time complexity.

Summary

Although the first solution has better memory complexity the second one has smaller time constant

and it is far easier to implement.

35 MDCS – Bubble Cup 2014

Problem B: Calculator

Authors

Dušan Zdravković

Implementation and analysis

Andrija Jovanović

Your task is to implement a special calculator. Like an ordinary calculator, the user can type in a mathematical
expression, but that is where similarities end. This calculator lacks some features compared to ordinary
calculators - for example, it cannot do subtraction or division. But it can also do some things ordinary
calculators are not able to do: after the user types in an expression, she can choose to calculate only a part
of it between a given starting and ending point, and she can do it as many times as she likes for the same
expression.

The calculator supports the following elements of input:

- Non-negative integers

- Arithmetical operators: +, *

- Brackets: (,)

Input

The first line contains one integer 𝑝 – the number of elements in the expression. The second line contains the
expression 𝐸, comprised of elements listed in the text above. Each element of the expression is separated by
a single space character on both sides.

The third line contains one integer 𝑁 – the number of requests for calculation on 𝐸. Each of the next 𝑁 lines
contains two integers, representing the starting and ending element in the expression that should be
calculated. (Each number, operator or bracket is a single element. It is not important how many key presses
the user needs to make to obtain it).

Output

The output contains 𝑁 lines – in every line there should be one integer, representing the result of the
calculation. Since the numbers can get very large, the output should be calculated modulo 109 + 7.

Constraints

 1 ≤ 𝑝 ≤ 1 000 000

 For each integer 𝑘 in the expression 𝐸, 1 ≤ 𝑘 ≤ 10000.

 1 ≤ 𝑁 ≤ 100 000.

 1 ≤ 𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑝, for each 𝑖 ∈ {1 … 𝑛}

 It is guaranteed that 𝐸 will be a valid mathematical expression.

 It is guaranteed that all subexpressions of 𝐸 that need to be calculated will be valid. In particular,

none of the subexpressions will begin or end with a + or * sign, and all brackets will be properly

matched.

Example input Example output

17
99 + (25 * (3 + 7) * 10 + 50) * 2
2
6 14
3 17

150
5100

Time and memory limit: 2s / 128MB.

36 MDCS – Bubble Cup 2014

Solution and analysis:

The obvious algorithm that solves the problem is the following:

For each query:
1. Extract the subexpression that needs to be calculated

2. Calculate the value of the subexpression

Step 2 is not completely trivial and we won’t go into details on how exactly to implement it, but it should be
clear that it requires 𝑂(𝑝) time, and the solution as a whole then requires 𝑂(𝑁 ∙ 𝑝) time in the worst case,
which is clearly not fast enough to finish under the time limit.

Intuitively, we should be able to do this faster because the algorithm described above computes certain
expression fragments over and over again. But how do we make use of this insight?

Let’s first solve an easier subset of the problem – we’ll assume that our expression does not contain any
brackets. This means that the expression can be written as a sum of products:

𝐸 = 𝑎11 ∙ 𝑎12 ∙ … ∙ 𝑎1𝑘1
+ 𝑎21 ∙ … ∙ 𝑎2𝑘2

+ ⋯ + 𝑎𝑙1 ∙ 𝑎𝑙2 ∙. . .∙ 𝑎𝑙𝑘𝑙

When the expression comes in but before we answer any queries, we can precompute some things.

For each number 𝑎𝑖𝑗 we will keep track of the following data:

1. 𝑖 and 𝑗

2. 𝑃𝐿𝑖𝑗 = 𝑎𝑖1 ∙ … ∙ 𝑎𝑖𝑗 – the left part of the product 𝑎𝑖𝑗 belongs to (including 𝑎𝑖𝑗)

3. 𝑃𝑅𝑖𝑗 = 𝑎𝑖𝑗 ∙ … ∙ 𝑎𝑖𝑘𝑖
 – the right part of the product 𝑎𝑖𝑗 belongs to (including 𝑎𝑖𝑗)

4. 𝑆𝐿𝑖𝑗 = 𝑎11 ∙ 𝑎12 ∙ … ∙ 𝑎1𝑖1
+ ⋯ + 𝑎(𝑖−1)1 ∙ 𝑎(𝑖−1)2 ∙ … ∙ 𝑎(𝑖−1)𝑘𝑖−1

 – the left part of the total sum, up

to the product 𝑎𝑖𝑗 belongs to

5. 𝑆𝑅𝑖𝑗 = 𝑎(𝑖+1)1 ∙ 𝑎(𝑖+1)2 ∙ … ∙ 𝑎(𝑖+1)𝑘𝑖+1
+ 𝑎𝑙1 ∙ 𝑎𝑙2 ∙ … ∙ 𝑎𝑙𝑘𝑙

 – the right part of the total sum, starting

with the product after the product 𝑎𝑖𝑗 belongs to.

We will also calculate the value of the entire expression 𝐸 (which is just 𝑆𝐿 + 𝑃𝐿 for the last element in the
expression).

How does this help us? We get a calculation request for the subexpression between elements 𝑎𝑖𝑗 and 𝑎𝑝𝑞.

Assuming that 𝑖 ≠ 𝑝, the formula

𝐸 − 𝑆𝐿𝑝𝑞 − 𝑆𝑅𝑖𝑗 + 𝑃𝑅𝑖𝑗 + 𝑃𝐿𝑝𝑞

gives us the correct result. This is easy to verify: 𝐸 − 𝑆𝐿𝑝𝑞 − 𝑆𝑅𝑖𝑗 calculates the sum of all products fully

contained in the subexpression, and 𝑃𝑅𝑖𝑗 + 𝑃𝐿𝑝𝑞 adds the parts of the two products split by 𝑎𝑖𝑗 and 𝑎𝑝𝑞

respectively.

Since this is not correct if 𝑖 = 𝑝, we need a different formula for that case:

𝑃𝑅𝑖𝑗 ∙ 𝑎𝑝𝑞
𝑃𝑅𝑝𝑞

⁄

Again, it is not difficult to see why this is correct.

How fast is this solution? The precompute step can be performed in 𝑂(𝑝) time. We can go through the
expression from left to right, saving cumulative sums and products and arrays as we go along to get 𝑃𝐿 and
𝑆𝐿. For 𝑃𝑅 and 𝑆𝑅, we do the same thing from right to left. Answering queries can now be done in constant
time – we only need to do a couple of array lookups and arithmetic operations. (Note: not all constant-time
operations are created equal. The division modulo 109 + 7 needs to be implemented through exponentiation
by squaring. You could write a naïve implementation that makes 109 + 7 steps, which is still theoretically
𝑂(1) but the time limit checker will not be convinced by that argument). The overall time complexity of

http://en.wikipedia.org/wiki/Exponentiation_by_squaring
http://en.wikipedia.org/wiki/Exponentiation_by_squaring

37 MDCS – Bubble Cup 2014

the solution is 𝑂(𝑝 + 𝑁).

Let us now solve the full problem. The presence of brackets changes the complete structure of the task, right?
Well, not really. Notice that, for each pair of brackets, it is impossible to construct a valid query that contains
only one of the brackets and not the other. This means that each query has to either fully reside within the
pair of brackets, or fully cover the brackets and everything inside them. This immediately gives us a way to
reduce the problem to the solved case:

1. If the subexpression is fully contained within the brackets, we can safely ignore everything outside

the brackets

2. If the subexpression generated by the query covers the brackets, we can replace the contents of the

brackets with a single number – the value of the expression delimited by the brackets

Let’s do this on the example from the problem statement:

99 + (25 * (3 + 7) * 10 + 50) * 2

6 14

The subexpression is completely inside the outer pair of brackets, so we ignore everything else:

25 * (3 + 7) * 10 + 50

The remaining pair of brackets is covered by the subexpression, so we calculate it:

25 * 10 * 10 + 50

Now we have reduced the problem to the already solved case and we can solve it using the same algorithm.
The only remaining question is how to do the bracket handling work without impacting the algorithmic
complexity. A straightforward way to do this is with the help of a stack structure:

1. Set the number of encountered brackets so far to 𝑏 = 0.

2. Set the values we want to keep track of (current accumulated sum, current product, current

values of 𝑖 and 𝑗) to their initial values.

3. Go through the expression from left to right, keeping track of cumulative sums and products and

saving values of 𝑃𝐿, 𝑆𝐿, 𝑖, 𝑗, 𝑏 for each element to an array.

a. If the current element is an open bracket, take the current state (current sum, current

product, current values of 𝑖 and 𝑗), put it on the stack, then reinitialize the state. Increase

the number of encountered brackets by 1.

b. If the current element is a closed bracket, record the value of the whole expression 𝑆𝐵

within the bracket (which should already be calculated as the accumulated sum within

the bracket), then pop the previous state from the stack. Keep calculating 𝑃𝐿 and 𝑆𝐿 for

the remaining elements, as if everything within the brackets was a single element with

the value 𝑆𝐵.

4. Repeat steps 1-3, going from right to left this time and filling in values of 𝑃𝑅 and 𝑆𝑅.

The formulas for answering queries remain the same as in the previous case. The only difference is that, due
to 𝑖 and 𝑗 being “bracket-relative” now, we also have to check whether 𝑏𝑖𝑗 = 𝑏𝑝𝑞 to know when to use the

first formula and when the second.

The complexity of this algorithm is the same as the complexity of the algorithm described earlier. We still
keep track of just one set of values for each expression element. The only additional operations during the
precompute step are related to handling of the stack, but there can be at most 𝑂(𝑝) of them. Answering
queries is still done in 𝑂(1) time per query.

38 MDCS – Bubble Cup 2014

Notes

1. The memory limit is 128MB, so there is more than enough memory to store all data. The

memory complexity of the solution is 𝑂(𝑝), but some amount of care has to be taken to not

let the constant factor get out of hand.

2. All inputs and outputs can be handled as 32-bit integers, but using 32-bit numbers

everywhere can overflow during multiplication. So you either need to be careful and cast to

64-bit when it’s needed, or work with 64-bit numbers all the way and try not to hit the

memory limit.

39 MDCS – Bubble Cup 2014

Problem C: ForEST

Authors

Dušan Zdravković

Implementation and analysis

Dušan Zdravković

Lazar Milenković

This year, ForEST (traditional festival for inhabitants of forests) is organized in Forest Snake’s forest. Best beer
manufacturers present their products and top jungle musicians have live performances in the middle of wood.
Traditionally, monkeys take care of security, and this year they decided to organize ForEST slightly different –
there will be multiple fan pits in the forest. The first pit is nearest to the stage, the second is immediately after
the first and so on… Also it is known that first pit is inside the second, which is inside the third… Fan pits are
separated by long straight ribbons which are fixed to some trees in the forest. Ticket price for the first fan pit

is 𝑁 coins (forest coin is official currency in every forest in the world), for the second 𝑁 – 1,… For 𝑖𝑡ℎ fan pit
price is 𝑁 − 𝑖 + 1. Being outside of any fan pit is free.

Position of every tree in forest can be represented with two integer coordinates, and every security ribbon
can be represented as straight line segment starting at one tree and ending at some other tree. So, one fan
pit is actually convex polygon with trees as vertices and ribbons as edges. Forest Snake is interested in
following problem: given coordinates of some animals in the forest, what price each of them paid for being
at that place during ForEST?

Input

The first line contains one integer 𝑁 – the number of fan pits. Each of the next 𝑁 lines start with the number
of nodes of fan pit 𝑀, followed by 𝑀 pairs of integers 𝑥 and 𝑦 – coordinates of nodes. The next line contains
number 𝑄 – number of Snake’s question. Each of the next 𝑄 lines contain pair of integers 𝑥 and 𝑦 representing
the position of animals.

Output

For each of the 𝑄 animals output a single integer per line which is equal to its ticket price.

Constraints

 There is at least one fan pit

 Sum of number of nodes of all polygons doesn’t exceed 3 ∙ 105

 Every fan pit has at least three nodes

 1 ≤ 𝑄 ≤ 3 ∙ 105

 −109 ≤ 𝑥, 𝑦 ≤ 109

 It is guaranteed that the first polygon is inside the second, the second inside the third… 𝑁 − 1𝑡ℎ

inside the 𝑁𝑡ℎ

 All polygons are convex and there is no animal standing on any ribbon or tree

 Nodes of the polygons are given in counterclockwise order

Example input Example output

2
3 -3 2 2 -3 3 5
4 10 10 -10 10 -10 -10 10 -10
3
0 0
100 100
6 3

2
0
1

Time and memory limit: 3s / 64MB

40 MDCS – Bubble Cup 2014

Solution and analysis:

For every convex polygon make upper and lower chain, such that upper chain contains all points on clockwise
path from the leftmost point of the polygon to the rightmost one. Similar, lower chain contains all points on
counterclockwise path from the leftmost to the rightmost point. Make array of all points from input (points
from queries and polygons) and sort them by 𝑥 coordinate ascending. Also, make two stacks, one for upper
chains and the other for lower chains. Stack should keep only index of the last point visited so far. Traverse
the array and check if current point is from polygon or from some query:

1. If the point is from polygon:

a) If it’s the leftmost point of some chain push its polygon on stack

b) If it’s the rightmost point of some chain pop its polygon from stack

c) Otherwise make current point be the last point of its chain

2. If the point is query point:

Check if it’s under all upper chains and then do binary search on lower chains, otherwise do the

binary search on upper chains. Binary search finds between which two chains the current point is

located, and from that we can easily calculate the number of polygons in which the point is located

inside of.

Sorting all the points requires 𝑂(𝐾 log 𝐾) where 𝐾 is total number of points including those on polygon and
from queries. Every binary search requires O(log 𝑁), which leads to total complexity 𝑂(𝐾 log 𝐾 + 𝑄 log 𝑁).

41 MDCS – Bubble Cup 2014

Problem D: Search

Authors

Dušan Zdravković

Implementation and analysis

Danilo Vunjak

Alice is looking for a job and she has heard that one software company is hiring experts in run-length encoding
(RLE). It is a very simple form of data compression in which runs of data (that is, sequences in which the same
data value occurs in many consecutive data elements) are stored as a single data value and count, rather than
as the original run. For example, you can compress
“WWWWWWWWWWWWBWWWWWWWWWWWWBBBBWWWWWWWWWWWWWW” into
“12W1B12W4B14W”, “11522666” into “21152236”. Alice is playing around with encoding of positive integers.
One unit of data is a single digit, so she encodes each sequence of the same digit as that digit and its count.

We can define a function Alice uses for encoding as 𝑅𝐿𝐸(𝐴) = 𝐵, where 𝐴 and 𝐵 are positive integers.
However, since this is a compression algorithm, Alice doesn’t consider an encoding valid if 𝐵 has more digits
than 𝐴.

Alice encodes a number multiple times in a row, until the encoding is not valid. For example, number 333
can be encoded two times in a row before the encoding gets invalid: 𝑅𝐿𝐸(333) = 33; 𝑅𝐿𝐸(33) = 23;
𝑅𝐿𝐸(23) = 1213 – number 1213 has more digits than number 23 so the last encoding is not valid.

After playing with RLE she found one interesting number - 22. Number 22 can be encoded infinitely many
times, because 𝑅𝐿𝐸(22) = 22.

Now she wants to find a positive integer different than 22, with no more than 100 digits, that can be encoded
at least 5 times in a row before the encoding gets invalid. Help her!

Input

There is no input for this problem.

Output

Output a single positive integer Alice is looking for.

Constraints

 Number of digits of the positive integer in the output must be ≤ 100.

 Output must not be 22.

Example input Example output

No example input No example output

Time and memory limit: 0.1s / 64 MB

42 MDCS – Bubble Cup 2014

Solution and analysis:

The idea is to find the number which can be encoded 4 times, and then manually construct the number which
can be encoded into that number (so ultimately it can be encoded 5 times). To find the first number which
can be encoded 4 times, we can use brute force solution. Straight forward brute force solution can be
optimized with some heuristics. For example, we don’t need to consider numbers that contain digits 5, 6, 7,
8 and 9 in itself, since they will not satisfy both condition to have less than 100 digits, and to be encodable 5
times.

Smallest number different than 22 that can be encoded 4 times is 2233322211. Now, number
2233333333333333333333333333333333322222222222222222222221 (two times 2, thirty-three
times 3, twenty-two times 2 and one 1) can be encoded 5 times. Since this number has less than 100 digits,
it is one of the solutions. Another solution can be obtained from number 22333222112, and it will have less
digits, 31 total. Number is [2𝑥2, 3𝑥3, 3𝑥2, 22𝑥1, 1𝑥2].

43 MDCS – Bubble Cup 2014

Problem E: Cycles

Authors

Luka Milićević

Implementation and analysis

Luka Milićević

Lazar Milenković

You are given a graph 𝐺 with two spanning trees that share no edges. A cycle in 𝐺 is a connected subgraph

whose vertices have degree 2. Your task is to find a collection of cycles in 𝐺 such that every edge is in precisely

two of your cycles. Such a collection will always exist.

Input

The first line contains two integers separated by an empty space: 𝑛 – the number of vertices and 𝑚 – the

number of edges. Every of the next 𝑛 lines contains 3 integers 𝑢, 𝑣, 𝑙, separated with empty spaces, which

represent the edge between vertices 𝑢 and 𝑣. The remaining integer 𝑙 can take values 0, 1, 2. Value 0 means

that it is not in either of the spanning trees, 1 means that it is in the first one, and 2 that it is in the second

tree.

Output

The first line of the output should contain a single integer 𝐶 – the number of cycles you produced. Every line

that follows should describe one of the 𝐶 cycles and should start by integer 𝑚 which is the size of the cycle

and should then contain 𝑚 integers that specify the cycle (so that the edges are between the 1st and

2ndvertex, 2nd and 3rdvertex, etc. , and between 𝑚th and 1st). Any collection of cycles that contains every edge

precisely twice is considered to be a valid solution.

Constraints

 1 ≤ 𝑛 ≤ 500000, 1 ≤ 𝑚 ≤ 1000000, 2𝑛 − 2 ≤ 𝑚.

 There are no loops or repeated edges.

Example input Example output

5 10
1 2 1
2 3 1
3 4 1
4 5 1
1 5 0
1 3 2
3 5 2
5 2 2
2 4 2
1 4 0

4
5 1 2 3 4 5
5 1 3 5 2 4
5 2 3 1 4 5
5 5 3 4 2 1

Time and memory limit: 10s / 256MB

1

2

3
4

5

44 MDCS – Bubble Cup 2014

Solution and analysis:

Since we’re already given spanning trees in the graph and we’re looking for cycles, it is natural to recall that
given a tree 𝑇 and an edge 𝑒 not in the tree, there is a unique path in 𝑇 that joins the endpoints of 𝑒. In turn,
this gives a cycle that contains edge 𝑒. Write 𝑇1 for the first spanning tree that is given, and 𝑇2 for the second
one. By applying this procedure to edges not in 𝑇1 and the tree 𝑇1, we get a collection of cycles that contain
each edge not in 𝑇1 precisely once, while the edges of 𝑇1 can possibly be contained in multiple cycles. If an
edge is contained in more than two cycles, this is certainly a problem, given our goal. The key observation
now is that we can actually turn the current collection of cycles into a useful one by applying the symmetric
difference to the cycles. In other words, we pick the edges in an odd number of cycles in the current collection.
It is easy to see that this gives us an even subgraph 𝐻 (i.e. all vertices have even degrees), where we may
perform Euler tour to produce a new collection of cycles, that contain each edge of 𝐻 precisely once. Crucially,
the new collection of cycles contains each edge not in 𝑇1 precisely once, while the edges of 𝑇1 are contained
at most once.

We can repeat the same procedure to tree 𝑇2. As the trees have no common edges, by taking a union of the
two collections produced so far, we obtain a collection of cycles that contains each edge of 𝐺 once or twice.
Finally, we observe that taking all edges that appear precisely once gives another even subgraph, and
performing Euler tour once more and adding these cycles, produces a solution – a collection of cycles
containing each edge precisely twice.

As far as the implementation is concerned, there is an important point – how to find the cycles coming from
a spanning tree efficiently? Recall that we actually do not need all the cycles given by paths along the tree,
but actually only the resulting even subgraph given by symmetric difference. For this it is actually sufficient
to write at each node of a tree the number of non-tree edges that are adjacent to it and then to pick tree
edges whose subtrees have odd sum of numbers at nodes. Thus, a simple tree traversal suffices.

