
 

MDCS – Bubble Cup 2018   1 

 

Bubble Cup 2018 

Microsoft Development Center Serbia 
 

 

 

 

 

 

Problem set & Analysis from 

the Finals and Qualification 

rounds 
 

 

 

 

 

 

 

 

Belgrade, 2018 

  



 

  MDCS – Bubble Cup 2018 2 

Scientific committee: 

Aleksandar Damjanović 

Aleksandar Lukač 

Aleksandr Milanin 

Andrija Jovanović 

Balša Knežević 

Branko Fulurija 

Daniel Paleka 

David Milićević 

Filip Vesović 

Ibragim Ismailov 

Kosta Grujičić 

Miloš Šuković 

Nebojša Savić 

Nikola Smiljković 

Ognjen Tošić 

Predrag Ilkić 

Radoica Draškić 

Slavko Ivanović 

 

Qualification analysts:  

Aleksa Miljković Mark Karneichyk 

Aleksandar Maksimović Michal Zawalski 

Andrei Valchok Mladen Puzić 

Andrijana Dejković Nikola Jovanović 

David Milinković Nikola Pešić 

Emil Indzhev Pavle Martinović 

Filip Ćosović Piotr Nawrot 

Ivan Avirović Stjepan Požgaj 

Ivan Stošić Tadija Šebez 

Jovan Pavlović Vladimir Milenković 

Konrad Majewski Vladyslav Hlembotskyi 

Krzysztof Maziarz  

 

Cover: 

Sava Čajetinac 

 

Typesetting:  

Ana Trajković 

 

Volume editor: 

Dragan Tomić 

  



 

MDCS – Bubble Cup 2018   3 

Contents 

Preface .......................................................................................................................................................................... 5 

About Bubble Cup ................................................................................................................................................... 6 

Bubble Cup Finals .................................................................................................................................................... 7 

Bubble Cup Finals Results – Premier League ................................................................................................. 8 

Bubble Cup Finals Results – Rising Stars ...................................................................................................... 10 

Problem A: Splitting money .............................................................................................................................. 12 

Problem B: Best Ranking .................................................................................................................................... 15 

Problem C: Say “Hello!” ....................................................................................................................................... 18 

Problem D: AI robots ........................................................................................................................................... 22 

Problem E: Palindrome Pairs ............................................................................................................................. 25 

Problem F: Self-exploration ............................................................................................................................... 28 

Problem G: Space Isaac ....................................................................................................................................... 32 

Problem H: Interstellar battle ........................................................................................................................... 36 

Problem I: Hyperspace™ highways ................................................................................................................. 39 

Problem J: Ancient civilizations ........................................................................................................................ 46 

Problem K: Last chance ....................................................................................................................................... 49 

Problem L: Moonwalk challenge ..................................................................................................................... 52 

Problem M: Shady Lady ...................................................................................................................................... 55 

Round 1: Big Snowfall.......................................................................................................................................... 60 

Round 1: Bono ........................................................................................................................................................ 64 

Round 1: Changu Mangu in a Football Team ............................................................................................ 67 

Round 1: Crazy LCP .............................................................................................................................................. 70 

Round 1: Find the Next Letter .......................................................................................................................... 72 

Round 1: Oil Skimming ....................................................................................................................................... 74 

Round 1: Optimum Click .................................................................................................................................... 76 

Round 1: Origami .................................................................................................................................................. 78 

Round 1: Real Phobia .......................................................................................................................................... 81 

Round 1: Rocks ...................................................................................................................................................... 83 

Round 1: Fire Evacuation Plan .......................................................................................................................... 86 

Round 1: PIEK ......................................................................................................................................................... 89 

Round 2: NEO ......................................................................................................................................................... 94 



 

  MDCS – Bubble Cup 2018 4 

Round 2: Ada and Homework .......................................................................................................................... 97 

Round 2: Count the Graphs ............................................................................................................................. 101 

Round 2: Fox Girls ............................................................................................................................................... 105 

Round 2: Alphabetic Rope ............................................................................................................................... 112 

Round 2: Winter Is Here ................................................................................................................................... 115 

Round 2: This Means War ................................................................................................................................ 119 

Round 2: Lannister Army .................................................................................................................................. 123 

Round 2: Ada and Cucumber ......................................................................................................................... 128 

Round 2: Seedlings ............................................................................................................................................. 131 

Round 2: Big Integer .......................................................................................................................................... 136 

  



 

MDCS – Bubble Cup 2018   5 

Preface 

Dear Bubble Cup finalists,  

  

I would like to thank you for taking part in the eleventh edition of the Bubble Cup in Belgrade, 

Serbia.   

  

This year, we have introduced two divisions: Premier League – the division opened for high 

school and university teams which meet the eligibility requirements of Bubble Cup; and Rising 

Stars – the division opened only for eligible Serbian high schools teams. By incorporating this 

change and creating the Rising Stars division, we want to encourage Serbian high schools to 

compete in Bubble Cup and motivate young programming talents in Serbia as well.     

  

Bubble Cup 11 has gathered more than 70 competitors in 25 teams (Premier League consists of 

17 teams and Rising Stars consists of 8 teams). Finalists come from Belarus, Bulgaria, Croatia, 

Poland, the UK, Ukraine, Poland and Serbia. The Rising Stars finalists, composed of high school 

teams from Serbia, come from Belgrade, Kragujevac, Niš, Novi Sad, Sombor and Šabac.    

  

We are more than glad to see some of you coming back to Bubble Cup as competitors, judges 

or crew! We appreciate your trust in this competition and we are proud to have you as 

contributors to its growth and development. Except for the challenging moments you will 

encounter while solving the problems, we hope that you are going to take away with you some 

fun memories, new friendships and other opportunities from the Bubble Cup Finals.  

  

Having all these things in mind, we hope you will join us next year and contribute to making 

Bubble Cup an inspiring, productive and enjoyable event.  

  

  

Sincerely,   

Dragan Tomic  

MDCS PARTNER Engineer manager/Director 

  



 

  MDCS – Bubble Cup 2018 6 

About Bubble Cup 

Bubble Cup is a coding contest started by Microsoft Development Center Serbia in 2008 with 

a purpose of creating a local competition similar to the ACM Collegiate Contest, but soon 

that idea was overgrown and the vision was expanded to attract talented programmers from 

the entire region and promote the values of communication, companionship and teamwork.  

This edition of Bubble Cup is special because the format of the competition has changed this 

year. Now we have two divisions: 

1. Premier League – Division opened to high school and university teams that satisfy 

eligibility rules 

2. Rising Stars – Division opened only to eligible Serbian high schools’ teams. Serbian 

high school teams can choose to compete in Premier league by contacting Bubble 

Cup organizers to change their default division by the start of Round 2.   

The best 16 teams from the Premier League division and the best 8 teams from the Rising 

Star division will have chance to compete in the Finals. Teams competed in two divisions in 

the finals: Premier League and Rising Stars.  

This year, all Bubble Cup finalists had a chance to visit Microsoft Development Center Serbia 

and an opportunity to hear about the Center, PSI:ML machine learning seminar, MDCS 

initiative, to try demos and to talk with engineers who shared their experience.   

Microsoft Development Center Serbia (MDCS) was created with a mission to take an 

active part in the conception of novel Microsoft technologies by hiring unique local talent 

from Serbia and the region. Our teams contribute components to some of the Microsoft’s 

premier and most innovative products such as SQL Server, Office & Bing. The whole effort 

started in 2005, and during the last 13 years a vast number of products came out as a result 

of a great team work and effort. 

Our development center is becoming widely recognized across Microsoft as a center of 

excellence for the following domains: computational algebra engines, pattern recognition, 

object classification, computational geometry and core database systems. The common 

theme uniting all the efforts within the development center is applied mathematics. MDCS 

teams maintain collaboration with engineers from various Microsoft development centers 

around the world (Redmond, Israel, India, Ireland, Japan and China), and Microsoft 

researchers from Redmond, Cambridge and Asia.  

 

https://www.microsoft.com/sr-latn-rs/mdcs


 

MDCS – Bubble Cup 2018   7 

Bubble Cup Finals 

The Bubble Cup XI Finals were held on September 22, 2018, at the VIG Plaza in Belgrade (New 

Belgrade).   

Andreja Ilić, a participant of the first Bubble Cup and later a Bubble Cup organizer, officially 

opened the 11th Bubble Cup. He stressed the importance of the competitions based on the 

algorithimic problem solving and the fact that they develop a cognitive way of thinking, which 

is imporant for every part of our lives, in his speech for the finalists.  

This initiative inspired a vast number of Serbian high schools to participate in this competition. 

This confirms the significance and the positive influence of this competition on young talents. 

In addition to that, it is important to mention that a lot of people empleyed in the MDCS today 

were the finalists of Bubble Cup. They, along with the other participants, are the people who 

have the potential to change this world for the better. 

The competition started at 11.00am and lasted until 4.00pm. In the evening, at Microsoft 

Development Center Serbia, the award ceremony was held and was later followed by a lounge 

party organized in honor of all participants. 

During the qualification phase Premier League gathered the very best teams in Europe, and in 

the end, the challenge problem made all the difference in terms of who will qualify for the 

finals. This intense fight inspired us to expand the number of teams coming to the finals to 17. 

The Rising Stars league attracted a record number of Serbian high school teams during 

qualifications. Compared to Bubble Cup X, a 110% more high school teams from Serbia 

participated in the qualifications, fighting to become one of the 8 teams in the finals. While we 

are delighted to see so many new faces coming to Bubble Cup, we are also very pleased to 

see so many returning competitors. 

During finals teams in Premier League and Rising Stars divisions solved slightly different 

problem sets which had overlapping problems. Problem distribution between leagues is 

represented by the table below:  

 A B C D E F G H I J L K L M 

Premier 

League 

              

Rising 

Stars 

              

Rules of the contest were the same for both divisions, which remained in the classical ACM 

ICPC five-hour format. Prizes were given to the top 3 Premier League teams, as well as the top 

2 Rising Stars teams. 



 

  MDCS – Bubble Cup 2018 8 

Bubble Cup Finals Results – Premier League 

Problems for this year's edition of Bubble Cup were extremely difficult, in order to match the 

very best teams we had on the finals. This was likely the thoughest problem set in the Bubble 

Cup history. Warsaw Igloos (Marek Sommer, Kamil Dębowski, Karol Kaszuba) stellar 

performance, as the only team to solve 9 problems out of 10, convincigly won this year's 

Bubble Cup. They took a lead after 90 minutes and only increased it as the time went by. 