To sum up, the algorithm looks as follows:

 For 𝑇1, for each node 𝑣, write the number of non-tree edges adjacent to 𝑣, and then perform a DFS

traversal that sums the numbers in subtrees and chooses the edges with odd subtree sum.

 Take the edges chosen above and add edges not in 𝑇1to form an even subgraph.

 Perform Euler tour on this subgraph, and add the resulting cycles to solution.

 Repeat all the steps above to 𝑇2.

 Finally, form an even subgraph of edges appearing only once the cycles chosen so far.

 Perform another Euler tour to complete the solution.

The algorithm has linear time and memory complexity.

45 MDCS – Bubble Cup 2014

Problem F: Compression

Authors

Vanja Petrović Tanković

Implementation and analysis

Vanja Petrović Tanković

Aleksandar Ivanović

A software company is making tools for data compression. One group of engineers is working on algorithms

for compression of really long textual data. Currently, they are implementing some variations of compression

algorithm called run-length encoding. Run-length encoding is a technique where consecutive runs

(sequences) of same data are stored as a run value and count. In this case specifically, algorithm takes a string

𝑆 as an input and compresses it into a new string 𝐶𝑠 using run-length encoding. 𝐶𝑠 is of the form

< 𝑟𝑢𝑛1 >< 𝑐𝑜𝑢𝑛𝑡1 >< 𝑟𝑢𝑛2 >< 𝑐𝑜𝑢𝑛𝑡2 > ⋯ < 𝑟𝑢𝑛𝑘 >< 𝑐𝑜𝑢𝑛𝑡𝑘 >

where < 𝑟𝑢𝑛𝑖 > is a non-empty string value and < 𝑐𝑜𝑢𝑛𝑡𝑖 > is a positive integer value for each 𝑖 = 1. . 𝑘.

Decompressing 𝐶𝑠 back to 𝑆 works by repeating value of < 𝑟𝑢𝑛𝑖 > exactly < 𝑐𝑜𝑢𝑛𝑡𝑖 > times for each 𝑖 =

1. . 𝑘.

Obviously, 𝐶𝑠 may not be unique because it might be possible to split 𝑆 into runs in many different ways, so

engineers are experimenting with different approaches of splitting 𝑆 into runs. All of these approaches are

optimized for compression speed and low memory consumption of the algorithm, and not the compression

efficiency, because in reality input data can be several terabytes large and it is more important that

compression is fast and does not take a lot of resources. To measure compression efficiency, engineers will

use smaller inputs and compare their approaches of splitting 𝑆 into runs to the optimal way of splitting 𝑆 into

runs – one that results in 𝐶𝑠 of minimum length. Help them by writing a program that will calculate the

minimum length of 𝐶𝑠.

Input

The first line contains one integer 𝑁 – length of string 𝑆. The second line contains the string 𝑆.

Output

Output contains one integer – minimum length of string 𝐶𝑠.

Constraints

 1 ≤ 𝑁 ≤ 3000

 All letters of 𝑆 are lowercase letters of English alphabet

Example input Example output

12
aaaababababc

7

Example explanation

Compressed string of the smallest length is 𝑎3𝑎𝑏4𝑐1. Some other possibilities for 𝐶𝑠 are 𝑎4𝑏𝑎3𝑏𝑐1,

𝑎𝑎2𝑏𝑎2𝑏𝑎𝑏𝑐1, 𝑎𝑎𝑎𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑐1 etc. but none of them have length less than 7.

Time and memory limit: 1.5s / 128MB

46 MDCS – Bubble Cup 2014

Solution and analysis:

We will start by describing a dynamic programming part of the solution.

Let 𝐷𝑃[𝑖] represent the minimum compression length for the string 𝑆[1. . 𝑖] (substring of 𝑆 starting at the

position 1 and ending at the position 𝑖). The solution is then 𝐷𝑃[𝑁].

So, how do we calculate 𝐷𝑃[𝑖], for 𝑖 = 1. . 𝑁? We initialize by setting 𝐷𝑃[0] = 0. When we are at the position

𝑖, we take any substring of 𝑆 ending at the position 𝑖 as a run. There are exactly 𝑖 such substrings:

𝑆[𝑖. . 𝑖], 𝑆[𝑖 − 1. . 𝑖], 𝑆[𝑖 − 2. . 𝑖], … , 𝑆[1. . 𝑖]. For each run, we will try to repeat it 𝑘 times, where 𝑘 = 1. . 𝑀,

and 𝑀 is ⌊
𝑖

𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛)
⌋.

Then, if the substring 𝑆[𝑖 − 𝑘 ∙ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛) + 1. . 𝑖] is equal to the substring 𝑆[𝑖 − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛) + 1. . 𝑖]

repeated exactly 𝑘 times, one possible value for 𝐷𝑃[𝑖] would be 𝐷𝑃[𝑖 − 𝑘 ∙ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛)] + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛) +

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑖𝑔𝑖𝑡𝑠(𝑘). 𝐷𝑃[𝑖] obviously takes a minimum of all such values.

We do not need to check the whole first substring – if the equality of substrings holds for 𝑘 − 1 and 𝑆[𝑖 − 𝑘 ∙

𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛) + 1. . 𝑖 − (𝑘 − 1) ∙ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛) + 1] is equal to the 𝑆[𝑖 − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛) + 1. . 𝑖], then it holds

for 𝑘 also. Actually, we can also see that when we get to 𝑘 that doesn’t satisfy the equality, we can stop for

this run, because the condition would not be satisfied for any number larger than 𝑘 either.

Let’s take a string 𝑆 = ′𝑎𝑎𝑏𝑎𝑏′ as an example. For 𝑖 = 5, the runs can be ′𝑏′, ′𝑎𝑏′, ′𝑏𝑎𝑏′, ′𝑎𝑏𝑎𝑏′ and ‘𝑎𝑎𝑏𝑎𝑏′.

Taking ‘𝑏′ as a run and 𝑘 = 1, we take 𝐷𝑃[4] + 𝑙𝑒𝑛𝑔𝑡ℎ(′𝑏′) + 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑖𝑔𝑖𝑡𝑠(1) as one possible value

for 𝐷𝑃[5]. For 𝑘 = 2, we see that substring 𝑆[4. .4] is not equal to ′𝑏′ so we can stop. For ′𝑎𝑏′, one possible

value for 𝐷𝑃[5] is when 𝑘 = 1, and the value is 𝐷𝑃[3] + 𝑙𝑒𝑛𝑔𝑡ℎ(′𝑎𝑏′) + 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑖𝑔𝑖𝑡𝑠(1). When 𝑘 =

2, 𝑆[2. .3] = 𝑆[4. .5] so possible value for 𝐷𝑃[5] is 𝐷𝑃[1] + 𝑙𝑒𝑛𝑔𝑡ℎ(′𝑎𝑏′) + 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑖𝑔𝑖𝑡𝑠(2). We

cannot try with 𝑘 = 3 because of length of 𝑆. Similarly, we can check runs ′𝑏𝑎𝑏′, ′𝑎𝑏𝑎𝑏′ and ′𝑎𝑎𝑏𝑎𝑏′, with 𝑘

only equal to 1, due to their length.

We haven’t mentioned the complexity of the algorithm yet, but so far we can see that this doesn’t seem

efficient enough in the worst case. We can speed this up by precomputing if the substring 𝑆[𝑖 − 𝑗. . 𝑖] = 𝑆[𝑖 +

1. . 𝑖 + 𝑗 + 1] for all possible values of 𝑖 and 𝑗 and storing the results in a matrix of size 𝑂(𝑁2). This will help

us improve the dynamic programming part of the solution by avoiding checking if two substrings are equal

character by character every time, and instead have a 𝑂(1) check. We can precompute this in several ways,

such as using hashing or trie data structure. When using hashing, we can compute the hash values of all

substrings in 𝑂(𝑁2), using rolling hash, as in Rabin-Karp algorithm.

Let’s see what the total complexity of the solution is. For each index 𝑖, we check all the runs ending at 𝑖. This

has time complexity 𝑂(𝑁2). Then, for each run, we try to repeat it 𝑘 number of times. In the worst case,

where the characters of the input string are all the same, we would need to try for each 𝑘 = 1. . ⌊
𝑖

𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛)
⌋.

For each 𝑘, we need to check if the substrings are the same, and without any precomputation this has time

complexity of 𝑂(𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑢𝑛)), so the total complexity of the algorithm in that case would be 𝑂(𝑁3).

However, with 𝑂(1) check, the total complexity is 𝑂(𝐻𝑁𝑁2), where 𝐻𝑁 is 𝑁𝑡ℎ harmonic number, and 𝐻𝑁 =

∑
1

𝑖
𝑁
𝑖=1 . Harmonic series grows very slowly, so for 𝑁 = 3000, 𝐻𝑁 ≤ 10. With the memory complexity of

𝑂(𝑁2), this algorithm is efficient enough, given the constraints in this task.

47 MDCS – Bubble Cup 2014

Problem G: Sticks

Authors

Dušan Zdravković

Implementation and analysis

Vanja Petrović Tanković

You are given an array of 𝑁 sticks. First stick is at the position 1, second at the position 2, etc. Last one is at

the position 𝑁.

You can pair two sticks if they are not paired already and there are exactly two sticks between them, either

paired or unpaired. When you pair two sticks, you move one to the position of other – you can choose which

one you move. Only the stick that is moved changes its position, all the other sticks remain at their previous

position.

Given 𝑁, determine if it is possible to pair all the sticks and if it is, output the pairing process. If there are

multiple solutions, output any solution.

Input

The first and only line contains one integer 𝑁 – number of sticks.

Output

If it is not possible to pair all the sticks, output −1. If it is possible, output the pairing process, one pairing

step per line. Format of each step is “𝑎 𝑏” (without quotation marks), which means that the stick at the

position 𝑎 is paired with the stick at the position 𝑏 and that the stick at 𝑎 is moved to 𝑏 (1 ≤ 𝑎, 𝑏 ≤ 𝑁).

Constraints

 1 ≤ 𝑁 ≤ 50

Example input Example output

5 -1

Example explanation

It is not possible to pair all the sticks. We can pair 4 sticks in different ways, but one stick would end up

without a pair. One way to pair 4 out of those 5 sticks would be

1 4

5 3

After the first step, stick at the position 1 is paired with the stick at the position 4 and moved to that position.

Notice that there are now two sticks between position 3 and 5. In the next step, stick at the position 5 is

paired with the stick at the position 3 and moved to that position. Stick at the position 2 is left without a pair.

Time and memory limit: 0.1s / 16MB

48 MDCS – Bubble Cup 2014

Solution and analysis:

Let’s make a few observations first.

If 𝑁 is odd, it is obvious that there is no solution because at least one stick would end up without a pair.

If 𝑁 is even, we can reduce the problem to 𝑁 − 2 sticks by pairing the fourth and first stick and moving the

fourth to the first position. We are then left with two sticks less, with the two paired sticks being at the

beginning of the array and having no effect in the further pairing process. That means that if the pairing of all

sticks is possible when 𝑁 equals some even number 𝐾, it is also possible when 𝑁 equals any even number

larger than 𝐾. Now we just need to find minimum such number.

We can see that it is impossible to pair all the sticks when 𝑁 equals 2, 4 or 6 by manually trying all the

possibilities (there aren’t many of them). We can also try to solve the problem when 𝑁 = 8 manually. It is

not hard to come up with the full pairing process for 𝑁 = 8, so we can conclude that there is a solution when

𝑁 is even and 𝑁 ≥ 8.

One solution when 𝑁 = 8 is to first pair 5𝑡ℎ and 2𝑛𝑑 stick, moving 5𝑡ℎ to the 2𝑛𝑑 position. Then, we can pair

3𝑟𝑑 and 7𝑡ℎ stick, moving the 3𝑟𝑑 to 7𝑡ℎ position, since there is exactly two unpaired sticks between them

after the first step. Third step should be pairing and moving the 8𝑡ℎ stick to the 6𝑡ℎ position (there is exactly

one pair between them from the second step). Final step is pairing the 1𝑠𝑡 and 4𝑡ℎ stick.

So, the final algorithm is to pair the first and the fourth unpaired stick from the beginning of the array in each

step, by moving the fourth unpaired stick to the position of the first, until we are left with exactly 8 unpaired

sticks. Then those 8 sticks can be paired as previously described. All of this can be done in linear time, so the

final algorithm has complexity 𝑂(𝑁).

49 MDCS – Bubble Cup 2014

Problem H: Vectors

Authors

Luka Milićević

Implementation and analysis

Luka Milićević

Aleksandar Ivanović

A set of 𝑚 vectors {𝑣1, 𝑣2, … , 𝑣𝑚} in ℝ𝑑 (the set of 𝑑-tuples of real numbers) is said to be linearly independent

if the only reals 𝜆1, 𝜆2, … , 𝜆𝑚that satisfy 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯ + 𝜆𝑚𝑣𝑚 = 0 are 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑚 = 0. For

example, in ℝ2 the set of vectors {(
1
0

) , (
0
1

)} is linearly independent. However, {(
1
0

) , (
0
1

) , (
1
1

)} is not since

1 (
1
0

) + 1 (
0
1

) + (−1) (
1
1

) = (
0
0

).

In this task, you are given 𝑛 vectors in ℝ𝑑, and every vector has some weight. Your job is to find a linearly

independent set of vectors with maximal sum of weights.

Input

The first line contains two integers 𝑑 and 𝑛. The next 𝑛 lines contain 𝑑 + 1 integers each, separated with one

empty space between any two integers. The first 𝑑 numbers in the line 𝑖 + 1 are coordinates of the 𝑖𝑡ℎ vector,

and the last number is its weight.

Output

The output should consist a single integer: the sum of weights of vectors in your set.

Constraints

 1 ≤ 𝑑 ≤ 200

 1 ≤ 𝑛 ≤ 500

 The coordinates of the vectors are integers in the range [−103, 103].

 The weights of the vectors are integers in the range [−106, 106].

Example input Example output

4 4
1 0 0 0 30
0 0 1 0 30
1 0 1 0 100
0 0 0 1 1

131

Time and memory limit: 0.5s / 16MB

Solution and analysis:

We claim that the greedy algorithm works, i.e. that it suffices to sort the vectors, start with an empty set of
vectors and then at each step add the heaviest vector to the set if the set remains linearly independent.

Observe the following basic lemma from linear algebra.

Lemma 1. Suppose that vectors {𝑣1, 𝑣2, … , 𝑣𝑛} are linearly independent, and that {𝑢1, 𝑢2, … , 𝑢𝑛+1} are also
linearly independent. Then we can find some 𝑘 such that {𝑣1, 𝑣2, … , 𝑣𝑛, 𝑢𝑘} is also linearly independent.

50 MDCS – Bubble Cup 2014

We postpone the proof for later, the fact above should at least be intuitively obvious.

Proof that the greedy algorithm is correct. We prove by induction on 𝑠 ≥ 1 that the greedy algorithm
produces a set of 𝑠 vectors of maximal weight. For 𝑠 = 1 this is clear, as we choose a non-zero vector of
maximal weight.

Suppose now that 𝑠 ≥ 2 and that the statement holds for smaller values of 𝑠. Suppose however that the
statement fails for 𝑠, that is, the greedy algorithm finds {𝑣1, 𝑣2, … , 𝑣𝑠}, but {𝑢1, 𝑢2, … , 𝑢𝑠} has higher weight.
Still, by induction hypothesis, {𝑣1, 𝑣2, … , 𝑣𝑠−1} is optimal for 𝑠 − 1. This means that any subset of 𝑠 − 1
elements of {𝑢1, 𝑢2, … , 𝑢𝑠} has weight at most that of {𝑣1, 𝑣2, … , 𝑣𝑠−1}, and in particular, 𝑣𝑠 has smaller
weight than any 𝑢𝑖. By Lemma 1 applied to {𝑣1, 𝑣2, … , 𝑣𝑠−1} and{𝑢1, 𝑢2, … , 𝑢𝑠}, we have some 𝑘 such that
{𝑣1, 𝑣2, … , 𝑣𝑠−1, 𝑢𝑘} is linearly independent, and 𝑢𝑘has higher weight than 𝑣𝑠, so it would have been added
to our set before 𝑣𝑠, which is contradiction. This finishes the proof that the algorithm works. □

Proof of Lemma 1. Suppose contrary, so every 𝑢𝑘 can be written is in the span 𝑉 of {𝑣1, 𝑣2, … , 𝑣𝑛}. But
{𝑢1, 𝑢2, … , 𝑢𝑛+1} are linearly independent in 𝑉 which contradicts Steinitz exchange lemma. (See
http://en.wikipedia.org/wiki/Steinitz_exchange_lemma). □

Finally, we may observe that a simple way to implement the algorithm above is to sort the vectors by weights
and put them as rows in a matrix in the sorted order. Then one pass of Gaussian elimination gives the solution,
by picking the non-zero rows. This gives an algorithm of time complexity 𝑂(𝑑𝑛2) and memory complexity
𝑂(𝑑𝑛).

http://en.wikipedia.org/wiki/Steinitz_exchange_lemma

51 MDCS – Bubble Cup 2014

Problem I: Queries on an array

Authors

Aleksandar Ivanović

Implementation and analysis

Aleksandar Ivanović

Petar Veličković

You are given an array 𝑎 of 𝑁 elements. Array 𝑎 is 0-indexed. There are two types of queries that you should

perform on the array.

 𝐼𝑁𝑉𝐸𝑅𝑇 𝑖 𝑗 𝑘: Invert the 𝑘𝑡ℎ bit on each element in the range [𝑎𝑖, 𝑎𝑗]

 𝑆𝑈𝑀 𝑖 𝑗: Output the sum of the elements in the range [𝑎𝑖 , 𝑎𝑗]

Note that 0𝑡ℎ bit is the least significant bit and 31𝑠𝑡 bit is the most significant bit.

Input

The first line contains one integer 𝑁 – size of the array. Second line contains 𝑁 integers that are initial values

of the elements in the array. Third line contains one integer 𝑄 – number of the queries. Following 𝑄 lines

contain one query per line.

Output

Output contains 𝑄𝑠𝑢𝑚 lines, where 𝑄𝑠𝑢𝑚 represents the number of 𝑆𝑈𝑀 queries, and each line contains the

answer to the corresponding query.

Constraints

 1 ≤ 𝑁 ≤ 100.000

 1 ≤ 𝑄 ≤ 100.000

 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 − 1

 0 ≤ 𝑘 ≤ 31

 Elements of the array are 32 bit unsigned integers.

Example input Example output

4
1 2 3 1
5
SUM 0 2
INVERT 0 2 0
SUM 0 2
INVERT 3 3 10
SUM 3 3

6
5
1025

Time and memory limit: 4s / 16MB

Solution and analysis:

Here we are faced with an interesting and relatively straightforward problem, assuming familiarity with the

required data structure. The obvious brute-force solution would involve manually updating each array

element upon an inversion command, and performing the summing up in a similar fashion. This has a worst-

52 MDCS – Bubble Cup 2014

case complexity of 𝑂(𝑁) per operation, which is too slow for the given query time. Clearly, we need to utilise

a more clever approach here.

A common pattern of thought when up against a problem involving dynamically updating an array and then

querying over its intervals is to try to get the complexity down to 𝑂(log 𝑁); one of the most common data

structures to consider for achieving this is called a segment tree, which we can use for this problem as well.

A segment tree is a binary tree constructed over an array (a more general version is constructed over a set of

points on the real number line) where each node is “responsible” for a certain subinterval of the array – the

root is responsible for the entire array, leaves are responsible for each of the individual elements, while nodes

in between are responsible for the union of the intervals held responsible by their children – the figure below

represents an example layout of the structure for an array of size 8, with the intervals noted in each node:

The operations of updating and querying a single element are clearly of logarithmic time complexity, as they

require recursively descending down the tree, halving the interval being considered in each step. Querying

over a range is also of logarithmic cost – if we query by aggregating the values stored in the minimal set of

nodes covering the entire range; the proof that there will always be 𝑂(log 𝑁) nodes in this minimal set is left

as an exercise to the reader. Updating a range requires us to be more clever; we can only update the minimal

set of nodes covering the range – but as we might need to propagate this to the nodes deeper in the tree, we

use a technique called lazy propagation, where we store pending updates in nodes and propagate them to

their children whenever they are accessed.

To see how a segment tree could be used for solving this problem, let us consider an easier variant: assume

we are only dealing with 1-bit values (as in, all members of the array are lesser than 2). This problem can

easily be solved by using a segment tree, having each node store the sum of the array values in the interval

it’s responsible for (i.e. each node’s value is equal to the sum of the values of its children). Once we have a

structure like this, querying for the sum of a range simply involves summing over the nodes in the minimal

set as discussed in the previous paragraph. Inversions are first performed by “inverting” all the nodes in the

minimal set, then propagating the operation to their children when necessary, and so on. “Inverting” a node

is simple: if a node is responsible for an interval of size 𝑙, and it had stored a sum of 𝑘 previously, then after

inverting that interval, the sum stored will become 𝑙 − 𝑘 (as all the 1s in the interval become 0s and vice

versa). Hence, we have successfully reached a logarithmic-time solution per operation for this version of the

problem.

To expand this to 𝑑-bit values, we just need to construct 𝑑 segment trees of 1-bit values as outlined in the

previous paragraph, each responsible for an individual bit of the integers. An inversion operation involves

updating the appropriate segment tree (given to us in the problem with the input parameter 𝑘). When

summing up, we can just add up all the powers individually with separate summations on each segment tree:

𝑆𝑈𝑀(𝑙, 𝑟) = ∑ 𝑠𝑒𝑔𝑇𝑟𝑒𝑒[𝑖]. 𝑆𝑈𝑀(𝑙, 𝑟)

𝑑−1

𝑖=0

∗ 2𝑖

53 MDCS – Bubble Cup 2014

This gives us an overall time complexity of 𝑂(log 𝑁) per invert operation and 𝑂(𝑑 log 𝑁) per summation –

overall the worst-case time complexity of the algorithm (when only performing sum queries) of 𝑂(𝑄 ⋅

𝑑 log 𝑁) and the space complexity is 𝑂(𝑑𝑁). As in this version of the problem we have fixed 𝑑 = 32, we can

ignore it from our analysis, giving us the required 𝑂(𝑄 log 𝑁) behaviour.

Another thing to note is that the query result may overflow a 32-bit integer, and as such, using a 64-bit type

(long long in C++/Int64 in Pascal) is necessary to completely solve this problem.

54 MDCS – Bubble Cup 2014

Qualifications

As previous years, the qualifications were split into two rounds, with ten problems in each round.
Challenge problems that were introduced last year were present this year as well. Non-challenge
problems were worth 1 point in the first round and 2 points in the second round. Challenge problem
in the first round was worth maximum of 4 points, while each of the two challenge problems in the
second round were worth maximum of 8 points.

The problems for both rounds were chosen from the publicly available archives at the Spoj site
(www.spoj.com).

This year, 92 teams managed to solve at least one problem from the qualifying rounds. The
competition has long exceeded its regional character, with teams from all over the world
participating in the qualifications. Teams that qualified for the finals were from Serbia, Croatia,
Bulgaria, Poland, Lithuania, United Kingdom and Ukraine.

Num Problem name ID Accepted solutions

01 Segment Tree 6578 37

02 TRIVIADOR 10328 93

03 Greens Land 10454 55

04 Chemistry 7692 53

05 Eight Directions Crossword 9857 80

06 Another understanding of Super Dice Game 2877 41

07 Snakes and Ladders Again 13092 51

08 Pythagorean triples (medium) 14542 84

09 Foxic Expressions 14975 65

10 [CH] Japan Crossword 316 69

Table 1. Statistics for Round 1

Num Problem name ID Accepted solutions

01 Digital Image Recognition 3360 17

02 FLING1 13884 41

03 One Instruction Computer Simulator 2023 30

04 Fight with functions 3902 8

05 Soccer Choreography 850 4

06 Yet Another Assignment Problem 6819 30

07 Illumination 2661 3

08 Moebius 3647 Not solved

09 [CH] Guess The Number With Lies v2 17308 50

10 [CH] Colour Brick Game 18073 31

Table 2. Statistics for Round 2

We continued with our tradition that the contestants are the ones who are writing the solutions for
qualifications problems. You should note that these solutions are not official - we cannot guarantee
that all of them are accurate in general. (Still, a correct implementation should pass all of the test
cases on the Spoj site.)

The organizers would like to express their gratitude to qualification task authors and everyone
who participated in writing the solutions.

http://www.spoj.com/

55 MDCS – Bubble Cup 2014

Problem R1 01: Segment Tree (ID: 6578)

Time Limit: 1-3.5 second

Memory Limit: 256 MB

It was Arbor Day. Alice implemented an RB-tree, Bob composed a segment tree, I made a binary tree - we all
have a bright outlook.

Lambda is always making mistakes while implementing segment trees (See his history of submissions). He
then decides to draw a "segment tree". He puts 𝑛 points on a plane, link certain pairs of them to form
segments and all the segments form a tree. As a normal tree, it satisfies the following conditions:

1. Consider points as vertices, segments as edges, it forms a rooted tree.
2. Each node 𝑢 is strictly higher than its parent, namely 𝑦𝑢 > 𝑦𝑝𝑎𝑟𝑒𝑛𝑡_𝑜𝑓_𝑢.

3. Segments may only intersect on their endpoints.

Lambda wants to minimize the total length of segments. The tree can be rotated to satisfy above conditions.

Input

First line of input contains single integer 𝑛 (1 ≤ 𝑛 ≤ 500). Next 𝑛 lines each contain two integers
𝑥𝑖, 𝑦𝑖 denoting the coordinate of 𝑖𝑡ℎ point (0 ≤ 𝑥𝑖, 𝑦𝑖 ≤ 1000). Points are distinct.

Output

The one and only line contains a real number representing the minimum length. Your answer must be
rounded up to 4 digits after the decimal point.
Sample

input output

6
0 1
1 0
2 1
4 1
5 0
6 1

7.6569

Solution:

Prerequisites: stack, two pointers.

The first naive thought helps to understand that we can rotate points about the point (0, 0) at all possible

angles and then to calculate the minimum length of the tree. The length of the tree is the sum of lengths of

edges between the vertex and its parent. For each vertex pick the parent which is higher and is the nearest

from all the possible candidates. There must be exactly one vertex with no parent at all, if there is more or

less, then it is not possible to get a tree.

Additionally, it is easy to see that in this way of connecting vertices there can be no intersections. Because if

there are vertices 𝑣1 with the parent 𝑝1 and 𝑣2 with the parent 𝑝2 and edges (𝑣1, 𝑝1) and (𝑣2, 𝑝2) intersect,

then we can swap parents and receive a better answer.

There is a problem in trying all possible angles - their number is infinite. However, we need to consider only

𝑂(𝑛2) number of angles, because there are (𝑛
2

) vectors from one vertex to the other. When we try an angle

there will be a vector which, when rotated, has the positive 𝑦 coordinate and it lies at the smallest angle with

the 𝑂𝑋 axis. So we can go through each vector and assume that it lies at the smallest angle with the 𝑂𝑋 axis

56 MDCS – Bubble Cup 2014

(it is best to assume that it makes as small as possible positive angle with the 𝑂𝑋 axis). Then we know which

vectors we can consider and to calculate one possible length of a tree.

Firstly, let's sort all possible vectors (from one vertex to all others) by their pointing direction.

There is a structure of the vector:

struct vec {

 int x, y;

 int typ;

 int ind;

 vec(int gx = 0, int gy = 0, int own = 0) {

 x = gx; y = gy;

 if (y == 0) typ = x > 0? 0: 4;

 else if (x == 0) typ = y > 0? 2: 6;

 else if (x > 0 && y > 0) typ = 1;

 else if (x < 0 && y > 0) typ = 3;

 else if (x < 0 && y < 0) typ = 5;

 else if (x > 0 && y < 0) typ = 7;

 else assert(false);

 ind = own;

 }

};

The vector has coordinates (x, y) and has its type by the place which it is in. Notice, that types makes it easy

to compare vectors by their orientation. The attribute "𝑖𝑛𝑑" shows which vertex is a beginning point for the

vector. Let's move each vector to the (0, 0) and to sort them with this function:

bool Less(const vec &a, const vec &b)

{

 if (a.typ != b.typ) return a.typ < b.typ;

 int cr = cross(a.x, a.y, b.x, b.y);

 if (cr != 0) return cr > 0;

 return a.ind < b.ind;

}

To check if the vectors make the same angle with the 𝑂𝑋 axis we use the function:

bool Equal(const vec &a, const vec &b)

{

 return !Less(a, b) && !Less(b, a);

}

We can compare vectors by their type, and if their types are equal we can use the cross product. Because the

positive sign of the cross product shows that the first vector is to the right of the second one and vice versa.

The solution uses these functions with vectors:

int cross(int ax, int ay, int bx, int by) { return ax * by - ay * bx; }

ld len(ld ax, ld ay) { return sqrt(ax * ax + ay * ay); }

When we have sorted the vectors we can apply the "two pointers" strategy to quickly find an interval of

vectors which point upwards.

Let's introduce the operations made when we go with the right pointer to the right and when we go with the

left pointer to the right. When we go with the right pointer - we add a vector to our data structure, when we

go with the left pointer we remove a vector from our data structure.

57 MDCS – Bubble Cup 2014

Each vertex has its own stack where its outgoing vectors are ordered by the length (from the lowest to the

greatest). The stack is implemented as an array with two pointers: "𝑆𝑙" - the left pointer and "𝑆𝑟" - the right

pointer. The first elements of each stack are added to get the current length of a tree - "𝑐𝑢𝑟", also the number

of vertices which has at least one element is counted - variable "𝑐𝑛𝑡". If 𝑐𝑛𝑡 = 𝑛 − 1, where 𝑛 is the

number of all vertices, then we have a new candidate. Let's pick the candidate with the minimal length. It is

an answer to the given task.

The operations with stacks are handled with these functions:

// Insert(vertex, vector_index)

void Insert(int v, int ind)

{

 while (Sl[v] < Sr[v] && lens[S[v][Sr[v] - 1]] >= lens[ind]) {

 if (Sr[v] - Sl[v] == 1) { cur -= lens[S[v][Sr[v] - 1]]; cnt--;

}

 Sr[v]--;

 }

 if (Sl[v] == Sr[v]) { cur += lens[ind]; cnt++; }

 S[v][Sr[v]++] = ind;

}

// Erase(vertex, vector_index)

void Erase(int v, int ind)

{

 if (Sl[v] < Sr[v] && S[v][Sl[v]] == ind) {

 cur -= lens[S[v][Sl[v]]]; cnt--; Sl[v]++;

 if (Sl[v] < Sr[v]) { cur += lens[S[v][Sl[v]]]; cnt++; }

 }

}

There is a small trick in "Erase" function, we only need to check and to delete the first element. Because we

delete the leftmost element, if it had been greater than the smallest one, it would have been already deleted

when inserting other elements after it.

The main function which initializes the data and implements the "two pointers" strategy:

int main()

{

 scanf("%d", &n);

 if (n == 1) { printf("0.0000\n"); return 0; }

 for (int i = 0; i < n; i++)

 scanf("%d %d", &X[i], &Y[i]);

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) if (j != i)

 vecs[vlen++] = vec(X[j] - X[i], Y[j] - Y[i], i);

 }

 sort(vecs, vecs + vlen, Less);

 for (int i = 0; i < vlen; i++)

 lens[i] = len(vecs[i].x, vecs[i].y);

 int pnt = 0;

58 MDCS – Bubble Cup 2014

for (int i = 0; i < vlen; i++) {

 while (Equal(vecs[i], vecs[pnt]) || cross(vecs[i].x, vecs[i].y,

vecs[pnt].x, vecs[pnt].y) > 0) {

 Insert(vecs[pnt].ind, pnt); pnt = (pnt + 1) % vlen;

 }

 if (cnt == n - 1) res = min(res, cur);

 Erase(vecs[i].ind, i);

 }

 cout << fixed << setprecision(4) << res + eps << endl;

 return 0;

}

The complexity of the algorithm is 𝑂(𝑛2).

Added by: Lox
Solution by:

Name: Karolis Kusas
School: Kaunas University of Technology

E-mail: karolis.kusas@gmail.com

59 MDCS – Bubble Cup 2014

Problem R1 02: TRIVIADOR (ID: 10328)

Time Limit: 5.0 second

Memory Limit: 256 MB

Triviador is a war between two Kings. A king can attack an enemy region at each step. When a king attacks a
region, he conquers all the enemy regions connected to it (not just the immediate ones). All the 8 regions
around any region are connected to it. The kings get alternate chances to attack. King1 gets the chance to
attack first. Assume both kings are intelligent and find who will conquer the whole territory at the end of the
war. It can be proved that one of the Kings can win for sure if he is intelligent!
Input

The first line is an integer 𝑡(1 ≤ 𝑡 ≤ 100), denotes the number of test cases. In each test case the first line
consists of two integers 𝑚 and 𝑛 (1 ≤ 𝑚, 𝑛 ≤ 10) denoting the number of rows and columns in the territory
(each cell is a region). Then the description of each cell follows. Every region contains a character ‘𝑋’ if it is
owned by King1 or ‘𝑂’ otherwise.

Output

For each test case output the result in a single line ‘X’ if King1 wins or ‘O’ if King2 wins.

Sample

input output

3
3 3
XOX
XXX
XOX
3 5
XXXXX
XXXOO
XXXOO
4 4
XXXX
OOOO
XXXX
OOOO

O
X
X

Solution:

First of all, let us define a component. A component is a set of same-colored regions such that when one of
them is attacked by a king, all of them are conquered.

It is obvious that, unless one of the kings has won, each component has at least one adjacent component (a
neighbor). In case of a component having exactly one neighbor, we call it simple.

It is also fairly easy to notice that a non-simple¬ component with 𝐾 neighbors divides the grid into 𝐾 sections
– sets of components that are separated from all other components by either a wall, or a single component.

It will here be proven that the king that wins the game will be the king with more components at the start of
the game, or, in case of a tie, the first king to make a move.

We will try to prove that if a king has a greater or equal number of components than his opponent, after both
of them make move, the former one will still have a greater or equal number of components. So, if King1 has
𝐶1 components, and King2 has 𝐶2 components, if both of them play optimally, at the start of every move
that king1 is supposed to play, he will be able to maintain his advantage (𝐶1 ≥ 𝐶2), or will NOT be able to
negate his opponent’s advantage (𝐶1 < 𝐶2).

60 MDCS – Bubble Cup 2014

Suppose King1 makes a move. If King2 has a simple component, by conquering that component, King1 will
not change the number of his components, and he will decrease the number of King2’s components by 1.
Thus, he will maintain his advantage, since king2 can only reduce the difference of 𝐶1 and 𝐶2 (in his
advantage, of course) by at most one.

In case of King2 not having a simple component, let’s pick a random component of his – name it
𝑇ℎ𝑒𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒. If 𝑇ℎ𝑒𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒 has 𝐾 neighbors (𝐾 > 1) , it divides the grid into 𝐾 sections. Inside each
of these sections, King1 has at least one component more than King2. This is easily proven recursively, since
either the section consists of one simple component belonging to King1, or King2 has a component in that
section, dividing it into further subsections, for which the same rule can apply. Thus, 𝐶1 has at least 𝐾 − 1
components more than 𝐶2 (at least one for each section and −1 for 𝑇ℎ𝑒𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒).

If King1 conquers 𝑇ℎ𝑒𝐶ℎ𝑜𝑠𝑒𝑛𝑂𝑛𝑒, the number of his components will decrease by 𝐾 − 1, since he will merge
his 𝐾 components into a single one, and 𝐶2 will be decreased by 1. Thus, no matter which component King1
picks (as long as King2 has no simple components), he will still have at least 1 component more than his
opponent (𝐶1 − (𝐾 − 1) > 𝐶2 − 1).

As said before, no matter what move King2 plays, he will not end up having more components, since before
his move King1 had strictly more components than him.

This proves that if one of the kings has a greater or equal number of components at the start of his turn, he
will maintain his advantage until the start of his next turn. The process repeats until the losing king has no
components remaining.

Since we need to count the number of components belonging to each king, we can simply use BFS for this.
The complexity is 𝑂(𝑚 ∗ 𝑛), where 𝑚 and 𝑛 are the numbers of rows and columns, respectively, so this
solution is quite easy to code, although relatively difficult to prove.

Added by: cegprakash
Solution by:

Name: Stefan Velja
School: Gimnazija Jovan Jovanović Zmaj
E-mail: stefanvelja96@gmail.com

61 MDCS – Bubble Cup 2014

Problem R1 03: Greens Land (ID: 10454)

Time Limit: 2.0 second

Memory Limit: 256 MB

Mr. Green has a large portion of land divided into square units that are either field or lake areas. He wants

to fence a rectangular portion of his lands to use for livestock. The lake areas have a very soft soil and any

fence built near those areas have a chance to fall (and then the animals could escape), so no fence should be

built near a lake area.

Mr. Green wants to know of how many ways he can fence a rectangular area of his lands without any portion

of the fence having a common border with a lake area. In the example above, for a 3x3 land with a lake area

in the center, we have 5 possibilities of fence.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test case: One line
with a integer 𝑁 (1 ≤ 𝑁 ≤ 300): the size of the land (𝑁 𝑥𝑁). 𝑁 lines, each with 𝑁 characters. Each
character is either ‘. ’ or ‘𝑋’. The 𝑗 − 𝑡ℎ character on the 𝑖 − 𝑡ℎ line is a ‘𝑋’ if position (𝑖, 𝑗) is a lake area, and
‘. ’ if it is a field area.

Output

For each test case output a line with the number of different valid ways wich Mr. Green can fence his lands.

Sample

input output

3
3
...
.X.
...
3
X..
...
X..
6
......
......
......
......
......
......

5
8
441

62 MDCS – Bubble Cup 2014

Solution:

We’re looking for number of rectangular areas such that we can surround them with fence that does not

have common border with lake area. Row 𝑟 is good to be top side of rectangle if we can build fence between

row 𝑟 − 1 and row 𝑟, and it's good to be bottom side of rectangle if we can build fence between row 𝑟 and

row 𝑟 + 1. Column 𝑐 is good to be left side of rectangle if we can build fence between column 𝑐 − 1 and

column c, and similar with the right side.

*Assuming that top left field is (0, 0) and bottom right (𝑛 − 1, 𝑛 − 1)

Fix two opposite sides of rectangle, we'll fix top and bottom. Now, for each column we want to know whether

that column is good to be left and/or right side of rectangle with fixed top and bottom sides. We need fast

way to do this.

Column 𝑐 is good to be left side if there is no lake area in column 𝑐 − 1 from fixed top to fixed bottom row

(including them) and same for column 𝑐. It also similar for right side, we need all field areas in column 𝑐 and

column 𝑐 + 1.

Let 𝑑𝑝[𝑖][𝑗] be number of lake areas in column 𝑗 from row 0 to row 𝑖 (including them). We can calculate this

matrix at the beginning using simple rules:

- if cell (𝑖, 𝑗) is lake area then 𝑑𝑝[𝑖][𝑗] is equal 𝑑𝑝[𝑖 − 1][𝑗] + 1

- otherwise 𝑑𝑝[𝑖][𝑗] is equal 𝑑𝑝[𝑖 − 1][𝑗]

Now, we can simply check if 𝑑𝑝[𝑑𝑜𝑤𝑛][𝑐] − 𝑑𝑝[𝑢𝑝 − 1][𝑐] is 0 and we know that in column c from row

up to row down there is no lake areas. Later, when we say check if column is good to be left/right side, it

means use 𝑑𝑝 matrix to check if corresponding two differences are 0.

Lets get back to the solution. After fixing top and bottom side, say we fixed 𝑥𝑡𝑜𝑝 and 𝑥𝑏𝑜𝑡𝑡𝑜𝑚, iterate through

columns from left to right. When on column 𝑐 follow next steps:

- Check if cells (𝑥𝑡𝑜𝑝 − 1, 𝑐) and (𝑥𝑡𝑜𝑝, 𝑐) are field ares. If not, this means that we can not use any of

previous columns nor column 𝑐 to be left side, so just reset some counter, for example

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓_𝑙𝑒𝑓𝑡_𝑠𝑖𝑑𝑒𝑠 to 0 and continue to column 𝑐 + 1. Do similar things for cells (𝑥𝑏𝑜𝑡𝑡𝑜𝑚, 𝑐) and

(𝑥𝑏𝑜𝑡𝑡𝑜𝑚 + 1, 𝑐).