Pchnąć w tę łódź jeża lub ośm skrzyń fig (Michał Zawalski, Konrad Majewski, Konrad 

Paluszek) stayed in the top 4 places for the most of the competition and solving the problem 

“Self-exploration” in the last 30 mins gave them 2nd place. Biggest change on the standings 

during the 1-hour freeze time was made by BSUIR2 (Andrei Valchok, Aliaksei Vistiazh, 

Andrei Sobal), who went from the 8th place and 3 solved problems before the freeze to 6 

problems. Their last correct submission was made 5 minutes before the end of the contest. 

Scoreboard 
 

# Team name Score Penalty 

1 Warsaw Igloos 9 1678 

2 Pchnąć w tę łódź jeża lub ośm 

skrzyń fig 

6 1119 

3 BSUIR2 6 1256 

4 Jagiellonian Owls 5 796 

5 Zato što volimo PMF 5 970 

6 Selski Babi 5 1234 

7 Danonki 4 408 

8 fufel 4 560 

9 Les Misérables 4 771 

10 BooleИaNs 4 821 

11 Slaven me lupo 3 441 

12 nikva tikva 3 459 

13 φφ team 3 493 

14 øjhøjh 3 508 

15 RAF_101 2 655 

16 CornerCase 1 -46 

17 lemi lemi sve zalemi 1 12 

 

 

 



 

MDCS – Bubble Cup 2018   9 

 

 

Problems solved distribution for Premier League 
 

 

0

2

4

6

8

10

12

14

16

18

Solved problems count



 

  MDCS – Bubble Cup 2018 10 

Bubble Cup Finals Results – Rising Stars 

Bits please (Nikola Pešić, Tadija Šebez, Jovan Pavlović) started strong and kept their lead 

throughout the competition. Their last correct submission was a couple of seconds before the 

end of the contest for the problem Say „Hello!“. The next three teams were fighting for 2nd 

place award by trying to be the first team to solve the problem „AI Robots“. In the end 

Inspekcija (Igor Pavlović, Marko Grujčić, Uroš Maleš) came on top with the best penalty out 

of teams with four solved problems. 

Scoreboard 
 

# Team Score Penalty 

1 Bits please 6 911 

2 Inspekcija 4 349 

3 Gii Klub 4 554 

4 Gimnazija Sombor 4 908 

5 Nepohvaljeni 3 344 

6 greattor 3 368 

7 VR1.s 3 443 

8 The_GodFathers 3 509 

 

 

 

 

 

 

 

 



 

MDCS – Bubble Cup 2018   11 

 

Problems solved distribution for Rising Stars 
 

 

0

1

2

3

4

5

6

7

8

9

Solved problems count



 

  MDCS – Bubble Cup 2018 12 

Problem A: Splitting money 

Rising Stars division only 

Author:  

Aleksandar Damjanović 

Implementation and analysis:  

Aleksandar Damjanović 

Andrija Jovanović 

Statement: 

After finding and moving to the new planet that supports human life, discussions started on 

which currency should be used. After long negotiations, Bitcoin was ultimately chosen as the 

universal currency. 

These were the great news for Alice, whose grandfather got into Bitcoin mining in 2013, and 

accumulated a lot of them throughout the years. Unfortunately, when paying something in 

bitcoin everyone can see how many bitcoins you have in your public address wallet.  

This worried Alice, so she decided to split her bitcoins among multiple different addresses, so 

that every address has at most 𝑥 satoshi (1 bitcoin = 108 satoshi). She can create new public 

address wallets for free and is willing to pay 𝑓 fee in satoshies per transaction to ensure 

acceptable speed of transfer. The fee is charged from the address transaction is sent from. Tell 

Alice how much total fee in satoshi she will need to pay to achieve her goal. 

Input: 

First line contains number 𝑁 representing total number of public addresses Alice has. Next line 

contains 𝑁 integer numbers 𝑎[𝑖] separated by a single space, representing how many satoshi 

Alice has in her public addresses. 

Last line contains two numbers 𝑥 and 𝑓 representing maximum number of satoshies Alice can 

have in one address, as well as fee in satoshies she is willing to pay per transaction.  

Output: 

Output one integer number representing total fee in satoshi Alice will need to pay to achieve 

her goal. 

Constraints: 

• 1 ≤ 𝑁 ≤  200 000 

• 1 ≤ 𝑎[𝑖] ≤  109 

• 1 ≤  𝑓 <  𝑥 ≤ 109 

 

 

 



 

MDCS – Bubble Cup 2018   13 

Example input: 

3 

13 7 6 

6 2 

Example output: 

4 

Explanation 1: 

Alice can make two transactions in a following way: 

0. 13 7 6 (initial state) 

1. 6 7 6 5 (create new address and transfer from first public address 5 satoshi) 

2. 6 4 6 5 1 (create new address transfer from second address 1 satoshi) 

Since cost per transaction is 2 satoshi, total fee is 4 satoshi. 

Time and memory limit: 1s/ 256 MB 

  



 

  MDCS – Bubble Cup 2018 14 

Solution and analysis: 

It’s useful to notice that since we can create multiple addresses for free we never need to transfer 

bitcoin to an existing address. Therefore, we can solve the problem for each public address 

separately and sum the fees at the end. 