- If all four cells are field areas, we can use 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓_𝑙𝑒𝑓𝑡_𝑠𝑖𝑑𝑒𝑠 as number of good columns to be left

side of our rectangle. Additionally, check if column 𝑐 is good to be left side of our rectangle (one

column can be both, left and right side) and if it can increase number_of_left_sides by 1.

- Finally, check if column 𝑐 is good to be right side of our rectangle. And if it is, add

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓_𝑙𝑒𝑓𝑡_𝑠𝑖𝑑𝑒𝑠to the solution. Otherwise, continue to column 𝑐 + 1 (do not reset

counter 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓_𝑙𝑒𝑓𝑡_𝑠𝑖𝑑𝑒𝑠).

Time complexity of this solution is 𝑂(𝑛3) where 𝑛 is size of input matrix. Memory complexity is 𝑂(𝑛2).

Added by: Paulo Costa
Solution by:

Name: Marko Baković
School: School of Computing, Union University, Belgrade, Serbia
 Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
E-mail: markobakovic95@gmail.com

63 MDCS – Bubble Cup 2014

Problem R1 04: Chemistry (ID: 7692)

Time Limit: 60.0 second

Memory Limit: 256 MB

The story started some 5’000 years ago in Ancient Egypt, was continued by the Greeks and Arabs, reached
France, Europe, and finally conquered the world. The studies on the compositions of waters, the humans’
greed for purified materials, millions of experiments and many brilliant minds made chemistry what it is
today: No more the quest of the Philosopher’s stone, but the study of matter and the changes it undergoes.

There remain nevertheless still groups of stout-hearted followers of ancient believes, so-called alchemist.
Keeping their research top-secret, they meet once a year for a conference where they share their recent
findings. This year’s location is Lausanne and Extremely Purified Fluorescent Liquids (EPFL) is the topic. The
idea is that the chemists brew together some new EPFLs. As we speak about state of the art EPFLs, it is
necessary that certain chemists put their very specific knowledge together. Thus for a certain EPFL 𝐸1, the
presence of chemists 𝐶1, 𝐶2 and 𝐶3 may be required. For another 𝐸2, chemists 𝐶1 and 𝐶4 might be necessary.

 Although chemists are generally very patient people, as their reactions might take long times, they get very
impatient if they are to observe experiments in which they are not involved. As an example, chemist 𝐶4 would
go crazy if he had to assist to the brewage of 𝐸1. To ensure a pleasant stay in Lausanne to every chemist, you
are to arrange their departure and arrival dates so that each chemist is available whenever his knowledge is
required, but is not in Lausanne when other EPFLs are created.

To this purpose, you are given a schedule with ones and zeros. Each column stands for one EPFL, each row for
one chemist. There is a 1 at position (𝐶𝑖, 𝐸𝑖) if chemist 𝐶𝑖 is needed for EPFL 𝐸𝑖, and a zero otherwise. Your
task boils now down on rearranging the columns in a way that all ones are consecutive in every line. For
traditional reasons, the organizers’ EPFL is always brewed first and corresponds to the first column of the
input schedule (𝐸1).

Input

The input consists of several test-cases separated by an empty line. Each test-case starts with the number of
chemists 𝐶 (1 ≤ 𝐶 ≤ 400), followed by the number of EPFLs 𝐸 (1 ≤ 𝐸 ≤ 400). Then follow 𝐶 lines of 𝐸
characters, ‘1’ or ‘0’. You may assume that there exists exactly one order of EPFLs (initiated by 𝐸1) that meets
the above constraints. Input terminates on a test-case with 𝐶 = 𝐸 = 0, which must not be processed.

Output

Print each output on a line by itself, which holds 𝐸 numbers, corresponding to the initial position in the
planning, arranged such that all chemists are available when necessary and away from Lausanne otherwise.
(the first number must always be 1 as a tribute to the host).

64 MDCS – Bubble Cup 2014

Sample

input output

6 5
00010
01000
10101
10100
00011
00101
0 0

1 3 5 4 2

Solution:

This is simple graph theory problem. Let’s represent EPFLs as nodes in graph. Two nodes are connected by

edge if there is a chemist which attends both of their corresponding EPFLs. Number of edges between two

nodes is the same as the number of chemists attending their corresponding EPFLs. Degree of node is the

number of different nodes adjacent to it. The algorithm which solves this problem is very simple:

Push the first node on queue

While queue is not empty

Current node is the first node in queue

Mark current node as visited

Append current node to the solution

Find unvisited nodes with maximal number of edges in common with current node

If there is more than one such node

Choose one with minimal degree

If there is only one such node

Push it on queue

If there is an unvisited node append it to the solution

At the beginning we push the first element on queue because of the task statement. In every step of while
loop current node is being marked as visited and appended to the solution. After that, the next node is chosen
as the node with maximum number of edges in common with current node. This is because one node have
more or equal edges in common with its neighbor node (in final arrangement) than with other nodes. If there
are more nodes with maximum number of edges in common with current node, then it is easy to show that
we should choose the one with minimum degree. At the end of the while loop there can be only one unvisited
node and we put it on the end.

Added by: Christian Kauth
Solution by:

Name: Lazar Milenković
School: School of Computing

E-mail: milenkovic.lazar@gmail.com

65 MDCS – Bubble Cup 2014

Problem R1 05: Eight Directions Crossword (ID: 9857)

Time Limit: 1.0-4.0 second

Memory Limit: 256 MB

What is an Eight Directions Crossword? It's a filled crossword in which all the words are hidden in eight
directions (up, down, left and right and also up-left, down-right etc.) You have to find these hidden words in
each crossword.

Đuro has made an 𝑁 𝑥 𝑁 eight-directions-crossword. His crossword is a bit strange: you are given only one
word and you have to find it in a crossword. To make things more difficult, you can skip some letters in the
crossword while looking for the given word. More precisely, the given word is the subsequence of not
necessarily consecutive letters in a row, column or a diagonal of the crossword in one of the eight directions.

Now you discover that, under these conditions, you can read the given word in the crossword in multiple
ways. How many?

Input

In the first line of the input there is an integer 𝑁 (2 ≤ 𝑁 ≤ 1000), the crossword dimension, followed by
space and the given word you are to find. This word has 2 − 10 letters.

𝑁 lines follow, representing the crossword. All letters in the crossword and in the given word are small
letters of the English alphabet.

Output

Print the required number of ways. (This number will fit into 𝑖𝑛𝑡64 in Pascal or 𝑙𝑜𝑛𝑔 𝑙𝑜𝑛𝑔 in 𝐶/𝐶 + +)

Sample

input output

8 silba
siolobba
oooaoooo
oooboooo
aooooooo
oboloooo
oolooooo
oooioooo
ooossooo

4

Solution:

This was one of the easiest problems in this year's BubbleCup qulification rounds.

Let's see how to solve this task on one dimensional crossword. This is well known dynamic programming task.

For each position 𝑖 in one dimensional crossword we need to calculate number of ways to match first j letters

in given word. We store that in 𝑑𝑝[𝑖][𝑗] and final solution is stored in

𝑑𝑝[𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠𝑤𝑜𝑟𝑑][𝑙𝑒𝑔𝑡ℎ 𝑜𝑓 𝑔𝑖𝑣𝑒𝑛 𝑤𝑜𝑟𝑑].

Transitions are following:

- 𝑑𝑝[𝑖][𝑗] = 𝑑𝑝[𝑖][𝑗] + 𝑑𝑝[𝑖 − 1][𝑗] // we skip 𝑖𝑡ℎ letter in crossword

- 𝑖𝑓 (𝑎[𝑖] == 𝑠[𝑗]) 𝑑𝑝[𝑖][𝑗] = 𝑑𝑝[𝑖][𝑗] + 𝑑𝑝[𝑖 − 1][𝑗 − 1] // the letter in crossword is same as the

next letter in given word that we need to match so we match 𝑗𝑡ℎ letter

Now we get back to the original problem. We notice that solution to original problem on two dimensional

crossword is sum of solutions to a lot of one dimensional problems. We can implement this task nicely by

66 MDCS – Bubble Cup 2014

writing only one function solve that returns solution to one dimensional problem given starting row of original

matrix, starting column of original matrix and direction. We also have two arrays 𝑑𝑒𝑙𝑡𝑎_𝑟𝑜𝑤 and

𝑑𝑒𝑙𝑡𝑎_𝑐𝑜𝑙𝑢𝑚𝑛. 𝐷𝑒𝑙𝑡𝑎_𝑟𝑜𝑤 and 𝑑𝑒𝑙𝑡𝑎_𝑐𝑜𝑙𝑢𝑚𝑛 help us determine which cell in two dimensional crossword

is next cell to be considered in one dimensional problem we are solving at the moment. For example if

direction 0 = 𝑑𝑜𝑤𝑛 then 𝑑𝑒𝑙𝑡𝑎_𝑟𝑜𝑤[0] = 1 and 𝑑𝑒𝑙𝑡𝑎_𝑐𝑜𝑙𝑢𝑚𝑛[0] = 0. We easily get new row and

column by adding 𝑑𝑒𝑙𝑡𝑎_𝑟𝑜𝑤 and 𝑑𝑒𝑙𝑡𝑎_𝑐𝑜𝑙𝑢𝑚𝑛 to current row and column. By implementing function solve

in this way we can call it by any direction and any starting position. For direction down we call solve with

every cell of first row, for direction right with every cell in first column, for down-right with every cell in first

column and with every cell in first row and so on. For every direction we call 𝑂(𝑛) times function solve. Time

complexity of function solve is 𝑂(𝑛 ∗ 𝑙), 𝑙 = length of given word. Overall time complexity is 𝑂(𝑛 ∗ 𝑛 ∗

 𝑙) = 𝑂(𝑙 ∗ 𝑛2).

Added by: Adrian Satja Kurdija
Solution by:

Name: Mislav Bradač
School: V. Gimnazija

E-mail: mislav.bradac@gmail.com

67 MDCS – Bubble Cup 2014

Problem R1 06: Another understanding of Super Dice Game (ID: 2877)

Time Limit: 2.0-4.0second

Memory Limit: 256 MB

When we were trying to solve the problem SDGAME, we got a misunderstanding of it. We didn't get AC until
we were told the original meaning. But we think our kind of understanding is also interesting and is worthy
of doing. So enjoy the problem.

Alice and Bob are playing a game. The game consists of a circular track of 𝑀 (2 ≤ 𝑀 ≤ 1,000,000,000) cells
labeled 0 through 𝑀 − 1. Initially both players start at cell 0. The game progresses by having each player
take turns rolling one of 𝑁 (1 ≤ 𝑁 ≤ 10,000) ′𝑠𝑢𝑝𝑒𝑟 − 𝑑𝑖𝑐𝑒′ labeled 0 through 𝑁 − 1. The actual
mechanics of the 'super-dice' is not very well understood; however, it is known that they will only ever turn
up a number between 0 and 1,000,000,000 inclusive after a roll. After rolling the super-dice the number of
spaces a player moves is determined by the product of a contiguous subsequence of the values shown on the
dice (which are available)(There are special rules for determining the range that vary each move that will not
be discussed).If all the values are unavailable, the player moves one space. Iff the number on the dice is more
than 1,000,000,000 or less than 0, the dice is unavailable.

To make matters more complicated, after any turn if Alice and Bob land on the same cell the value shown on
all dice(neither available nor unavailable) is multiplied by the label of the cell they are on. Note in this way it
is possible for some dice to show numbers greater than 1,000,000,000.

After playing this game for a while, Alice and Bob have grown frustrated because the calculations became too
difficult. Given the series of 𝑅 (1 ≤ 𝑅 ≤ 100,000) dice rolls and ranges, help Alice and Bob determine their
position after each move. Assume that all dices start out showing 1 and all dices are available.

Input

The first line contains 𝑅, 𝑁 and 𝑀 each separated by a space. 𝑅 lines follow. Each line will contain 𝑑 𝑣 𝑎 𝑏
separated by a space. 𝑑 indicates the label of the dice rolled. 𝑣 indicates the value shown on the dice. 𝑎 and
𝑏 indicate the range of dice used to determine the move distance.

Output

R lines containing the position of the player that just rolled after their roll.

Sample

input output
6 4 4

0 1000000000 1 1

1 999999998 1 1

2 500000000 3 3

0 1 2 2

3 1 0 3

0 6 0 3

1

2

2

2

0

0

Solution:

Prerequisites: set, segment tree.

The segment tree was used to solve this task. You can read about it here:
http://en.wikipedia.org/wiki/Segment_tree Basically, it includes these operations (used in this task):

- void Create(int vertex, int leftindex, int rightindex) - initializes the segment tree.
- void Update(int vertex, int leftindex, int rightindex, int modifiedindex) - modifies the value of the

required member.
- int Get(int vertex, int leftindex, int rightindex, int queryleftindex, int queryrightindex) - the value

http://en.wikipedia.org/wiki/Segment_tree

68 MDCS – Bubble Cup 2014

obtained in the given interval.
- void Union(int vertex) - the information to "vertex" is written from its children.
- void Down(int vertex) - the information from "vertex" is written to its children.

The following data is stored in each interval:

- the result of multiplication of all available members in this interval; (1)
- the constant of multiplication with which members of smaller intervals should be multiplied to get

the current correct result; (2)
- the number of available (defined in the task) members in the interval. (3)

This segment tree can quickly update one member and to get the result of multiplication in the given interval
(each query is done in 𝑂(𝑙𝑜𝑔 𝑛) time).

However, it cannot handle situations when members become unavailable or becomes available again. When
these situations arise?

Members become unavailable: when multiplied by the positive constant, they become greater than
1,000,000,000. Furthermore, we multiply all members then. How to list these elements quickly? Well, if we
keep them sorted from the greatest to the lowest, we can take some amount of members from beginning
until they don't exceed 1,000,000,000 when multiplied. We change these members to infinity and update
them in the segment tree. Also we don't need to multiply other members one by one. We can have a constant
of multiplication and to multiply it. Notice, that to multiply all members in the segment tree we need to
modify only "𝑣𝑒𝑟𝑡𝑒𝑥" = 1.

Members become available: only multiplying by 0 can do that. When multiplying all members by 0, we
change all infinity members to 0 and we change all available members which are positive to 0. It is done with
looping through all members.

You may wonder why the solution is effective while it can go through all members each query. This
assumption is not right. When members become unavailable, only multiplying by 0 can change that
(otherwise, we may ignore them). When we multiply by 0, we may ignore the members until they are
modified one by one with each query (because multiplication cannot change members equal to 0).

So three sets are maintained: 𝑛𝑖𝑙, 𝑖𝑛𝑓 and 𝑆 (with available members sorted from the greatest to the lowest).

Also, notice, that we can perform calculations modulo 𝑚, so ints are usually enough and long longs are used
to avoid overflows in expressions.

Data types and constants:

typedef long long ll;

typedef pair <int, int> ii;

const int Maxn = 10005; // Maximum number of 'super-dice'

const int Maxm = 65536; // Maximum number of vertices in the segment

tree

const ll Inf = 1000000001; // Infinity (defined in the task)

// fraction + index of the member

struct frac {

 int a, b, ind;

 frac(int a = 0, int b = 0, int ind = 0): a(a), b(b), ind(ind) { }

 bool operator <(const frac &f) const { // Bigger gets to the

beginning

 ll gota = ll(a) * f.b, gotb = ll(b) * f.a;

 if (gota != gotb) return gota > gotb;

 return ind < f.ind;

 }

};

69 MDCS – Bubble Cup 2014

// the node of the segment tree

struct node {

 int res, cnt; // described above (1), (3)

 int flag; // described above (2)

 node(int res = 0, int cnt = 0, int flag = 0): res(res), cnt(cnt),

flag(flag) { }

};

Required variables:

int r, n, m;

ii has[Maxn]; // The fraction of the member (actual value is mult

/ has[i].second * has[i].first)

ll mult; // the constant of multiplication (described above)

set <frac> S; // described above

set <int> nil, inf; // described above

node st[Maxm]; // the segment tree

Additionally, it is important to know how to multiply all available members (number of which is "cnt") in the
interval by the constant "C". The answer is current_result * Power(C, cnt) % m, where Power(C, cnt) = 𝐶𝑐𝑛𝑡.
𝑎𝑝 (in 𝑂(𝑙𝑜𝑔 𝑝) time) is calculated this way:

int Power(int a, int p)

{

 if (a == 0) return p == 0? 1: 0;

 int res = 1;

 while (p) {

 if (p & 1) res = ll(res) * a % m;

 p >>= 1; a = ll(a) * a % m;

 }

 return res;

}

Operations with the segment tree:

void Create(int v, int l, int r)

{

 st[v] = node(1, r - l + 1, 1);

 if (l < r) {

 int m = l + r >> 1;

 Create(2 * v, l, m); Create(2 * v + 1, m + 1, r);

 }

}

void Down(int v)

{

 if (st[v].flag != 1) {

 if (st[2 * v].cnt) {

 st[2 * v].res = ll(st[2 * v].res) * Power(st[v].flag, st[2

* v].cnt) % m;

 st[2 * v].flag = ll(st[2 * v].flag) * st[v].flag % m;

 }

 if (st[2 * v + 1].cnt) {

 st[2 * v + 1].res = ll(st[2 * v + 1].res) *

Power(st[v].flag, st[2 * v + 1].cnt) % m;

 st[2 * v + 1].flag = ll(st[2 * v + 1].flag) * st[v].flag

% m;

70 MDCS – Bubble Cup 2014

 }

 st[v].flag = 1;

 }

}

void Union(int v)

{

 st[v].res = ll(st[2 * v].res) * st[2 * v + 1].res % m;

 st[v].cnt = st[2 * v].cnt + st[2 * v + 1].cnt;

}

void Update(int v, int l, int r, int x)

{

 if (l == r) st[v] = has[l].first >= Inf? node(1, 0, 1): node(ll(mult)

/ has[l].second * has[l].first % m, 1, 1);

 else {

 int mid = l + r >> 1;

 Down(v);

 if (x <= mid) Update(2 * v, l, mid, x);

 else Update(2 * v + 1, mid + 1, r, x);

 Union(v);

 }

}

int Get(int v, int l, int r, int a, int b)

{

 if (l == a && r == b) return st[v].res;

 else {

 int mid = l + r >> 1;

 Down(v);

 int res = 1;

 if (a <= mid) res = ll(res) * Get(2 * v, l, mid, a, min(mid,

b)) % m;

 if (mid + 1 <= b) res = ll(res) * Get(2 * v + 1, mid + 1, r,

max(mid + 1, a), b) % m;

 return res;

 }

}

The initialization of the data structures:

void Init()

{

 for (int i = 0; i < n; i++) {

 has[i] = ii(1, 1); // 1/1 = 1

 S.insert(frac(1, 1, i));

 }

 mult = 1; // we can say that all members were

multiplied by 1

 Create(1, 0, n - 1);

}

The function which changes the value of one dice:

void Change(int d, int v)

{

 // deleting

71 MDCS – Bubble Cup 2014

 if (has[d].first >= Inf) inf.erase(d);

 else if (has[d].first == 0) nil.erase(d);

 else S.erase(frac(has[d].first, has[d].second, d));

 // inserting

 has[d] = ii(v, mult);

 if (v) S.insert(frac(v, mult, d));

 else nil.insert(d);

 Update(1, 0, n - 1, d);

}

The function which multiplies all the numbers by the constant "mmult":
void Multiply(int mmult)

{

 if (st[1].cnt) { // multiply all elements in the segment tree

 st[1].res = ll(st[1].res) * Power(mmult, st[1].cnt) % m;

 st[1].flag = ll(st[1].flag) * mmult % m;

 }

 if (mmult == 0) { // modify all members to 0

 for (set <int>::iterator it = inf.begin(); it != inf.end();)

{

 has[*it] = ii(0, 1); Update(1, 0, n - 1, *it);

 nil.insert(*it); inf.erase(it++);

 }

 for (set <frac>::iterator it = S.begin(); it != S.end();) {

 has[it->ind] = ii(0, 1); Update(1, 0, n - 1, it->ind);

 nil.insert(it->ind); S.erase(it++);

 }

 } else {

 mult *= mmult;

 for (set <frac>::iterator it = S.begin(); it != S.end() && mult

/ it->b * it->a >= Inf;) {

 has[it->ind] = ii(Inf, 1); Update(1, 0, n - 1, it-

>ind);

 inf.insert(it->ind); S.erase(it++);

 }

 }

 if (S.empty()) mult = 1; // to avoid overflows in the long run

}

72 MDCS – Bubble Cup 2014

All that is left to implement the main function which can solve the actual task:
int main()

{

 scanf("%d %d %d", &r, &n, &m);

 Init();

 int pos[2] = {0, 0}; // the positions of the first and the second

player

 int cur = 0;

 while (r--) {

 int d, v, a, b; scanf("%d %d %d %d", &d, &v, &a, &b);

 Change(d, v);

 pos[cur] = (pos[cur] + Get(1, 0, n - 1, a, b)) % m;

 printf("%d\n", pos[cur]);

 cur = !cur; // 0 -> 1, 1 -> 0

 if (pos[0] == pos[1]) Multiply(pos[0]);

 }

 return 0;

}

Added by: Zhang Taizhi
Resource: Based on Super Dice Game (ID: 2833)
Solution by:

Name: Karolis Kusas
School: Kaunas University of Technology

E-mail: karolis.kusas@gmail.com

73 MDCS – Bubble Cup 2014

Problem R1 07: Snakes and Ladders Again (ID: 13092)

Time Limit: 1.0 second

Memory Limit: 1536 MB

Snakes and Ladders (or Chutes and Ladders) is an ancient Indian board game regarded today as a worldwide
classic. It is played between two or more players on a game board having numbered squares (fields) on a grid.
A number of "ladders" and "snakes" (or "chutes") are pictured on the board, each connecting two specific
board squares. The object of the game is to navigate one's game piece from the start (Bottom square) to the
finish (Top Square), helped or hindered by ladders and snakes, respectively. The historic version had root in
morality lessons, where a player's progression up the board represented a life journey complicated by virtues
(ladders) and vices (snakes). If, after throwing a dice, a player's token lands on the lower-numbered end of a
"ladder", the player moves his token up to the ladder's higher-numbered square. If he lands on the higher-
numbered square of a "snake" (or chute), he must move his token down to the snake's lower-numbered
square. If any of those cases takes places, we will call a square unstable. Otherwise it is stable.

The game is a simple race contest lacking a skill component, and is popular with young children.

In this problem you’re required to calculate the expected number of 6-sided die throws to move your game
piece from the start (bottom square) to the finish (top square).

Formal game description

Fields are arranged on an 𝑁𝑥𝑀 grid and numbered from 1 to 𝑁 ∗ 𝑀. Last field, indicated by 𝑁 ∗ 𝑀, is referred
to as Top Square. Each player starts with a token on a square at position "0" (the imaginary space beside the
“1” grid field; Bottom Square), which is always stable. So in total we have 𝑁 ∗ 𝑀 + 1 fields. In every turn
player throws the die and moves up by the given number of squares. If that would result in a field higher than
Top Square, then token is not moved. If the square that token ends on is unstable, it is moved as indicated by
ladder or snake. This is repeated until token is placed a stable field. You can assume that a stable field can be
reached from any field on the board. If this final, stable field is the Top Square, game ends and player wins.

Input

Input contains multiple test cases First line of each test case contains integers 𝑁, 𝑀, 𝑆, 𝐿. where 𝑛 and 𝑚 are
the board dimensions, 𝑁 (0 < 𝑁 ≤ 10), 𝑀 (0 < 𝑀 ≤ 10), and 𝑆 and 𝐿 are number of snakes and ladders
respectively. Next S lines describes snakes. Each line contains two integers: ℎ and 𝑡, where ℎ is the snake’s
head position and 𝑡 is the snake tail position. (0 < 𝑡 < ℎ ≤ 𝑁 ∗ 𝑀), Next 𝐿 lines describes ladders. Each
line contains two integers: 𝑝 and 𝑞 where 𝑝 is the ladder’s bottom and 𝑞 is the ladder’s top (0 < 𝑝 < 𝑞 <
 𝑁 ∗ 𝑀).

The input will be terminated by the end of file.

NOTE! There could be more snakes and/or ladders leading from a single field. In such a case use the last
snake/ladder specified in the input.

74 MDCS – Bubble Cup 2014

Output

Print one number per test case (each in separate line), expected number of dice throws needed to reach the
Top Square. It's guaranteed that the Top is always reachable. You round the result to exactly 3 decimal places.

Sample

input Output

5 10 3 5
16 6
47 26
49 11
1 38
4 14
9 31
40 42
36 44

30.198

Solution:

In the beginning, let's notice that only the stable fields are interesting for us. Why? Because we always roll a

die from a stable field and move (possibly through a number of unstable positions) to another stable field. As

it is guaranteed that a stable field can be reached from any field on the board, we can easily precompute for

each stable field s and thrown number 𝑥: 𝑀(𝑠, 𝑥) = where you have to advance from field 𝑠 after getting 𝑥 at

the dice.

To solve the problem we'll need to compute 𝐸(𝑠) = expected number of dice throws needed to reach the

Top Square from every field s and print 𝐸(0). Obviously, from the Top Square we don't move at all, so 𝐸(𝑁 ∗

𝑀) = 0, but what about the other fields?

From the definition of expected value we have:

𝐸(𝑠) = 1 +
1

6
∑ 𝐸(𝑀(𝑠, 𝑥))(∗)

6

𝑥=1

Before we say how to compute it, let's consider a slightly easier version of the problem, when there are no

snakes, only ladders. That means that we always go ahead or (in the worst case) stay in place, never move

back. Then we have 𝑀(𝑠, 𝑥) ≥ 𝑠 and can compute desired values from the definition, using dynamic

programming approach in the order of decreasing values of 𝑠.

What about the general case? We see that the definitions (*) give us system of linear equations and we can

solve it in 𝑂((𝑁 ∗ 𝑀)3) time using standard Gaussian elimination algorithm.

Added by: abdelkarim
Resource: The First Palestinian Collegiate Programming Contest
Solution by:

Name: Bartłomiej Dudek
School: University of Wroclaw

E-mail: bardek.dudek@gmail.com

Problem R1 08: Pythagorean triples (medium) (ID: 14542)

Time Limit: 4.0 second

Memory Limit: 256 MB

75 MDCS – Bubble Cup 2014

Pythagoras is credited, by tradition, for the first proof of the relation 𝑎2 + 𝑏2 = 𝑐2 in any right angled
triangle where c is hypotenuse and a and b are the catheti. We define a Pythagorean triple as a set of three
positive integers a, b, and c which satisfy the above equation , ie , 𝑎2 + 𝑏2 = 𝑐2.

{3,4,5} is the most common example of such triples.

Input

The first line of input contains an integer 𝑇, the number of test cases. Each of the next 𝑇 lines contains two
integers 𝑁, 𝑀.

Output

For each test case, print on a single line the number of Pythagorean triplet {𝑎, 𝑏, 𝑐} such that
𝑁 ≤ 𝑎, 𝑏, 𝑐 ≤ 𝑀.

Sample

input output

3
1 5
4 10
10 100

1
1
45

Constraints

0 < 𝑇 < 100

0 < 𝑁 < 𝑀

0 < 𝑇 × 𝑀 < 1.21 × 108

Solution:

First, recall Euclid's formula for generating Pythagorean triples given a pair of integers 𝑚, 𝑛 where 𝑚 > 𝑛:

𝑎 = 𝑚2 – 𝑛2

𝑏 = 2𝑚𝑛

 𝑐 = 𝑚2 + 𝑛2

The above formula generates all primitive Pythagorean triples. A primitive Pythagorean triple is a

Pythagorean triple {𝑎, 𝑏, 𝑐} where 𝐺𝐶𝐷(𝑎, 𝑏, 𝑐) = 1. A Pythagorean triple generated by the above formula

is primitive if 𝑚 and 𝑛 are coprime and 𝑚 − 𝑛 is odd. Every Pythagorean triple where 𝐺𝐶𝐷(𝑎, 𝑏, 𝑐) = 𝑑 >

 1 can, of course, be derived from a primitive triple by multiplying some triple {𝑎′, 𝑏′, 𝑐′} by 𝑑. The solution

works by generating all primitive Pythagorean triples and then for each such triple checks in 𝑂(1) time how

many of the derived Pythagorean triples fit into the given constraints. It is clear that for a given value of 𝑀,

the number of primitive Pythagorean triples satisfying 𝑎, 𝑏, 𝑐 < 𝑀 is 𝑂(𝑀), since the number of possible

values of 𝑚 is 𝑂(𝑠𝑞𝑟𝑡(𝑀)) and 𝑛 < 𝑚, so we have 𝑂(𝑠𝑞𝑟𝑡(𝑀)𝑠𝑞𝑟𝑡(𝑀)) = 𝑂(𝑀).

The outer loop of the solution iterates over all values of 𝑚. After that, all positive integers less than 𝑚 and

coprime with 𝑚 can be sifted out by the following algorithm:

 Set V[] to false;

 for each i from 2 to m do

 if (i divides m) and (V[i] = false) then

76 MDCS – Bubble Cup 2014

 for each j from i to m in steps of i do

 V[j] = true

 endfor

 endif

 endfor

This algorithm is slightly faster than directly computing 𝐺𝐶𝐷(𝑚, 𝑛) for all values of 𝑛. Afterwards, all the

values of 𝑛 coprime with 𝑚 will have 𝑉[𝑛] = 𝑓𝑎𝑙𝑠𝑒. The inner loop iterates over values of 𝑛

where 𝐺𝐶𝐷(𝑚, 𝑛) = 1 and 𝑚 − 𝑛 is odd. Then, we compute 𝑎, 𝑏, 𝑐 and find 𝐿 = 𝑚𝑖𝑛(𝑎, 𝑏, 𝑐) and 𝐻 =

 𝑚𝑎𝑥(𝑎, 𝑏, 𝑐). The latter is clearly equal to c. Then, we just need to find the number of positive integers 𝑑

such that 𝑁 <= 𝑎𝑑, 𝑏𝑑, 𝑐𝑑 <= 𝑀, that is, 𝑁 <= 𝐿𝑑 and 𝐻𝑑 <= 𝑀. This can, of course, be done in 𝑂(1)

time by finding the minimum and maximum value of d. We add the newly found number to the total number

of triplets and in the end we just print that value.

Added by: Francky
Solution by:

Name: Ivan Stošić
School: Gimnazija Svetozar Marković Niš

E-mail: ivan100sic@gmail.com

77 MDCS – Bubble Cup 2014

Problem R1 09: Foxic Expressions (ID: 14975)

Time Limit: 1.0 second

Memory Limit: 1536 MB

Let's talk about some definitions, shall we?

- An uppercase letter is a character between "𝐴"′ and "𝑍", inclusive. You knew that.

- A string is a sequence of characters. You probably knew that.

- A Foxic letter is a superior uppercase letter - namely, one of "𝐹", "𝑂" or "𝑋". You probably didn't know

that.

- A Foxic string is a superior string, consisting only of Foxic letters. You didn't know that.

Finally, a Foxic expression is a special string, with each of its characters being either a Foxic letter, or an

"𝑛" immediately following a Foxic letter. A Foxic expression can be translated into a Foxic string by a three-

step process. First, up to one character can be added, removed, or modified, provided that the resulting

string is still a valid Foxic expression. Next, every Foxic letter immediately preceding an "𝑛" is replaced by

zero or more occurrences of that same letter. Finally, each "𝑛" is removed. You most certainly did not know

that.

There are 𝑇 (1 ≤ 𝑇 ≤ 100) scenarios to consider, as described above. In each scenario, given a Foxic string

𝑆 of length 𝑁 (1 ≤ 𝑁 ≤ 100) and a Foxic expression E of length M (1≤M≤100), you'd like to determine

whether or not E can be translated into S.

Input

Line 1: 1 integer, 𝑇
For each scenario:
Line 1: 1 integer, 𝑁
Line 2: 1 string, 𝑆
Line 3: 1 integer, 𝑀
Line 4: 1 string, 𝐸

Output

For each scenario: The string "𝑌𝑒𝑠" (without quotes) if 𝐸 can be translated into 𝑆, or "𝑁𝑜" otherwise.

Sample

input output

2
5
OOOFO
7
OXnFOXn
3
FOX
7
OFnOXnO

Yes
No

Explanation

In the first scenario, one possible course of action is to erase the second character of 𝐸, leaving the Foxic
expression "𝑂𝑛𝐹𝑂𝑋𝑛". Next, we may choose to replace the first "𝑂" with three copies of "𝑂", and the
remaining "𝑋" with zero occurrences of "𝑋", since each of these precedes an "𝑛" - this yields the string
"𝑂𝑂𝑂𝑛𝐹𝑂𝑛". Finally, after removing each "𝑛", we are left with "𝑂𝑂𝑂𝐹𝑂", which matches 𝑆. Replacing the
second character with an "𝑂" would have also been possible.

78 MDCS – Bubble Cup 2014

In the second scenario, it is impossible to translate E into S through any valid steps.

Solution:

This is a problem which could be easily summarized in a single sentence as “regular expressions with a twist”.
It is a simple problem for anyone who’s familiar with regular expressions (regex for short from now on), so it
would be rather useful to start off with precisely defining a few key terms about regexes:

An alphabet is specified as any finite set of symbols, 𝛴.
For example, the set of lowercase English letters, 𝛴 = {𝑎, 𝑏, 𝑐, … , 𝑧} is an alphabet, while the set of natural
numbers, ℕ = {1, 2, 3, … } is not.

A string of (non-negative) length 𝑛 over an alphabet 𝛴 is an ordered 𝑛-tuple of elements of 𝛴 written without
punctuation. There is a unique string for which 𝑛 = 0; we call it the null string and usually denote it with 𝜀.
The set of all strings over an alphabet 𝛴 is denoted as 𝛴∗.
If we use the set of lowercase English characters as our alphabet 𝛴, some members of 𝛴∗ would be 𝑎𝑏𝑐𝑑𝑒𝑓,
𝑗𝑗𝑗, 𝑥, 𝜀, 𝑧𝑧𝑧, etc.

The concatenation of two strings 𝑢, 𝑣 ∈ 𝛴∗ is a string 𝑢𝑣 ∈ 𝛴∗ obtained by joining the two strings together
end-to-end.
For example (still using the English characters as our alphabet), if 𝑢 = 𝑎𝑏𝑐 and 𝑣 = 𝑥𝑦𝑧, then 𝑢𝑣 = 𝑎𝑏𝑐𝑥𝑦𝑧.

A regular expression over an alphabet 𝛴 can be defined as follows:

 each symbol of the alphabet, 𝑎 ∈ 𝛴, is a regular expression;

 𝜀 is a regular expression;

 ∅ is a regular expression;

 if 𝑟 and 𝑠 are regular expressions then so is (𝑟|𝑠);

 if 𝑟 and 𝑠 are regular expressions then so is 𝑟𝑠;

 if 𝑟 is a regular expression then so is (𝑟)∗

 every regular expression over 𝛴 can be built by applying these rules finitely many times.

Regular expressions represent a language for representing patterns, and as such are commonly used for
pattern-matching; here are rules based on which we can match a string 𝑢 ∈ 𝛴∗ to a regex:

 𝑢 matches 𝑎 ∈ 𝛴 iff 𝑢 = 𝑎;

 𝑢 matches 𝜀 iff 𝑢 = 𝜀;

 nothing matches ∅;

 𝑢 matches 𝑟|𝑠 iff 𝑢 matches 𝑟 or 𝑢 matches 𝑠;

 𝑢 matches 𝑟𝑠 iff it can be expressed as a concatenation of two strings, 𝑢 = 𝑣𝑤, such that 𝑣 matches
𝑟 and 𝑤 matches 𝑠;

 𝑢 matches 𝑟∗ iff either 𝑢 = 𝜀, or it can be expressed as a concatenation 𝑢 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 … 𝑎 such that
𝑎 matches 𝑟.

Now it should be fairly clear to notice that the “foxic expressions” referred to in the problem statement can
be expressed as regular expressions over 𝛴 = {𝐹, 𝑂, 𝑋}, with the string 𝑎𝑛 (where 𝑎 ∈ 𝛴) representing (𝑎)∗.
The problem is now reduced to generating all possible regexes with the allowed rules, and checking if any of
them matches the given string.

Once we have a regex we want to use for pattern-matching, we can use it to construct a graph called a
deterministic finite automaton, which, once constructed, determines in time 𝑂(𝑛) whether a given string of
length 𝑛 matches that regex. The construction methods for this graph will not be covered in this solution, as
several programming languages (including Java, which is one of the allowed languages in the qualifications)
have regex pattern-matching as an in-language feature. Interested readers are advised to look up Automata

79 MDCS – Bubble Cup 2014

and computability by Kozen, D.C. (1997) for further insight into these algorithms and in general into the very
exciting field of computation theory.

Regexes are a very powerful tool, commonly utilized in terminals (Unix shell/Windows cmd); a simple example
would be the shell command

$ ls *.txt

which will extract all files with a plain text extension from the current working directory. The concept is central
to a few programming languages as well – it likely explains why the only accepted solution to this problem
before appearing at BubbleCup qualifications was in Perl.

Added by: Jacob Plachta
Solution by:

Name: Petar Veličković
School: University of Cambridge

E-mail: pv273@cam.ac.uk

http://xkcd.com/1171/

80 MDCS – Bubble Cup 2014

Problem R1 10: [CH] Japan Crossword (ID: 316)

Time Limit: 21.0 second

Memory Limit: 256 MB

Japan crossword is a very popular game. It represents encoded picture which consists of filled block of cells.
At the start of game you see empty grid. Each row (column) has some numbers in beginning of the row
(column). Each number means how many continuous cells are filled in a hidden picture (length of the filled
blocks). Filled blocks of cells are arranged from left to right and from top to bottom. Between filled blocks
must be at least one empty cell. For example, numbers are 4, 2, 7 mean that there are three groups with 4, 2,
and 7 filled cells in it. Your task is decode hidden picture using hints.

Input

The first line of input contains a single positive integer 𝑡 ≤ 300 - the number of test cases. Then for every test
case first line specifies integer numbers 𝑅 and 𝐶 (number of rows and columns) of the picture (1 ≤ 𝑅 ≤
50, 1 ≤ 𝐶 ≤ 100). Below 𝑅 lines are follow. Each line consists of any integers for horizontal hints. The very
last number for every line is 0. Then 𝐶 lines are follow. Each line consists of any integers for vertical hints. And
again every line ends with 0.

Output

For every test case you should write decoded picture in the form of rectangle with 𝑅 rows and 𝐶 characters
in each line. Symbol ′#′(sharp) means filled block and symbol ′. ′(point) means empty cell.

Score
The score awarded to your program is the total of all scores obtained for its individual test cases. The score
for a test case is calculated so that for each ′𝑟𝑖𝑔ℎ𝑡′ row or column you get 1 points. The row(column) is
counted as a ′𝑟𝑖𝑔ℎ𝑡′ if there is a group of filled cells for every number in beginning of the row(or column) and
length of every cell is equal corresponded number. If All rows and columns are ′𝑟𝑖𝑔ℎ𝑡′ your score multiply by
1.5 for this test case.

Sample

input output

1
10 5
3 0
2 2 0
5 0
5 0
3 0
1 0
1 0
3 0
2 0
3 0
3 0

.###.
##.##

.###.
..#..
..#..
..###
..##.
..###

81 MDCS – Bubble Cup 2014

5 0
1 8 0
5 3 0
3 1 1 0

Score:
(10 + 5) ∗ 1.5 = 22.5

Solution:

Line solver:

When you start to solve this problem first thing that comes to mind is to code a method that will extract all

known fields (fields that can be only black or only white) of a single line. A fast way to do this is with dynamic

programing. (We check for each 𝑖 and 𝑗 if 𝑖 − 𝑡ℎ field of the line can be the last field of 𝑗 − 𝑡ℎ black run. A

field 𝑖 can be black if there is such 𝑗 and 𝑘 that 𝑗 − 𝑡ℎ field can be the end of 𝑘 − 𝑡ℎ run and it contains field

𝑖. Similar to previous conclusion a field I can be white if there is such 𝑗 so that you can fit first 𝑗 runs in fields

before 𝑖 and the rest in fields after 𝑖.) This can be done in 𝑂(𝑁 ∗ 𝐾) where 𝑁 is the length of the line and 𝐾

is the number of black runs in the line.