 

In order to minimize the number of fees we will need to minimize the number of transactions, 

because the cost per transaction is constant. Therefore, we will need to make transactions as 

large as possible – in other words 𝑓 +  𝑥. So, if number of satoshies in the address is 𝑎[𝑖], we 

might think we need exactly [
𝑎[𝑖]

𝑓+𝑥
] transactions in order to make them ≤ 𝑥. Unfortunately, this 

isn’t entirely true because the remainder 𝑎[𝑖] % (𝑓 +  𝑥), can still be larger than 𝑥. If it is, then 

we need one extra transaction of size 𝑓 +  1. This solves the problem per one public address. 

 

Another important observation is that even though all numbers on the input are 32-bit integers, 

given the constraints, sum of the fees per public address can be larger than 32-bit integer allows. 

So we will need to use 64-bit integer for summation. 

 



 

MDCS – Bubble Cup 2018   15 

Problem B: Best Ranking 

Rising Stars division only 

Author:  

Stefan Velja 

Implementation and analysis:  

Slavko Ivanović 

Miloš Šuković 

 

Statement: 

Formula 1 officials decided to introduce new competition. Cars are replaced by space ships 

and number of points awarded can differ per race. 

Given the current ranking in the competition and points distribution for the next race, your 

task is to calculate the best possible ranking for a given astronaut after the next race. It’s 

guaranteed that given astronaut will have unique number of points before the race. 

Input: 

The first line contains two integer numbers - 𝑁 representing number of F1 astronauts, and 

current position of astronaut D you want to calculate best ranking for (no other competitor 

will have the same number of points before the race). 

The second line contains 𝑁 integer numbers 𝑆𝑘 , 𝑘 = 1. . . 𝑁 separated by a single space, 

representing current ranking of astronauts. Points are sorted in non-increasing order. 

The third line contains 𝑁 integer numbers 𝑃𝑘 , 𝑘 = 1. . . 𝑁, separated by a single space, 

representing point awards for the next race. Points are sorted in non-increasing order, so 

winner of the race gets the maximum number of points. 

Output: 

Output contains one integer number – the best possible ranking for astronaut after the race. 

If multiple astronauts have the same score after the race, they all share the best ranking. 

Constraints: 

• 1 ≤ 𝑁 ≤ 200000  

• 1 ≤ 𝐷 ≤ 𝑁 

• 0 ≤ 𝑆𝑘 ≤ 108, 𝑘 = 1 … 𝑁 

• 0 ≤ 𝑃𝑘 ≤ 108, 𝑘 = 1 … 𝑁 

 

 

 

 



 

  MDCS – Bubble Cup 2018 16 

Example input: 

4 3 

50 30 20 10 

15 10 7 3 

Example output: 

2 

Explanation: 

If the third ranked astronaut wins the race, he will have 35 points. He cannot take the leading 

position, but he can overtake the second position if the second ranked astronaut finishes the 

race at the last position. 

Time and memory limit: 1s / 256 MB 

  



 

MDCS – Bubble Cup 2018   17 

Solution and analysis: 

Let's name our competitor Kimi and label 𝑆 as his starting position. To maximize Kimi's final 

position, we will give him max number of points. After that, the competitor is on position 𝐶. It is 

safe to conclude that the best position of competitor 𝑋 meets the required equation 𝐶 ≤ 𝑋 ≤ 𝑆.  

L is a list of all competitors who should have less or the same number of points as Kimi after all 

the points have been given and 𝑃 is the list of points we should give to this competitor. Now we 

need to give points to other competitors in such a way to maximize length of 𝐿. Let's start from 

the position 𝐶 + 1 (the first astronaut after Kimi) and proceed to give to all the competitors points 

to achieve our goal. Lists 𝐿 and 𝑃 are empty at the beginning. We should try to give the 

competitor the least number of points from remaining set of unassigned points to keep them 

below Kimi.  

• If we can keep them below Kimi we need to add them to list 𝐿 and we need to add current 

minimum number of remaining points to list 𝑃. Note: Do not give points to competitors 

yet.  

• If we cannot keep them below Kimi we need to: 

o If 𝐿 is not empty: remove the one with the most points from the list and add the 

current one or 

o If 𝐿 is empty: try with next competitor 

When we reach the end of the scoreboard we have both lists ready, we just need to give points: 

the least number of points to the best competitor,… 

 

Time: 𝑂(𝑛) Memory: 𝑂(𝑛) 

  



 

  MDCS – Bubble Cup 2018 18 

Problem C: Say “Hello!” 

Rising Stars division only 

Author:  

Aleksandar Damjanović 

Implementation and analysis:  

Miloš Šuković 

Slavko Ivanović 

 

Statement: 

Two friends are travelling through Bubble galaxy in their spaceships. They say “Hello!” via 

signals to each other if their distance is smaller or equal than 𝑑1 and 

• it's the first time they speak to each other or 

• at some point in time after their last talk their distance was greater than 𝑑2. 

We need to calculate how many times friends said “Hello!” to each other. For 𝑁 moments, 

you'll have an array of points for each friend representing their positions at that moment. A 

person can stay in the same position between two moments in time, but if a person made a 

move we assume this movement as movement with constant speed in constant direction. 