Using line solver:

Now that we have foundation we can start to really solve the puzzles. If we iterate the "line solver" on all

rows and columns while we are getting changes on the table we can solve 173/252 test cases. (A good thing

to notice is that there is no need to "line solve" a row or column if nothing has changed in it. (ie. we have not

marked any more fields in it black or white). This can save major time.)

1-contradiction:

In the other 79 cases looking at a single line at a time will not help so we need to make some guesses. First

we can pick a field of the table and mark it black or white. If the crossword now has no solution we can be

sure that the field we picked is the opposite color of the one we chose so we can color it and go to solving

the new table. (We run the "line solver" on each line again.) This solution will give us 232/252 test cases.

Boards with many solutions:

So far our solution seems to be doing good on finding a solution if the crossword has unique solution. But

what about a case where you have only 1 black field in each row and column. The board has 𝑁! solutions. (𝑁

being the size of the table.) To deal with this we can make multiple guesses. We can do a bit of recursion: we

pick a field and color it see what it gives us. (We run the line solver on the new table) There are couple of

cases:

1. It leads us to a solution :)

2. It gives us a contradiction in which case we go back a step and color that field the other color.

3. It only makes a few more fields known. In that case we make more guesses.

82 MDCS – Bubble Cup 2014

Now we need a way to pick which field we try to color. A way that worked for me is to pick one where there

are the least unknown fields in its row and column. (It turns up that you only need to make 4 − 5 guesses at

maximum.)

This solution will find a valid configuration for all given test cases.

Added by: Maxim Sukhov
Solution by:

Name: Marko Stanković
School: Gimnazija Svetozar Marković, Niš

E-mail: markostankovic996@gmail.com

83 MDCS – Bubble Cup 2014

Problem R2 01: Digital Image Recognition (ID: 3360)

Time Limit: 3.0 second

Memory Limit: 256 MB

According to Wikipedia, image processing is any form of signal processing for which the input is an image,
such as photographs or frames of video; the output of image processing can be either an image or a set of
characteristics or parameters related to the image. Most image-processing techniques involve treating the
image as a two-dimensional signal and applying standard signal-processing techniques to it.

The task you are facing here is a relatively easy one (compared to our general conception of image
processing!). Given a black-and-white image of size 𝑅 ∗ 𝐶 with some digits (and possibly other shapes) on it,
your program needs to figure out the digits written on the image. Specifically, the digits drawn on the graph
will adhere to the following rules:

1) Digits are drawn with a series of strokes. A stroke can be regarded as a rectangle of any size on the
image, and its edges will always be parallel to either x-axis or y-axis. The number of strokes required
to draw each digit will be exactly as follows:

0 1 2 3 4 5 6 7 8 9

4 1 5 4 3 5 5 2 5 5

Refer to the figure below if you are unclear about how the digits are drawn.

2) Although the width of strokes used to draw a digit might be different, the outer shapes of digits
will strictly follow those specified in the figure below.

3) In order for a digit to be recognizable, all parts (strokes and joints) presented in the graph below must
also be clearly distinguishable in the image.

4) You may assume that the image is not rotated, and there is no noise in the input.

Please output the sum of digits recognizable in the graph. In the case that no characters is recognizable, please
output 0 instead.

Input

There are multiple test cases in the input file.

Each test case starts with two integers, 𝑅 and 𝐶 (1 ≤ 𝑅, 𝐶 ≤ 500), specifying the number of rows / columns
of the graph. Each of the following 𝑅 lines contains consecutive C characters ("0" or "1"), describing the image
to be processed.

Two successive test cases are separated by a blank line. A case with 𝑅 = 0, 𝐶 = 0 𝑖ndicates the end of the
input file, and should not be processed by your program.

Output

For each test case, please print a single integer, the sum of recognizable numbers. See the sample output
for format details.

84 MDCS – Bubble Cup 2014

Sample

input output

5 12
001101011111
000101000011
000101001111
001101000011
000000000111

5 3
111
010
110
010
110

6 14
11111000011111
11001000000011
11111001000000
11111001001110
11001011001010
11111000001110

5 2
11
01
11
01
11

6 9
111100111
000100001
000100011
011100010
010000011
011110000

0 0

Case #1: 4
Case #2: 0
Case #3: 15
Case #4: 3
Case #5: 2

Solution:

Our task here is to differentiate between 10 digits (0 − 9), so we don’t need a fully-scalable solution. Thus,

we can focus on almost hard-coding each digit. By far the easiest way to go about it would be to count the

number of inner edges (pic 1), and determine the position of each edge relative to other edges. Inner edges

are given in red.

85 MDCS – Bubble Cup 2014

pic 1

First, we can do BFS (breadth-first search) to isolate our figure. Next, we count the number of inner edges
for that figure. If the number of inner edges matches the number of inner edges in any of our digits (code 1),
we can then continue to check the relative positions of those edges.

If their relative positions are correct, we know that we have a match. The reason why this solution works is

simple. We can define each digit with their number of points (dots, digit zero has 4 dots, digit one has 2 dots,

etc.), their relative positions and lines which connect those dots. With BFS we make sure that the component

is connected (pic 2).

pic 2

With this in mind, we can notice that we can still have errors. Digits 0, 6, 8 and 9 can still be one component,
but have their lines broken (pic 3). Therefore, we can count the number of outer edges, since breaking a line
adds 4 new outer edges. Thus, we have defined each number with the number of outer edges and relative
positions of inner edges.

pic 3

Added by: [Trichromatic] XilinX
Resource: ACM/ICPC Asian Regional Contest, Hangzhou 2008
Solution by:

Name: Saša Vučković
School: School of Computing

E-mail: sashans13@hotmail.com

char innerEdgesCount[] = { 4, 0, 4, 4, 3, 4, 6, 1, 8, 6 };

code 1

86 MDCS – Bubble Cup 2014

Problem R2 02: FLING1 (ID: 13884)

Time Limit: 2.0 second

Memory Limit: 1536 MB

Fling! is a popular puzzle game created by the well-known developers at CandyCane LLC.

The premise of the game is simple. You are given a certain number of balls on the screen to start. The goal is
to fling one into another in order to knock the other off the screen. The puzzle is considered solved if you can
do so while leaving only one ball remaining on the screen. Some might read this and think that it might not
be too difficult, but the game gets challenging quickly. The problem is that you cannot fling two balls that are
adjacent (i.e. next to) each other.

The first ball you choose can fling the 2nd ball if and only if:
1) The two balls exist in same row or same column
2) The two balls are not adjacent
3) There is no other ball in between the two balls

If there exist a 3rd ball after the 2nd ball in the same line of action, the 2nd ball takes the position just before
the third ball, pushes the 3rd ball and the 3rd ball gets flinged. (This continues till a ball gets knocked off the
screen. Note that 2nd ball and 3rd ball can be adjacent).

Given a Fling! puzzle, just print "Yes" if it is a valid puzzle(solvable) or "No" otherwise.

For better understanding of gameplay you may have a look at this video. (optional)

Input

The first line of the input consists of an integer t, the number of test cases. For each test case, the first line
consists of two integers 𝑚 and 𝑛, the number of rows and columns of the puzzle. Then follows the description
of the board. A[i][j] is '.' if the cell is empty or 'B' if the cell has a ball.

Output

For each test case print "Yes" if the puzzle is valid or "No" otherwise. (case-sensitive).

87 MDCS – Bubble Cup 2014

Constraints

- 1 ≤ 𝑡 ≤ 100
- 1 ≤ 𝑚, 𝑛 ≤ 10
- You can assume that the number of balls in the board is approximately equal to (𝑚 ∗ 𝑛) /10

Sample

input output

4
5 5
.....
.....
..B..
.....
.B..B
5 4
....
B...
B...
....
B...
3 4
BB..
....
.B..
1 1
B

Yes
Yes
No
Yes

Solution:

FLING1 was the easiest task of Round 2. The solution is very simple: to find if the given puzzle is valid or not,

we just have to try all the possible combinations. If, at any time, we end up with just one ball on the board,

we have a valid puzzle. We can achieve this by using DFS (depth-first search).

We might encounter a problem with memory, as saving the whole matrix for each move is expensive. Since

every move alters only one row/column, and the rest remains the same, we can reduce memory usage by

saving only a part of the board. Another valid optimization exploits the fact that we are given approximately

𝑴 ∗ 𝑵 / 𝟏𝟎 balls in each test case, and saving only the positions of those balls would suffice. Furthermore,

in each iteration, instead of saving the positions of all the balls, we can save each move made, thus reducing

memory usage even more.

88 MDCS – Bubble Cup 2014

Worst case complexity of this solution is 𝑶(𝑩! ∗ 𝟒𝑩), where 𝐵 stands for the number of balls. We derive

this, the number of possible moves until the end of the game (in the worst case), by using well-known

combinatorial formulas. Since there are T test cases, and there are approximately 𝑴 ∗ 𝑵 / 𝟏𝟎 balls, the

solution, at first sight, doesn’t seem good enough. Upon closer inspection, we see that the theoretical worst

case complexity can, in fact, never be achieved. The fact that in the majority of cases the game tree has a lot

less than 𝑩! ∗ 𝟒𝑩 nodes, which means that a lot of moves are impossible, leads us to understand that this,

supposedly naive solution, fits the time limit, and is correct.

Added by: cegprakash
Solution by:

Name: Nikola Jovanović
School: Matematička gimnazija

E-mail: nikolajovanovic96@yahoo.com

89 MDCS – Bubble Cup 2014

Problem R2 03: One Instruction Computer Simulator (ID: 2023)

Time Limit: 1.0 second

Memory Limit: 256 MB

Daniel is building towers out of blocks. He has many black and white blocks. He has built 𝑛 towers out of
those. Now he suggests Max playing the following game. Black block will belong to Daniel and white blocks
will be Max's blocks. During his turn the player can take any of his blocks from any tower and remove it and
all the blocks above it. As usual the player who can't make the move loses. Daniels make the first move.
Determine who will win if both players play optimally.

Input

The input starts with number 𝑡 - the amount of test cases. The first line of each test is number 𝑛 - the number
of towers. Then 𝑛 strings follow. Each string is formed of 'B' and 'W' characters, where 'B' means bleck block
and 'W' - white block. Each string describes one tower from bottom to top.

Output

For each test case print 'Win' if Daniel wins and 'Loss' if Max wins given both players play optimally.

Sample

input output

1
5
BBWWB
BWBB
BB
WWW
WB

Win

Solution:

Here we are faced with a relatively standard problem of writing assembly code for a (single-instruction) ISA,

to calculate expressions written in Reverse Polish Notation. This does not necessarily require an ingenious

idea, but exploiting the fact that the assembly should be generated by a higher-level language can allow us

to come up with subroutines that will make our job much easier. As such, the solution will first describe a few

of those simple ideas, and then work on combining them in a complete solution for the problem.

The first thing to be discussed is the memory model for our processor. It is split into two regions: one reserved

for I/O and the other serving as a regular Von Neumann general purpose memory. Since the same memory is

used both for storing programs and data, care has to be taken not to have data corrupting the instructions

and vice-versa. As such we will further partition the main memory region into three sub regions:

- the program region, which will contain the instructions;

- the constants and temporaries region, which will contain constants and other temporary storage

registers used by our algorithms internally;

- the variables region, containing the variables we utilize as we unwind the expression.

The program region will start where instructions normally start (right after the I/O region), while the

register regions will start on the opposite side – first the constants and temporaries as we can figure out

exactly how much we will need. The program and variables regions then expand in opposite sides as the

assembly is generated, thus minimizing the possibility of an overlap.

90 MDCS – Bubble Cup 2014

A good illustration of the concept can be seen on the image to the right, with the bottom representing the

memory address 0, and the top representing memory address 9998.

Now that the memory model is sorted out, it is time to discuss the various subroutines we might find useful

in simplifying our code. Here are a few that should be useful – note that from now on, ZR is referring to a

special memory location in the constants/temporaries region, that we will always assert to be zero between

subroutine calls. Additionally, when a SUBLEQ instruction is provided without a third argument, it is implied

that the (possible) jump is to the location of the next instruction (i.e. current line + 3). TA, TB, TC etc. will

refer to registers used to store temporary variables.

RESET(X) /* X := 0 */

SUBLEQ X X

INC(X) /* X := X + 1 */

 SUBLEQ -1 X

SET(X) /* X := 1 */

 RESET X

INC X

INV(X, Y) /* X := -Y */

 RESET X

 SUBLEQ Y X

I/O

Constants/Temporaries

Program

Variables

91 MDCS – Bubble Cup 2014

ASSIGN(X, Y) /* X := Y */

 SUBLEQ Y ZR

 INV X ZR

 RESET ZR

IFLEQ(X, C) /* IF X <= 0 JMP C */

 SUBLEQ ZR X C

IFLEQ(A, B, C) /* IF A <= B JMP C */

 ASSIGN TD A

 ASSIGN TE B

 SUBLEQ TE TD C

JMP(C) /* JMP C */

 SUBLEQ ZR ZR C

DBL(X) /* X := X + X */

 SUBLEQ X ZR

 SUBLEQ ZR X

 RESET ZR

To completely generate our assembly, we will need core subroutines for the four main arithmetic operations.

Addition and subtraction are simple to implement; here we demonstrate a possible implementation of them:

ADD(A, B, C) /* C := A + B */

 SUBLEQ A ZR // ZR := -A

 SUBLEQ B ZR // ZR := -(A + B)

 INV C ZR // C := A + B

 RESET ZR // ZR := 0

SUB(A, B, C) /* C := A - B */

 SUBLEQ A ZR // ZR := -A

 INV C ZR // C := A

 SUBLEQ B C // C := A - B

 RESET ZR // ZR := 0

Multiplication and division require significantly more work – this is due to the fact we must take into account

the possibility of negative numbers as operands, and that our assembly will likely be too slow if we employ a

naïve algorithm. Luckily, we can use the concepts from exponentiation by repeated squaring to produce fast

algorithms – only this time we use doubling (addition) instead of squaring. This is how a simple multiplicator

would look (assuming we already know the operands are both positive), with the help of labels (which can

simply be supported by f.ex. mapping instruction locations to strings before compiling a subroutine into

assembly), and four additional temporary registers IP, II, BP and BI:

FASTMULP(A, B, C) /* C := A * B, A >= 0, B >= 0 */

 ASSIGN TA A // TA := A

 ASSIGN TB B // TB := B

 SET TC // TC := 1

92 MDCS – Bubble Cup 2014

 RESET C // C := 0

LP: IFLEQ TB EXIT // LP: IF TB <= 0 JMP EXIT

 RESET IP // IP := 0

 SET II // II := 1

 RESET BP // BP := 0

 ASSIGN BI TA // BI := TA

NXT: INC TB // NXT: TB := TB + 1

 IFLEQ TB II CNT // IF TB <= II JMP CNT

 SUBLEQ TC TB // TB := TB – 1

 ASSIGN IP II // IP := II

 DBL II // II := II + II

 ASSIGN BP BI // BP := BI

 DBL BI // BI := BI + BI

 JMP NXT // JMP NXT

CNT: ADD C BP TD // CNT: TD := C + BP

 ASSIGN C TD // C := C + BP

 SUBLEQ IP TB // TB := TB – IP

 SUBLEQ TC TB // TB := TB – 1

 JMP LP // JMP LP

EXIT: // EXIT: end of subroutine

This can be easily further extended to handle operands of various signs -- a ‘flag’ register would probably be

useful here, set to be the XOR (exclusive disjunction) of the operands’ signs, and if it was positive, we would

invert the result obtained from running FASTMULP on the absolute values of A and B. Division can be handled

in a similar way (omitted and left as an exercise to the reader).

With all the arithmetic subroutines in place, everything we need to do is perform the usual stack-based RPN

evaluation algorithm, allocating a new variable in the variables region for each computation performed, and

storing the variable locations in the stack. Finally, we do something along the lines of

FINISH() /* store result and exit */

ASSIGN 0 (Stack.top())

JMP 10000

…and we’re done!

For me, this was a very interesting problem which required significant time spent in front of the whiteboard,

and far less time spent actually coding the solution, which is always a good thing. One of the past exam papers

at my university actually featured a full question on SUBLEQ, so if you find such material engaging, you should

check it out on this link: http://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2004p5q2.pdf. Have fun!

Added by: Chen Xiaohong
Resource: Changed and Enhanced from Colombian National Contest
Solution by:

Name: Petar Veličković
School: University of Cambrige

E-mail: pv273@cam.ac.uk

93 MDCS – Bubble Cup 2014

Problem R2 04: Fight with functions (ID: 3902)

Time Limit: 12.0 second

Memory Limit: 256 MB

Multiplicative functions are defined as functions such that 𝑓(𝑚 ∗ 𝑛) = 𝑓(𝑚) ∗ 𝑓(𝑛). Now, we put an extra
constraint on multiplicative functions that if 𝑚 and 𝑛 are coprime, then 𝑓(𝑚) and 𝑓(𝑛) are also coprime.
Additionally it is also provided that 𝑓(1) = 1. 𝑓(𝑥) is defined for positive integers and it returns positive
integers.

Now, you are provided with some 𝑥 and corresponding 𝑓(𝑥). Your task is to find out, if you can uniquely
determine the value of 𝑓(𝑦) given 𝑦 and if yes, find the value.

Input

The first line of input contains a number representing the number of test cases. For each test case, the first
line contains a number 𝑁 representing the number of (𝑥, 𝑓(𝑥)) pairs to be provided. 𝑁 Lines follow, each line
containing a pair of space separated numbers : the first one corresponding to 𝑥 and second one to 𝑓(𝑥). Next
line contains 𝑞, the number of queries. 𝑞 lines follow, each containing a number 𝑦.

Output

For each test case output 𝑞 lines, one corresponding to each query. The output should contain
"𝑌𝐸𝑆 𝑓(𝑦)" where 𝑓(𝑦) is replaced by the integer denoting 𝑓(𝑦) with no leading zeroes if given the data, we
can uniquely determine 𝑓(𝑦), or "𝑁𝑂" if the input data is inconsistent with the properties of the function or
with the given information provided about the function, we cannot uniquely determine 𝑓(𝑦).

Sample

input output

3
3
2 2
3 2
7 19
1
7
1
6 6
1
6
2
2 2
3 3
1
12

NO
YES 6
YES 12

Constraints

The number of test cases are less than 20. 𝑁 ≤ 50. 𝑥 and (𝑥) ≤ 1050 . 𝑥 and 𝑓(𝑥) do not have a prime
factor greater than 100005.

The number of queries are less than or equal to 50. Each number in the query is less than 1050. You are
guaranteed that if the answer is unique, it contains less than 400 digits.

94 MDCS – Bubble Cup 2014

Solution:

First, notice that because our function is multiplicative we only care about values it attains for prime numbers.

We will represent our function as infinite weighted bipartite graph. On both sides we are going to have nodes

enumerated as prime numbers.

For each prime number p on the left side and for each number 𝑞 on the right side of the graph such that 𝑞

divides 𝑓(𝑝) we will add edge going from 𝑝 to 𝑞 with weight equal to largest power of 𝑞 that divides 𝑓(𝑝).

For example, if 𝑓(3) = 16, then there is edge from 3 to 2 with weight 4.

Now, if we know that 𝑓(𝑥) = 𝑦, we are going to factorize both 𝑥 and 𝑦 and iterate over all pairs of prime

number 𝑝, 𝑞 such that 𝑝 divides 𝑥 and 𝑞 divides 𝑦.

Let's say that 𝑝 divides 𝑥 with power of 𝑎 and 𝑞 divides 𝑦 with power of 𝑏. If 𝑎 divides 𝑏 then we add edge

from 𝑝 to 𝑞 with weight 𝑏 / 𝑎, but if there already is edge from 𝑝 to 𝑞 with weight other than 𝑏 / 𝑎 or 𝑎

doesn't divide 𝑏 then we delete this edge and allow no more operations on this edge.

For each pair (𝑝, 𝑞) we keep counter which we increase each time we encounter pair (𝑝, 𝑞). We also keep

counter how many times we had 𝑝 in factorization of 𝑥 and how many times we had 𝑞 in factorization of 𝑦.

Next, we iterate over all edges (𝑝, 𝑞) again and check if counters of 𝑝 and 𝑞 have the same value and if they

don't then we erase edge (𝑝, 𝑞). After this we check if there is node 𝑞 on the right side which has positive

counter but no edges coming to it. If there exists such node then our function is invalid and we output ′𝑁𝑂′ for

each query.