Input: 

The first line contains one integer number 𝑁 representing number of moments in which we 

captured positions for two friends. 

The second line contains two integer numbers 𝑑1 and 𝑑2.  

The next 𝑁 lines contains four integer numbers 𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦 representing coordinates of 

friends A and B in each captured moment. 

Output: 

Output contains one integer number that represents how many times friends will say “Hello!” 

to each other. 

Constraints: 

• 2 ≤ 𝑁 ≤ 100 000 

• 0 < 𝑑1, 𝑑2 < 1000 

• 0 ≤ 𝐴𝑥, 𝐴𝑦, 𝐵𝑥, 𝐵𝑦 ≤ 1000  

 

 

 

 

 



 

MDCS – Bubble Cup 2018   19 

Example input: 

4 

2 5 

0 0 0 10 

5 5 5 6 

5 0 10 5 

14 7 10 5 

 

Example output: 

2 

 

Explanation: 

Friends should send signals 2 times to each other, first time around point 𝐴2 and 𝐵2 and 

second time during A’s travel from point 𝐴3 to 𝐴4 while 𝐵 stays in point 𝐵3 = 𝐵4.  

Time and memory limit: 2s / 256 MB 



 

  MDCS – Bubble Cup 2018 20 

Solution and analysis: 

First, we must find minimum distance between two moving points on segments (possibly a dot, 

if there is no movement) for each iteration. 

One way to do this is to parametrize moving points on segments with parameter 𝑡 ∈ [0, 1]. If we 

define first segment with endpoints A and B, and second segment with endpoints C and D, we 

can define moving points 𝑀 = 𝐴 + 𝑡 (𝐵 –  𝐴) on first segment and 𝑁 = 𝐶 + 𝑡 (𝐷 –  𝐶) on second 

segment. 

We are looking for minimum value of |𝑀𝑁| as function of t: 

min
𝑡∈[0,1]

√[𝑀𝑥 −  𝑁𝑥]2  + [𝑀𝑦 –  𝑁𝑦]2 =

min
𝑡∈[0,1]

√[(𝐴𝑥 –  𝐶𝑥)  + 𝑡 ((𝐵𝑥 –  𝐴𝑥) – (𝐷𝑥 –  𝐶𝑥))]2  + [(𝐴𝑦 –  𝐶𝑦)  +  𝑡 ((𝐵𝑦 –  𝐴𝑦) – (𝐷𝑦 –  𝐶𝑦))]2  

We can omit the square root function, since minimum for functions with and without square root 

will be in the same 𝑡0. After derivation on variable t and comparison with 0 (This method is used 

for finding local extremum of the function. In our case, we know it will be minimum, because two 

lines which are not parallel in space are getting further, so quadratic function will be convex) from 

equitation, we have two cases for finding 𝑡0 where function has minimum value. 

Let’s define 𝐾𝑥 =  (𝐵𝑥 –  𝐴𝑥) – (𝐷𝑥 –  𝐶𝑥) and 𝐾𝑦 =  (𝐵𝑦 –  𝐴𝑦) – (𝐷𝑦 –  𝐶𝑦). 

1. 𝐾𝑥 = 0  and  𝐾𝑦 = 0, segments are parallel and then for every t, |𝑀𝑁| has the same 

value. 

2. Otherwise 𝑡0 = −
(𝐴𝑥–𝐶𝑥)∗𝐾𝑥+(𝐴𝑦–𝐶𝑦)∗𝐾𝑦

𝐾𝑥2+𝐾𝑦2 . If 𝑡0 <  0 𝑜𝑟 𝑡0 > 1 we search for minimum in  𝑡 =

0 and 𝑡 = 1, because function is monotonic on [0,1], because quadratic function has one 

local extremum, and if it’s not on [0,1], function is monotonic on that interval. 

Now we should just track the distance and increase the counter when conditions from statement 

are met. We can do this by defining two states in which points after every move: 

1. Should get closer than 𝑑1. 

2. Should get further than 𝑑2. 

 

Starting state is calculated by distance of the points A and B in starting positions: 

 int state = start_dist < d1 ? shouldGetFurther : shouldGetCloser; 
 if (state == shouldGetFurther) counter++; 

 



 

MDCS – Bubble Cup 2018   21 

For each segment, we will change states by looking into previous state and following two 

variables: 

1. Closest distance between two moving points on segments we are currently comparing.  

2. Distance between moving points at end of the segments. 

 
if (state == shouldGetCloser) // current distance from A is greater than d1 
{ 
 if (closestDistance <= d1) 
 { 
  counter++; // saying “Hello!” 
 

// It's possible that in the same move, we were closer than d1, but 
after, again, further than d2. In that case, we don't change the state. 

  // We change the state only if we stayed closer than d2. 
  if (endPointDistance <= d2) 
   state = shouldGetFurther; 
 } 
} 
else // state == shouldGetFurther (current distance from A is smaller than d2). 
{ 
 if (endPointDistance > d2) 
  state = shouldGetCloser; 
} 

  



 

  MDCS – Bubble Cup 2018 22 

Problem D: AI robots 

Premier League and Rising Stars 

Author:  

Kosta Grujčić 

Implementation and analysis:  

Kosta Grujčić 

Filip Vesović  

 

Statement: 

In the last mission, MDCS has successfully shipped 𝑁 AI robots to Mars. Before they started 

exploring, they were arranged in a line. Every robot can be described with three numbers: 

position (𝑥𝑖), radius of sight (𝑟𝑖) and IQ (𝑞𝑖). Since they are intelligent robots they are very 

talkative. Two robots can talk only if they can see each other. Radius of sight is inclusive, so 

the 𝑖𝑡ℎ robot can see all other robots in a range [𝑥𝑖  −  𝑟𝑖,  𝑥𝑖  +  𝑟𝑖]. However, they don't walk 

to talk with any robot, but only with robots who have similar IQ. By similar IQ we mean that 

absolute difference of their IQs isn't bigger than 𝑲. 

Help us and calculate how many pairs of robots are going to talk with each other, so we can 

timely update their software and avoid any potential quarrel. 

Input: 

The first line contains two integers, number 𝑁 and 𝐾. Next 𝑁 lines contain three numbers each 

– 𝑥𝑖, 𝑟𝑖 and 𝑞𝑖 respectively. 

Output: 

Output contains only one number – solution of the problem. 

Constraints: 

• 1 ≤ 𝑁 ≤ 105 

• 0 ≤ 𝑥𝑖 , 𝑟𝑖, 𝑞𝑖 ≤ 109 

• 0 ≤ 𝐾 ≤ 20 

 

Example input: 

3 2 

3 6 1 

7 3 10 

10 5 8 

 



 

MDCS – Bubble Cup 2018   23 

Example output: 

1 

Explanation: 

The first robot can see the second, but not vice versa. The first robot can't even see the third. 

The second and the third robot can see each other and their IQs don't differ more than 2, so 

only one pair of robots will have a talk. 

Time and memory limit: 3s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 24 

Solution and analysis:  

Let's translate statement into mathematical language. We have to find number of sets {𝑖, 𝑗} so 

that min(𝑟𝑖, 𝑟𝑗) ≥ |𝑥𝑖 − 𝑥𝑗| and |𝑞𝑖 − 𝑞𝑗| ≤ 𝐾. First of all, we have to find for each robot which 

robots it can see. To do that we perform line sweeping: 

• Add 𝑥𝑖 − 𝑟𝑖 as event of type 0 

• Add 𝑥𝑖 as event of type 1 

• Add 𝑥𝑖 + 𝑟𝑖 as event of type 2 

After we sort all these events, we iterate them from left to right. Whenever we face event of type 

0 we save information that a robot stands on position 𝑥𝑖. When we face event of type 2, we delete 

information that there is a robot on position 𝑥𝑖. And finally, when we face event of type 1 we 

have to count how many robots stand in positions [𝑥𝑖 − 𝑟𝑖, 𝑥𝑖 + 𝑟𝑖]. It's easy to see that all these 

robots see ith robot as well. We will use segment tree to store all these information about robots, 

so complexity of counting how many robots each of them can see is 𝑂(log 𝑋𝑀𝐴𝑋), as well as 

updating part. But not all robots will talk to each other, so we have to take their IQ in count. Since 

𝐾 is small number, we can iterate through valid IQs, and perform queries individually. We have 

segment tree for every possible IQ and we update corresponding tree everytime we face events 

of type 0 or 2. Since no more than 2 ⋅ 𝐾 queries are going to be performed, total complexity of 

processing one robot is 𝑂(𝐾 ⋅ log 𝑋𝑀𝐴𝑋). 

Problem is that we don't have enough memory to store all these segment trees because IQ can 

be up to 109. So we compress these values and map them in range [1, 𝑁]. Since consecutive 

compressed IQs don't necesserally differ by 1, we have to care about that. Same problem applies 

to coordinates – we don't have memory to build complete segment tree on array of length 109. 

But since we have to store 𝑁 segment trees, we need to use their implicit variant and save only 

what we really need, so we can use original values of positions, which will result in complexity of 

𝑂(log 𝑋𝑀𝐴𝑋 ) per query, or also use value compression and make it 𝑂(log 𝑁). 

Overall time complexity is 𝑂(𝐾 ⋅ 𝑁 log 𝑁) or 𝑂(𝐾 ⋅ 𝑁 log 𝑋𝑀𝐴𝑋) and space complexity is 𝑂(𝑁𝑙𝑜𝑔𝑁) 

or 𝑂(𝑁 log 𝑋𝑀𝐴𝑋). 

Note that we can use policy based data structures and completely avoid segment trees and keep 

the same complexities. 

  



 

MDCS – Bubble Cup 2018   25 

Problem E: Palindrome Pairs 

Premier League and Rising Stars 

Author:  

Branko Fulurija 

Implementation and analysis:  

Branko Fulurija 

Balša Knežević 

Statement: 

After learning a lot about space exploration, a little girl named Ana wants to change the 

subject. 

Ana is a girl who loves palindromes (string that can be read the same backwards as forward). 

She has learned how to check for a given string whether it’s a palindrome or not, but soon she 

grew tired of this problem, so she came up with a more interesting one and she needs your 

help to solve it: 

You are given an array of strings which consist only of small letters of the English alphabet. 