Otherwise, our function is valid and we proceed to read queries.

To answer query for some 𝑥, we need two arrays. First array will be counter for each node on right side and

second array will represent power to which we raise the value of this node in final result. We also need

boolean variable which will be flag that we know what is value of our function. It is initialized as true. We

factorize 𝑥 and we iterate each prime 𝑝 that is divisor of 𝑥, let's say that 𝑝 divides 𝑥 with power of 𝑐. If 𝑝 has

no outgoing edges we set our flag as false.

Now we iterate over all outgoing edges from 𝑝, let's say we have edge (𝑝, 𝑞) with weight 𝑤. If counter of 𝑞 is

not zero and power value of 𝑞 is not 𝑐 ∗ 𝑤 flag is false, otherwise power of 𝑞 must be 𝑐 ∗ 𝑤. Last, we

initialize our result as one, and we iterate over all nodes on right side which have positive counter. For each

such node we check that its counter is equal to its degree (otherwise we set flag as false) and we multiply

results by value of that node raised to its power.

If flag is true we output our result, otherwise we output 'NO'.

Added by: Race with time
Resource: Code Craft 09
Solution by:

Name: Mislav Balunović
School: Gimnazija Matija Mesić, Slavonski Brod

E-mail: mislav.balunovic@gmail.com

95 MDCS – Bubble Cup 2014

Problem R2 05: Soccer Choreography (ID: 850)

Time Limit: 20.0 second

Memory Limit: 256 MB

Mr. Bitmann, the coach of the national soccer team of Bitland, is a perfectionist. He taught his players optimal
tactics and improved their endurance and shape. So they qualified for the soccer world cup this year. Due to
his perfectionism the coach attaches importance not only to the performance in the game but also before
the game. So he told the team captain in what formation the team should assemble before the national
anthem is played. Since each of the 11 team members has a unique number between 1 and 11 on his shirt,
he can represent the formation as a permutation of numbers.

"Hmmm... I'll let my players dance!" A great idea! He took his notebook and started to create a choreography
which leads to his expected formation. Due to the fact that no one of the players took dancing lessons he
restricts his dance to one basic move: One player or more players who stand side by side can turn 180 degrees
around the center of the move. Picture (b) contains an example: The players

−11 − 10 − 9 − 2

(we mark players which stand in the wrong direction with a minus) can do one move to
2 9 10 11

As perfect as he is he calculated a dance with a minimum number of moves. It works perfectly and now he's
planning to do dancing performances with teams with more than 11 members. So he needs your help to
find optimal dancing moves...

Input

Each test case starts with the number of team members 𝑛 (0 ≤ 𝑛 < 2200). The next lines represent the
formation at the beginning and the expected formation at the end of the choreography.

Output

For each test case output 𝑚, the minimal number of moves which are necessary to reach the expected
formation. The next 𝑚 + 1 lines should represent one possible scenario of moves.

96 MDCS – Bubble Cup 2014

Sample

input output

11
-5 -4 -3 -8 -7 -6 1 -11 -10 -9 -2
1 2 3 4 5 6 7 8 9 10 11
11
1 2 3 -4 -5 -6 -7 -8 -9 10 11
11 9 8 7 6 5 4 3 2 10 1
0

3 Steps
-5 -4 -3 -8 -7 -6 +1 -11 -10 -9 -2
-5 -4 -3 -8 -7 -6 +1 +2 +9 +10 +11
-5 -4 -3 -2 -1 +6 +7 +8 +9 +10 +11
+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
5 Steps
+1 +2 +3 -4 -5 -6 -7 -8 -9 +10 +11
+1 +2 -3 -4 -5 -6 -7 -8 -9 +10 +11
+1 -2 -3 -4 -5 -6 -7 -8 -9 +10 +11
+1 -2 -3 -4 -5 -6 -7 -8 -9 -11 -10
+11 +9 +8 +7 +6 +5 +4 +3 +2 -1 -10
+11 +9 +8 +7 +6 +5 +4 +3 +2 +10 +1

Solution:

This problem is based on the “Sorting signed permutations by reversals” problem, which is well-studied and

has application in some fields of biology.

In the problem we are provided with a signed permutation. A signed permutation is a permutation in which

each number has a sign, either + or − . We also have a reversal operation. A reversal operation takes a

sequence of consecutive elements, reverses their order, and changes the signs of the numbers in the

sequence. The problem is to reach some specific permutation (with all signs +) starting from our initial signed

permutation and using the minimum amount of reversals.

To solve the problem we must simplify it. Suppose we are given signed permutation A and we want to

transform it to permutation B. Denote the 𝑖 − 𝑡ℎ element in 𝐴 by 𝐴[𝑖]. We now build a new signed

permutation 𝐴’. For each element 𝐴[𝑘] we find the position its absolute value occurs in 𝐵. Suppose |𝐴[𝑘]| =

𝐵[𝑝], then 𝐴’[𝑘] = 𝑝 if 𝐴[𝑘] > 0, and 𝐴’[𝑘] = −𝑝 otherwise . It is easy to see that sorting 𝐴’ is equivalent to

transforming 𝐴 to 𝐵, i.e. it is done using the exact same reversals.

For example take 𝐴 = {−3, −2, +1, +4} and 𝐵 = {2,3,1,4}, we get 𝐴’ = {−2, −1,3,4}. Then doing a reversal

in the interval [1; 2] will change 𝐴 to {+2, +3, +1, +4} which is precisely 𝐵, and it will change 𝐴’

to {+1, +2, +3, +4} which is a sorted signed permutation.

After this transformation we need an algorithm to sort a signed permutation with minimum amount of

reversals and more importantly, give us a list of those reversals. This problem, while not easy, is well studied

and there are a few known algorithms that run in polynomial time. The algorithm required for this problem

is described in paper by Kaplan, Shamir and Tarjan – “Faster and Simpler Algorithm for Sorting Signed

Permutations by Reversals” (paper).

The algorithm runs in 𝑂(𝑁2) time and generates all reversals required to sort a signed permutation which is

fast enough to solve the problem. Once we have a list of those reversals we can naively apply them one by

one to the initial permutation and print the result after each reversal.

Note: There is a public applet that can help you visualize the process of the algorithm on custom examples.

Added by: Simon Gog
Solution by:

Name: Encho Mishinev
School: МГ "Атанас Радев"

E-mail: encho.mishinev@gmail.com

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3153
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3153
http://www.math.tau.ac.il/~rshamir/GR/

97 MDCS – Bubble Cup 2014

Problem R2 06: Yet Another Assignment Problem (ID: 6819)

New term is coming. Our monitor Cathy Yin is going to make necessary preparations. Now she has m jobs to
do, and n classmates are going to help her. Each job requires some classmates working on it for certain time,
say the 𝑖 − 𝑡ℎ classmate must work on the 𝑗 − 𝑡ℎ job for 𝐴[𝑖][𝑗] minutes. As an OIer of great responsibility
she wishes to finish all jobs as soon as possible. But a classmate can do only one job at a time, and two
classmates can not do the same job at the same moment. For example, to decorate the classroom, Alpha
must work on it for 3 minutes plus Beta works on it for 4 minutes, then one possible assignment will be
𝐴𝐵𝐴𝐵𝐵𝐴𝐵, taking 7 minutes in total.

Now she is going to make a detailed schedule specifying who is doing what at each moment. Jobs are
independent, i.e. they may be done in arbitrary order. Also for each job anyone can do it for arbitrarily long,
but not longer than the required time 𝐴[𝑖][𝑗]. Anyone can be free at any time. Time for certain classmate
doing certain work need not be consecutive.

As her friend, you are to help her to work out the schedule minimizing the time needed. (The time of this
assignment itself does not count!)

Input

First line of the input contains two positive integers 𝑚, 𝑛 (1 <= 𝑚, 𝑛 <= 2000), number of jobs and
classmates.

𝑚 lines follow, each descibing a job. 𝑖 − 𝑡ℎ line contains n non-nagative integers (≤ 106), where the 𝑗 −
𝑡ℎ number is 𝐴[𝑖][𝑗], meaning that the 𝑗 − 𝑡ℎ classmate has to work on the 𝑖 − 𝑡ℎ job for 𝐴[𝑖][𝑗] minutes as
described above.

Output

First line contains single integer 𝑇, minimum time needed. Next line contains n non-negative integers (≤ 𝑚),
giving one possible schedule for the first minute, where the 𝑖 − 𝑡ℎ number specifying the job for the 𝑖 − 𝑡ℎ
classmate to do, and 0 denotes that the corresponding classmate is free.

If there are multiple solutions, any one is accepted.

Sample

input output

2 2
2 5
5 1

7
1 0

Explanation

Two jobs are assigned to two classmates, say Lambda and Mu. To tidy up the classroom Lambda needs to
work for 2 minutes and Mu 5 minutes; and to move desks for new comers Lambda needs 5 minutes and Mu
1 minute.

One optimal schedule is:

T Lambda Mu
0 Tidy Free
1 Move Tidy
2 T M
3 M T
4 M T
5 M T
6 M T
7 minutes in total. It is obvious that it is impossible to finish it in less than 7 minutes.

98 MDCS – Bubble Cup 2014

Solution:

Even though, in the title of this problem there is a word assignment, this task is in fact a variation of Open-
shop scheduling problem. Variation, because it allows interruption of any job at any moment with the
intention of resuming said job at the later time. In Computer Science this is also called preemption.

General Open-shop scheduling problem is NP-hard, however if you allow preemption, the minimum time
required to complete all the jobs is simply the highest row or column sum. More precisely:

𝑀𝑎𝑥(∑ 𝐴𝑖,𝑗
𝑚−1,𝑛−1

𝑖=0,𝑗=0
, ∑ 𝐴𝑗,𝑖

𝑛−1,𝑚−1

𝑖=0,𝑗=0
)

Let’s denote the said maximum sum with 𝛼.

The fact that α is indeed the optimal answer can be proven if you consider the two cases:

1. A row has the maximum sum, then that row has to be processed at least 𝛼 units of time, since only
one row can be assigned to one column at a time, achieving less than 𝛼 time is impossible. Now all
there’s left to do is to show that it is possible to achieve the time of exactly 𝛼 units. This will be done
through the reconstruction phase of our algorithm.

2. A column has the maximum sum. Since only one student can work on only one job at a time, and only
one job can be worked on by only one student at a time, students and jobs are interchangeable. So
just “swap” students and jobs and refer to Case 1).

To reconstruct the answer, first create a matrix of size (𝑛 + 𝑚) ∗ (𝑛 + 𝑚). Now, fill in the columns from 𝑛 to
𝑛 + 𝑚 − 1 such that the sum of each row is 𝛼, and fill in rows from 𝑚 to 𝑛 + 𝑚 − 1 such that the sum of
each column is 𝛼. Also fill in the lower right side of the matrix such that the sum of each row and column in
the entire matrix is exactly 𝛼.

Now, create a bipartite graph with 2 ∗ 𝑁 vertices, where every vertex represents either a row or a column.
Create an edge between row 𝑖 and column 𝑗 if 𝐴𝑖,𝑗 is nonzero. In said graph find a maximum matching. If row

𝑖 and column 𝑗 are matched, that means that in the first second, student 𝑗 works on job 𝑖. If 𝑗 ≥ 𝑛 then no
student is assigned to job 𝑖.

For each row 𝑖 and column 𝑗 that are matched decrease 𝐴𝑖,𝑗 by one and repeat the entire process until you

are left with matrix of all zeroes.

Note here that, at each step, a perfect matching is performed. All rows get matched to some column, and
since the matrix is square, every column gets matched to some row. The sum of the entire matrix is 𝑁 ∙ 𝛼 and
at each step you reduce that sum by 𝑁, so total number of steps taken is 𝛼.

2 2 4

1 2 0

2 2 4 0 0

1 2 0 0 5

5 0 0 0 3

0 4 0 4 0

0 0 4 4 0

initial matrix of jobs
α = 8

After expanding the matrix, added numbers

are underlined

99 MDCS – Bubble Cup 2014

Hopcroft-Karp algorithm which runs 𝑂(|𝑉| ∙ 𝑠𝑞𝑟𝑡(|𝐸|)) time, can be used to reconstruct the first second of
the solution. Number of edges |𝐸| is at most (𝑛 + 𝑚)2 and the number of vertices |𝑉| is 2 ∗ (𝑛 + 𝑚), so the
overall complexity is 𝑂((𝑛 + 𝑚)2).

Added by: Tony Beta Lambda
Solution by:

Name: Dragan Marković
School: School of Computing

E-mail: dragan224@gmail.com

100 MDCS – Bubble Cup 2014

Problem R2 07: Illumination (ID: 2661)

Time Limit: 2.0 second

Memory Limit: 256 MB

Two cubes and a light bulb are placed in a three-dimensional Euclidean space. You are expected to find out if
one of them casts shadow on the other one and if so, calculate the area of this shadow.

Input

Multiple test cases. For each test case:

The first line of the input contains the coordinates of the bulb. It is followed by two groups of four lines each
that describe the cubes. Each line of the cube description contains the coordinates of a vertex (see the figure
where the vertices are marked and labeled in the same order as they are given in the input).

All the coordinates are given with 5 digits after decimal point. It is guaranteed that the cubes do not intersect,
the light bulb is outside both of them, and doesn’t lie on any of the planes that contain their faces. A light
bulb should be regarded as a point light source.

Input terminates by EOF.

Output

For each test case:

The output should contain a single line with two numbers separated with a space character. The first one is
the number of the cube that has a shadow on it (1 𝑜𝑟 2). The second is the area of the shadow. If none of
the given cubes casts shadow on the other the output should contain a single number −1.

Note: if your output has an error with absolute value less than 10−2, it will be judged as Accepted. i.e. You
may output any number of digits after decimal point.
Sample

input output

-1.00000 1.00000 1.00000
0.00000 0.00000 0.00000
2.00000 0.00000 0.00000
0.00000 2.00000 0.00000
0.00000 0.00000 2.00000
5.00000 0.00000 0.00000
7.00000 0.00000 0.00000
5.00000 2.00000 0.00000
5.00000 0.00000 2.00000
0.00000 0.00000 0.00000
1.00000 1.00000 1.00000
2.00000 1.00000 1.00000
1.00000 2.00000 1.00000
1.00000 1.00000 2.00000
-1.00000 -1.00000 -1.00000

2 4.000
-1

101 MDCS – Bubble Cup 2014

-1.00000 -2.00000 -1.00000
-2.00000 -1.00000 -1.00000
-1.00000 -1.00000 -2.00000

Solution:

In this task we’re given two non-intersecting cubes and a single point light source outside of them. We have

to find out whether this source casts a shadow on any of the solids. If it does, we need also to output which

cube has a shadow on it and how large this shadow is.

On the first sight (and probably a few more, too), we may have completely no idea what to do; there are

countless combinations of positioning and rotation of the solids and the source. It most likely means that we

have to take steps to simplify the problem a bit. Let’s call the cubes 𝐴 and 𝐵 and the source 𝑆.

First of all, we can check the area of shadow 𝐵 casts on 𝐴 (if there is any). Then we can swap the cubes and

use exactly the same routine to compute the area of shadow cast on 𝐵. Now we focus on checking area cast

on 𝐴.

We know that 𝐴 consists of 6 square faces. We can process them one by one. For each face we need to check

if there would be any light on it without B (that is, if this face isn’t hidden from the light source) and then how

much shadow there is on it.

Processing a single face

However, we still find it extremely difficult to compute the result even for a single face. Fortunately for us,

we can do a trick. Let’s translate and rotate our 3𝐷 space so that:

 if length of 𝐴’𝑠 edge is equal to 𝑎, then the coordinates of face are (0,0,0), (𝑎, 0,0), (𝑎, 𝑎, 0), (0, 𝑎, 0)

 the interior of cube fulfills 𝑧 > 0.

This transform is convenient for us for a few reasons. Firstly, we don’t shrink or enlarge the space, so the

result remains unchanged. Secondly, we get a very easy test if the face is in front of the light source or behind

it (we just need to check if 𝑧′ < 0 for the light source). Moreover, the face now lies on z = 0 plane and all

the computations become easier.

The question is, how to find such transform? We know that there is a matrix M which converts previous

coordinates (𝑥, 𝑦, 𝑧) into new ones (𝑥′, 𝑦′, 𝑧′):

(𝑥, 𝑦, 𝑧, 1)𝑇 𝑀 = (𝑥′, 𝑦′, 𝑧′, 1)𝑇

(and 𝑑𝑒𝑡𝑀 = 1 because we don’t change the size of the space, but that isn’t important). How can we
compute the matrix? It’s easy — we can take four vertices of the cube which will become
(0,0,0), (𝑎, 0,0), (0, 𝑎, 0) and (0,0, 𝑎) after the transform (call them (𝑥1, 𝑦1, 𝑧1), . . . , (𝑥4, 𝑦4, 𝑧4)). Then we get

102 MDCS – Bubble Cup 2014

𝒛 = 𝟎 problem

We’re still left with problem how to compute shadow. We assume that light is cast on the selected face after

removing B (that is, 𝑧𝑠
′ < 0). We may find it easier to compute the shadow cast by 𝐵 on the plane 𝑧 = 0

instead of the face. After some experiments, we find out that the following are true:

Statement 1. Shadow (if it exists) is a convex subset of 𝑅2 (maybe unbounded) which is an intersection of

half-planes.

Statement 2. Let’s find the shadow cast by all the edges of 𝐵 on the plane 𝑧 = 0. Then the shadow is the

smallest convex figure containing all such cast edges.

Note that the edges don’t have to form the convex figure. It happens for example if 𝑧 = 0 cuts off only one
corner with three parts of edges coming out of it (figure 1).

It means we need to find the shadow cast by 𝐵’𝑠 edges on plane 𝑧 = 0, compute the convex hull 𝐶 of such
set of edges (which can be converted to set of points) and compute the common area of 𝐶 and the processed
face of 𝐴. Now note that:

Figure 1: An interesting example. Left: B cube and section made by 𝑧 = 0 plane. Vector shows 𝑧 > 0.
Middle: the same cube and (bold) visible parts of edges from 𝑧 = 0 perspective. Right: the “light
projections” of the visible edges and the region that is shaded by 𝐵. Note that not all edges of convex hull
are the projections.

• The second can be easily done by any convex hull algorithm (e.g. Graham’s scan) because all the points

lie on 𝑧 = 0 plane.

• Intersection of two convex polygons on the plane can also be done quite easily using Sutherland-

Hodgman algorithm; that is, convert one polygon into a set of half-planes and for each half-plane cut

off the part of the second polygon that is outside the half-plane.

• Computing the area of resulting polygon can be done using a very known formula

.

We’re only left with one problem.

Casting edges on 𝒛 = 𝟎 plane

Here comes a thing we’ve been avoiding for such a long time — a case study. Fortunately, it won’t hurt that
much. Let’s call 𝑧𝑠

′ a converted 𝑧-coordinate of light source and 𝑧1
′ , 𝑧2

′ the converted 𝑧 −coordinates of the
edge endpoints (and call these endpoints 𝑋, 𝑌).

1. If 𝑧1
′ , 𝑧2

′ ≥ 0, no shadow will be cast on 𝑧 = 0 for sure (𝑧 = 0 completely covers

this edge).

2. If 𝑧1
′ , 𝑧2

′ ≤ 𝑧𝑠
′ , also no shadow will be cast on 𝑧 = 0 as the light beam goes straight and after

103 MDCS – Bubble Cup 2014

reaching any point of the edge it cannot hit 𝑧 = 0 anymore.

3. If 𝑧1
′ , 𝑧2

′ ∈ (𝑧𝑠
′ , 0), then the shadow will be cast. It’s very easy to compute it: cast both endpoints

on 𝑧 = 0 plane (cut 𝑆𝑋→ and 𝑆𝑌→ rays with 𝑧 = 0); they both are obviously the endpoints of

the cast edge.

4. If nothing above happens, we can partition the edge into at most three parts: the first one fulfills
𝑧 ∈ (−∞, 𝑧𝑠

′ + 𝜀), the second one 𝑧 ∈ (𝑧𝑠
′ + 𝜀, −𝜀), and the third one 𝑧 ∈ (−𝜀, +∞). Only the

second one can create a shadow so we need to consider only this one (and this way we reduced
this problem to case 3).