Your task is to find how many palindrome pairs there are in the array. A palindrome pair is a 

pair of strings where the following condition holds: at least one permutation of the 

concatenation of the two strings is a palindrome. In other words, if you have two strings, let’s 

say 𝑎𝑎𝑏 and 𝑎𝑏𝑐𝑎𝑐, and you concatenate them into 𝑎𝑎𝑏𝑎𝑏𝑐𝑎𝑐, you have to check if there is a 

permutation of this new string such that it is a palindrome (in this case there is the permutation 

𝑎𝑎𝑏𝑐𝑐𝑏𝑎𝑎).  

Two pairs are considered different if the strings are located on different indices. The pair of 

strings with indices (𝑖, 𝑗) is considered the same as the pair (𝑗, 𝑖). 

Input: 

First line contains a positive integer 𝑁, representing the length of the input array. 

Next 𝑁 lines contain a string (only letters 'a' – 'z'), the elements of the input array.  

Output: 

Output one number, representing how many palindrome pairs there are in the array. 

Constraints: 

• 1 ≤ 𝑁 ≤ 100 000 

• 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑎𝑟𝑟𝑎𝑦 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 1 000 000 

 

 

 



 

  MDCS – Bubble Cup 2018 26 

Example input 1: 

3 

aa 

bb 

cd 

Example output 1: 

1 

Explanation 1: 

aa + bb => abba 

  

Example input 2: 

6 

aab 

abcac 

dffe 

ed 

aa 

aade 

Example output 2: 

6 

Explanation 2: 

aab + abcac = aababcac => aabccbaa 

aab + aa = aabaa 

abcac + aa = abcacaa => aacbcaa 

dffe + ed = dffeed => fdeedf 

dffe + aade = dffeaade => adfaafde 

ed + aade = edaade => aeddea 

Time and memory limit: 2s / 256 MB  



 

MDCS – Bubble Cup 2018   27 

Solution and analysis: 

For each string we need to remember the parity of the occurrences of each letter 

If permutation of the concatenation of two strings makes a palindrome, this means that only one 

letter appears an odd number of times.  

To have a permutation of the concatenation of two strings that make a palindrome, the parity of 

the occurrence of each letter in both strings can be distinguished only in one position.  

It is necessary to find for each string how many strings there are, so that their series of parity 

differ in only one position. 

Make a mask where the 𝑖-th position signifies the parity of the 𝑖-th letter in the alphabet. 

Memorize each mask as many times as it appears. We will use a map.  

Iterate through all the strings, add the number of masks that differ in only one position from the 

current mask of string to the solution.  

As each two strings have evolved twice, the solution will be divided by 2. 

Time complexity: 𝑂(𝑁 log 𝑁). 



 

  MDCS – Bubble Cup 2018 28 

Problem F: Self-exploration 

Premier League and Rising Stars 

Author:  

Aleksandar Damjanović 

Implementation and analysis:  

Aleksandar Damjanović 

Radoica Draškić 

Statement: 

Being bored of exploring the Moon over and over again Wall B decided to explore something 

he is made of – binary numbers. He took a binary number and decided to count how many 

times different substrings of length two appeared. He stored those values in 𝑐00, 𝑐01, 𝑐10 and 

𝑐11, representing how many times substrings 00, 01, 10 and 11 appear in the number 

respectively. For example: 

• 10111100 →  𝑐00  =  1,  𝑐01  =  1, 𝑐10  =  2, 𝑐11  =  3 

• 10000 →  𝑐00  =  3,  𝑐01  =  0,  𝑐10  =  1, 𝑐11  =  0 

• 10101001 →  𝑐00  =  1,  𝑐01  =  3,  𝑐10  =  3, 𝑐11  =  0 

• 1 →  𝑐00  =  0,  𝑐01  =  0,  𝑐10  =  0, 𝑐11  =  0 

Wall B noticed that there can be multiple binary numbers satisfying the same 𝑐00, 𝑐01, 𝑐10, 𝑐11 

constraints. Because of that he wanted to count how many binary numbers satisfy the 

constraints 𝑐𝑥𝑦 given the interval [𝐴, 𝐵].  Unfortunately, his processing power wasn’t strong 

enough to handle large intervals he was curious about. Can you help him? Since this number 

can be large print it modulo 109  +  7. 

Input: 

First two lines contain two positive binary numbers 𝐴 and 𝐵, representing the start and the 

end of the interval respectively. 

Next four lines contain four integer numbers 𝑐00, 𝑐01, 𝑐10, 𝑐11 in decimal form representing the 

count of two-digit substrings 00, 01, 10 and 11 respectively.  

Output: 

Output one integer number representing how many binary numbers in the interval [𝐴, 𝐵] 

satisfy the constraints 𝑚𝑜𝑑 109  +  7. 

Constraints: 

• 1 ≤ 𝐴 ≤  𝐵 <   2100 000 

• 0 ≤ 𝑐00, 𝑐01, 𝑐10, 𝑐11 ≤  100 000 

• 𝐴, 𝐵 are valid binary numbers and have no leading zeroes 

 



 

MDCS – Bubble Cup 2018   29 

Example input 1: 

10 

1001 

0 

0 

1 

1 

Example output 1: 

1 

Explanation 1: 

The binary numbers in the interval [10, 1001] are 10, 11, 100, 101, 110, 111, 1000, 1001. Only 

number 110 satisfies the constraints:  𝑐00  = 0,  𝑐01  =  0,  𝑐10  =  1, 𝑐11  =  1. 