The 𝜀 is very helpful for us as it allows to approximate the unbounded figure as a polygon in which
“𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑎𝑡 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦” are just usual points, though with large values. If we considered an edge for which
𝑧 ∈ (𝑧𝑠

′ , 0) the beam going through an endpoint at 𝑧 = 𝑧𝑠
′ would cut 𝑧 = 0 plane at infinity — that is what

we want to avoid.

Summary

It is quite a long solution, so we need to sum it up:

1. Read cubes 𝐴, 𝐵 and light source 𝑆.
2. Select a cube (say 𝐴) on which we’ll try to cast the shadow.
3. Take each of 6 faces of 𝐴 and then try to compute the result.
4. Transform the space so that the selected face lies on 𝑧 = 0.
5. If the light source fulfills 𝑧𝑠

′ ≥ 0, return no shadow on this face.
6. Cast each of 12 𝐵 edges onto 𝑧 = 0 plane.
7. Compute the 2𝐷 convex hull of the endpoints of these edges (if there are any).
8. Find an intersection of this convex hull and the selected face.
9. Compute the area of intersection and add it to the result.

Added by: [Trichromatic] XilinX
Resource: ACM/ICPC NEERC Moscow Subregional Contest 2007
Solution by:

Name: Marek Sokołowski
School: I LO w Lomzy

E-mail: mnbvmar@gmail.com

104 MDCS – Bubble Cup 2014

Problem R2 09: [CH] Guess The Number With Lies v2 (ID: 17308)

Time Limit: 20.0 second

Memory Limit: 1536 MB

Judge has chosen an integer x in the range [1, n]. Your task is to find x, using query as described below. But
be careful, because the Judge is a liar. Judge is allowed to lie up to w times in single game and only in reply
for query.

Single query should contains set 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎𝑘}. The reply for query is "𝑌𝐸𝑆", if 𝑥 is in 𝑆. Otherwise
the reply is "𝑁𝑂".

1 ≤ 𝑘 < 𝑛

1 ≤ 𝑎1 < 𝑎2 < . . . < 𝑎𝑘 ≤ 𝑛

Communication

You should communicate with Judge using standard input and output.
Attention: the program should clear the output buffer after printing each line. It can be done using
fflush(stdout) command or by setting the proper type of buffering at the beginning of the execution -
setlinebuf(stdout).

The first line of input contains single integer 𝑇, the number of games. Then 𝑇 games follow.

At the beginning of each game you should send to the Judge a line with command "𝑆𝑇𝐴𝑅𝑇_𝐺𝐴𝑀𝐸". The
Judge will answer you with numbers 𝑛, 𝑤, 𝑚, where 𝑛, 𝑤 are as described above and 𝑚 is the maximum
number of queries that you can use in this game.

Then you should send some queries, every query is a line with "𝑄𝑈𝐸𝑅𝑌" keyword, then single-space
separated values 𝑘 𝑎1 𝑎2 . . . 𝑎𝑘. After each query the Judge will answer "𝑌𝐸𝑆" 𝑜𝑟 "𝑁𝑂".

At the end of game you should give answer: "𝐴𝑁𝑆𝑊𝐸𝑅 𝑦", where 0 ≤ 𝑦 ≤ 𝑛; 𝑦 = 0 means, that you skip
this game without the correct answer. Otherwise y is the answer for the game. When 𝑦 ≠ 𝑥, the solution
will got 𝑊𝐴.

Then start the next game (if there is any).

Sample

Communication

The example of communication. J=Judge, P=Player.

J: 3

P: START_GAME
J: 2 2 10

P: QUERY 1 1
J: YES
P: QUERY 1 1
J: YES
P: QUERY 1 1
J: YES
P: ANSWER 1

105 MDCS – Bubble Cup 2014

P: START_GAME
J: 2 4 10

P: QUERY 1 2
J: YES
P: QUERY 1 2
J: YES
P: QUERY 1 1
J: YES
P: QUERY 1 1
J: YES
P: QUERY 1 2
J: YES
P: QUERY 1 2
J: YES
P: QUERY 1 2
J: NO
P: QUERY 1 1
J: NO
P: ANSWER 2

P: START_GAME
J: 12345 7 100

P: ANSWER 0

Explanation

In 1𝑠𝑡 game Judge said 3 times, that his number is 1 and he didn't lie. The answer is 1, because he can lie
only 2 times.

In 2𝑛𝑑 game the Judge lied in 3𝑟𝑑, 4𝑡ℎ and 7𝑡ℎ query.

In 3𝑟𝑑 game the Player gave up. The score is 4 ∗ 1002.

The score is 32 + 82 + 4 ∗ 1002 = 9 + 64 + 40000 = 40073

Note

Be careful. The Judge will try to maximize the number of queries that you will ask. If necessary, the Judge can
also replace chosen value x with the other one. But don't worry too much - at the end of the game, the value
x chosen by Judge will satisfy all except at most w of your queries.

Note2

If you got SIGXFSZ error, you probably use unnecessary numbers in queries. Let's see at the example:

P: START_GAME
J: 16 2 14

P: QUERY 2 1 2
J: NO
P: QUERY 3 1 2 3
J: NO
P: QUERY 4 1 2 3 4
J: NO

106 MDCS – Bubble Cup 2014

P: QUERY 5 1 2 3 4 5
J: NO
P: QUERY 6 1 2 3 4 5 6
J: NO

In 4𝑡ℎ query, there are unnecessary numbers 1 and 2. This numbers cannot be the answer for this game,
because the Judge said three times (in 1𝑠𝑡, 2𝑛𝑑 and 3𝑟𝑑 query's reply) "1 𝑎𝑛𝑑 2 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑂𝐾! ", but the Judge
can lie only 2 times. From the same reason in 5𝑡ℎ query, the unnecessary numbers are 1, 2 and 3. When 𝑛 is
big enough, the profit from this optimization is huge (and probably 𝑆𝐼𝐺𝑋𝐹𝑆𝑍 won't appear).

Solution:

The problem [CH] Guess The Number With Lies v2 on this year’s Bubble Cup qualifications is known in
information theory as Ulam’s game.

It is a game with two players, named Paul and Carole and three parameters 𝑛, 𝑞 and 𝑘, known to both players.
Carole thinks of an integer 𝑥 ∈ [1, 𝑛]. Paul has 𝑞 questions with which to determine 𝑥. The questions must
be of the form “Is 𝑥 ∈ 𝐴?“, where 𝐴 ⊆ {1, … , 𝑛}. He (Paul) may use previous answers before deciding his next
question. Carole is permitted to lie but she (Carole) may lie at most 𝑘 times through the entire course of the
game. Paul wins if at the end of the 𝑞 questions there is a unique possible value for 𝑥. Carole is allowed to
play an adversary strategy, i.e., Carole does not actually pick an 𝑥 but answers all questions so that there is at
least one 𝑥 that she could have picked. Now the game is one of perfect information and so we can say for
given 𝑛, 𝑞, 𝑘 that either Paul or Carole will win the game. The question is: Who wins? Note that when 𝑘 = 0
the game reverts to the classical “Twenty Questions” and Paul wins if and only if 𝑛 ≤ 2𝑞.

In this particular problem we take the role of Paul and are allowed to ask a much higher than optimal number
of questions to determine 𝑥. Of course, asking fewer questions awards a higher score for each test case. Note
that during the initial analysis we will consider 𝑘 to be a fixed positive integer, and later use the derived
conclusions to develop a strategy for playing the game.

Consider a generalization of this game with the single parameter 𝑛 replaced by a sequence of nonnegative
integers 𝑥0, 𝑥1, . . . , 𝑥𝑘. Let 𝐴𝑖 , 0 < 𝑖 < 𝑘, be disjoint sets, with |𝐴𝑖| = 𝑥𝑖; these sets known to both players.
Now Carole selects 𝑥 ∈ 𝐴0 ∪ … ∪ 𝐴𝑘. If 𝑥 ∈ 𝐴𝑖 then Carole is permitted to lie at most 𝑘 − 𝑖 times about it.
Again, Carole can play an adversary strategy so that either Paul or Carole will win the game. The 𝑛, 𝑞, 𝑘 games
correspond to 𝑥0 = 𝑛, 𝑥1 = . . . = 𝑥𝑘 = 0. This representation is useful for analyzing “middle positions” of the
𝑛, 𝑞, 𝑘 game. In this sense 𝑥𝑖 gives a count on those 𝑥 for which if 𝑥 is the answer then Carole has already lied
𝑖 times about it.

Another way of thinking about this problem is in terms of chips. Imagine a board with positions marked (from
left to right) 0, 1, . . , 𝑘. There is one chip for each possible answer 𝑥. A chip is placed on position 𝑖 if 𝑥 is an
answer Carole can lie about at most 𝑘 − 𝑖 more times. Thus, the 𝑥0, 𝑥1, . . . , 𝑥𝑘 game starts with 𝑥𝑖 chips on
position 𝑖, for each 𝑖. In this context, each round (𝑞 is now the number of rounds) Paul selects a set 𝐴 of chips,
corresponding to asking the question “Is 𝑥 ∈ 𝐴?“. A “No” answer by Carole would mean that, for each 𝑥 ∈ 𝐴,
if x is the answer then it has been lied about one more time. This corresponds to moving all chips in 𝐴 one
position to right. Chips that were in position 𝑘 are removed from the board. A “Yes” answer by Carole
corresponds to moving all chips not in 𝐴 one position to the right. That is, Paul selects a set 𝐴 of chips and
Carole selects whether to move all chips in 𝐴 or all chips not in 𝐴 one position to the right. Carole is not
permitted to move all the chips off the board (although this would not occur in actual play). Paul wins if at
the end of the game there is precisely one chip remaining on the board. We define the state of our board to
be the vector 𝑃 = (𝑥0, 𝑥1, . . . , 𝑥𝑘). This state changes during the game as the chips are moved.

Now, we imagine Carole announcing a random strategy-whatever set 𝐴 Paul selects, Carole will then flip a fair
coin to decide whether to move the chips of 𝐴 or the chips not in 𝐴 one position to the right. (If by this
strategy all chips are removed we will agree that Carole has lost.) The coin flips are done separately each
round. Now a strategy for Paul has a probability of winning. For each chip 𝑐 let 𝑋𝑐, be the indicator random
variable for 𝑐 to remain on the board at the end of the game. Regardless of Paul’s strategy, each chip will

107 MDCS – Bubble Cup 2014

move forward with probability 0.5 each turn - if the coin flip “matches” whether 𝑐 ∈ 𝐴 - and the movements
on the different turns are mutually independent. If c starts at position j, its position at the end of the game is
given by 𝑗 + 𝐵(𝑞, 0.5), or “off the board’ if this is larger than k, where 𝐵(𝑞, 0.5) is the standard Binomial
distribution, the number of heads in 𝑞 flips of a fair coin. We will consider

𝐸[𝑋𝑐] = Pr [𝐵(𝑞, 0.5) ≤ 𝑘 − 𝑗],

the probability of remaining on the board, to be the weight of the chip 𝑐. Let 𝑋 = ∑ 𝑋𝑐 the sum over all chips
𝑐. Linearity of expectation gives 𝐸[𝑋] = ∑ 𝐸[𝑋𝑐], which we consider to be the weight of the whole state of
the board, and the expected number of remaining chips on it. This weight being greater than 1 means that
the expected number of remaining chips is also greater than 1. In particular, this implies that we cannot have
𝑋 < 1 always, so that with positive probability Carole will win. However, this is a perfect information game
and so with perfect play either Paul or Carole will always win. Since no strategy allows Paul to always win,
there is a strategy (not randomized) so that Carole always wins! This conclusion allows us to check whether a
certain board state is unwinnable for us (Paul) in a given number of moves and thus allows us to put a lower
bound on the required number of moves to win.

𝐸[𝑋] is not overly time consuming to compute (caching binomial coefficients makes this faster), which allows
us to quickly determine if a state is possibly winnable in 𝑞 moves. Since 𝐸[𝑋] is monotonous (if it might be
possible to win in 𝑞 moves, it isn’t impossible in 𝑞 + 1) we can use binary search to determine the lower
bound for the number of moves required to win a certain board – 𝑠(𝑃). Note that this does not guarantee
that a strategy that always wins in 𝑠(𝑃) moves exists, but has proved to be an acceptable heuristic to use
when developing a strategy for this problem.

For any board state 𝑃, our strategy for winning in 𝑠(𝑃) moves involves finding the subset of chips A to play in
the next move. This provides us with two possible future states 𝑃𝑌𝐸𝑆 and 𝑃𝑁𝑂, depending on Carol’s answer.
The strategy is considered valid if 𝑠(𝑃𝑌𝐸𝑆) ≤ 𝑠(𝑃) − 1 and 𝑠(𝑃𝑁𝑂) ≤ 𝑠(𝑃) − 1. Since chips in each stack have
the same individual weight, and the weight associated with the stacks decreases from left to right, a greedy
algorithm is a great candidate for finding the subset A. Basically, we can use a descending sort of the chips by
slightly modified weight (only consider the change in the chip’s weight for both possible future boards) to

add the chips one by one to either 𝐴 or �̃� and keep the weights of 𝑃𝑌𝐸𝑆 and 𝑃𝑁𝑂 balanced. This allows us to
(almost) evenly split the chips and make close to optimal moves.

Added by: miodziu
Solution by:

Name: Uglješa Stojanović
School: School of Computing

E-mail: ugljesas@gmail.com

108 MDCS – Bubble Cup 2014

Problem R2 10: [CH] Colour Brick Game (ID: 18073)

Time Limit: 50.0 second

Memory Limit: 256 MB

Let's consider the tetris like game. The rules are very easy, there is board of width 10 and height 20. Color
bricks fall down the board. Every brick contains 3 colors. Player can rotate colors in the brick and determine
the column, in which to place current brick. The goal is to construct horizontal, vertical or diagonal lines of
length 3 or more in the same color. After every brick falls down, the cleaning up algorithm is executed.

Single step of cleaning up algorithm searches for lines constructed from cells with the same color (there can
be more than one such line). If no line is found, the algorithm finishes. Otherwise all cells in all found lines
disappear, then the cells above this disappeared cells fall down. The cleaning up algorithm executes single
steps as long, as there are any changes on the board.

The brick can be rotated. When the brick contains colors 𝐴, 𝐵, 𝐶 (from top to bottom), then single rotation
makes the brick with colors 𝐶, 𝐴, 𝐵, and double rotation makes the brick with colors 𝐵, 𝐶, 𝐴.

Your task is to write the program, which can play in Colour Brick Game. You will receive the consecutive bricks
and for each of them have to determine the correct column and rotation. For each cleaned line You got points
(according to scoring section). The goal is to maximize the score.

Input

The first line of input contains single-space separated integers 𝑛 and (3 ≤ 𝑘 ≤ 9, 1 ≤ 𝑛 ∗ 𝑘 ≤ 106),
where 𝑛 is the number of bricks in the game and 𝑘 is the number of different colors, that can appear in the
game. The next 𝑛 lines contain bricks description, one line per brick. Each brick is represented as string of
length 3, containing digits (every digit is from 1 to 𝑘).

Output

For every brick from the input, You should write a line with two single-space separated integers 𝑥 and (1 ≤
 𝑥 ≤ 10, 0 ≤ 𝑟 ≤ 2), where 𝑥 is the number of column to place the brick and 𝑟 is the rotation of the brick
(0 for no rotation, 1 for single rotation, 2 for double rotation).

If after falling down the brick is located outside the board (the higher brick cell is higher than the highest
board row), the game finishes immediately. The judge doesn't read the remaining moves, so you don't need
to output them. You can also stop, when there is no valid move at the board and you don't need to output
this last move.

Score

Base score for cleaned line of length 𝑚 is 𝑚2. The base score is multiplied by the number of lines cleaned in
single cleaning up step and then multiplied by the cleaning up step number (see example for clarify).

The brick score is sum of scores received from cleaned lines after the brick fallen down.

Total score is sum of brick scores.

109 MDCS – Bubble Cup 2014

Sample

input output

11 5
211
321
232
233
345
245
451
332
451
332
312

1 1
2 0
3 0
3 2
4 0
5 0
6 0
6 0
7 0
7 0
8 1

input output

11 5
211
321
232
233
345
245
451
332
451
332
312

1 0
1 0
1 0
1 0
1 0
1 0
1 0

Explanation

In first example, for the first 10 bricks there is no line to clean. The last brick makes lines to clean in 4 cleaning
up steps.

In 1𝑠𝑡 step there is only one line of length 3 to clean. The score is 32, multiplied by 1 (number of lines cleared
in the step) and multiplied by 1 (number of step). 32 ∗ 1 ∗ 1 = 9.

In 2𝑛𝑑 step there are 3 lines (one of length 3, two of length 4). The score is 32 + 42 + 42, multiplied by 3
(number of lines cleared), multiplied by 2 (number of step). (32 + 42 + 42) ∗ 3 ∗ 2 = 41 ∗ 6 = 246.

In 3𝑟𝑑 step there are 2 lines (both of length 3). The score is (32 + 32) ∗ 2 ∗ 3 = 18 ∗ 6 = 108

 In 4𝑡ℎ step there are 2 lines of length 3. The score is (32 + 32) ∗ 2 ∗ 4 = 18 ∗ 8 = 144. Total score is 9 +
 246 + 108 + 144 = 507.

In second example player placed all bricks in 1𝑠𝑡 column. There is no cleaned line, so the 7𝑡ℎ brick after falling
down is located outside the board. The game finishes with score 0. Note, that there is only 7 lines in output.

110 MDCS – Bubble Cup 2014

Solution:

This is one of well-designed challenge problems. After some analysis, we conclude several things:

- Big score is clearing as much bricks as possible in as many clearing as possible

- It is harder to fit bricks for big scores when number of colors (𝐾) is big

- When 𝐾 is small, bricks tend to get cleared very easily and we need to avoid this

These observations bring us to winning strategy. We concluded that time shouldn't be wasted on 𝐾 bigger

than 4. We concentrate only on cases of 3 and 4 colors, which alone brings about 20 million points.

Roughly, algorithm works as follows:

1) We calculate score for all 10 possible positions and 3 rotations

2) For maximum of 30 possibilities we calculate number of points it would bring

3) Next thing to be done is sorting of scores, in following fashion: primary - Number of points,

secondary and even tertiary we sort using other parameters like number of same adjacent bricks,

number of holes, etc.

4) Complete state of playing field and scores are remembered after every new insertion of new brick

5) We choose the worst score (Which is very likely 0) and repeat it until some condition is satisfied

(For example, for 𝐾 = 3 it turned out it is in about 60 insertions or full table)

6) In that moment, we search for the best score out of the remembered scores, we go back to the

corresponding state and clear the blocks for the best score.

7) After clearing, we remove the remembered states and scores and start the algorithm all over again

from this new state.

The falling bricks win points in following fashion: About 50 bricks makes 0 or just a little above 0 points, then

just one brick produces 12𝐾. Then about 60 bricks make about 0, then the next makes about 15𝐾. Then

about 40 bricks make about 0, then just one more produces about 18𝐾. The average value of points per clear

111 MDCS – Bubble Cup 2014

is 15𝐾, when moments are well chosen. The largest score in random generated input is worth about 50𝐾

points. That means that number of points per brick is average 400 points for 𝐾 = 3, and 250 points for 𝐾 =

4. It is easily seen that it is impossible to do so if every clear is done as soon as possible. For the case of 𝐾 =

 5, 6, 7 we managed to play the game until the very end, but number of points is drastically smaller compared

to strategy we described, which cannot be implemented in these cases. For the case of 𝐾 = 8 𝑜𝑟 9 we

couldn't finish the game, but to be honest, we didn't have to, because the idea above indicated that big 𝐾

won't bring us much points.

Per test cases:

Number of colors Correct moves Score

3 3333 1333534

4 2498 646033

5 2000 204065

3 33333 11997210

4 25000 6168573

5 20000 1685123

6 16664 521511

7 14285 215244

8 1007 14740

9 370 4062

Added by: miodziu
Solution by:

Name: Aleksandar Ogrizović
School: Gimnazija Sombor

E-mail: xxxgrizxxx@gmail.com

112 MDCS – Bubble Cup 2014

The scientific committee would like to thank everyone
who did important behind-the-scenes work.

We couldn't have done it without you!

We will prepare a lot of surprises
for you again next year!

Stay with us!

Bubble Cup Crew