 

Example input 2: 

10 

10001 

1 

2 

3 

4 

Example output 2: 

0 

Explanation 2: 

No number in the interval satisfies the constraints. 

Time and memory limit: 1s/ 256 MB 



 

  MDCS – Bubble Cup 2018 30 

Solution and analysis: 

Before we start thinking more about the problem let's make couple of simple observations: 

1. Constraints 𝑐00, 𝑐01, 𝑐10, 𝑐11 define exact number of digits in the number. 𝑑𝑖𝑔𝑖𝑡𝑠𝐶𝑜𝑢𝑛𝑡 =

 𝑐00 + 𝑐01 + 𝑐10 + 𝑐11 + 1   

2. If function 𝐹(𝑥) counts the number of binary numbers that satisfy constraints 

𝑐00, 𝑐01, 𝑐10, 𝑐11 less than 𝑥 modulo 𝑀𝑂𝐷 = 109 + 7, than the answer is 

 (𝐹(𝐵 +  1) –  𝐹(𝐴)  +  𝑀𝑂𝐷) % 𝑀𝑂𝐷. Notice that we must add 𝑀𝑂𝐷 because 

otherwise answer could be negative and thus wrong. 

3. If number 𝑥 has less digits that 𝑑𝑖𝑔𝑖𝑡𝑠𝐶𝑜𝑢𝑛𝑡𝑠, than 𝐹(𝑥) will be 0. 

Let's first solve easier problem by calculating 𝐹(𝑥), when number 𝑥 has more digits than 

𝑑𝑖𝑔𝑖𝑡𝑠𝐶𝑜𝑢𝑛𝑡, or in other words all binary numbers that satisfy constrains. 

When observing the number that satisfies given constraints 𝑐00, 𝑐01, 𝑐10, 𝑐11, we can reduce every 

group of ones to just single 1 and do the same for all groups of zeroes. By doing this, we obtain 

a string that has interleaving ones and zeroes and has the same 𝑐01 and 𝑐10 count as the starting 

string. 

Because valid binary number starts with 1 we conclude that 𝑐10 − 𝑐01 can be either 0 or 1. So, the 

numbers c10 and 𝑐01 tell us about number of groups of zeroes and ones in the binary number 

that satisfies given constraints.  Number of different binary numbers that satisfy given constraints 

is the number of ways to insert 0 and 1 into corresponding groups of zeroes and ones that are 

mentioned before. Let #𝑧𝑒𝑟𝑜𝑒𝑠𝐺𝑟𝑜𝑢𝑝𝑠 be the number of groups of zeroes and #𝑜𝑛𝑒𝑠𝐺𝑟𝑜𝑢𝑝𝑠 

the number of groups of ones. Then number of different binary numbers is equal to: 

(
𝑐00  +  #𝑧𝑒𝑟𝑜𝑒𝑠𝐺𝑟𝑜𝑢𝑝𝑠  −  1

𝑐00
) (

𝑐11  +  #𝑜𝑛𝑒𝑠𝐺𝑟𝑜𝑢𝑝𝑠  −  1

𝑐11
) 

Now we have figured out number of all binary strings that satisfy given constraints.  

In order to solve general problem, let 𝑥 have same number of digits as 𝑑𝑖𝑔𝑖𝑡𝑠𝐶𝑜𝑢𝑛𝑡.  

Function 𝐹(𝑥) is implemented to count the number of binary strings that satisfy constraints for 

each prefix of 𝑥 and then add them all up. We will smartly choose which prefixes to consider by 

iterating through 𝐴 from the most significant bit and in case that the current bit is 1 we count the 

number of binary numbers that have all bits till the current bit the same as 𝐴 and 0 in that position 

and it satisfies constraints. 

 

 



 

MDCS – Bubble Cup 2018   31 

For example if 𝑥 =  11001010, we need to calculate all the numbers that satisfy constrains with 

prefixes: 10𝑦𝑦𝑦𝑦𝑦𝑦, 11000𝑦𝑦𝑦, 1100100𝑦. There will be at most at most 𝑂(𝑁) prefixes, where 

𝑁 is the number of digits. For each prefix we can count two digit substring in the prefix in order 

to determine total count of numbers that satisfy constraints with given prefix. Since all groups of 

prefixes are distinct, we can get the result by summing all of them. 

 

For calculating binomial coefficients we can precalculate factorials and inverse factorials using 

fast exponentiation. After that, for given 𝑛 and 𝑘 (𝑛
𝑘

) can be calulated in 𝑂(1) time. Because of it, 

total time complexity of this solution is 𝑂(𝑁 log(𝑀𝑂𝐷)) where 𝑁 is the number of digits. 

 



 

  MDCS – Bubble Cup 2018 32 

Problem G: Space Isaac 

Premier League and Rising Stars 

Author:  

Daniel Paleka 

Implementation and analysis:  

Balša Knežević 

Ognjen Tošić 

Daniel Paleka 

Statement: 

Everybody seems to think that the Martians are green, but it turns out they are metallic pink 

and fat. Ajs  has two bags of distinct nonnegative integers. The bags are disjoint, and the union 

of the sets of numbers in the bags is {0, 1, … , 𝑀 − 1}, for some positive integer 𝑀. 

Ajs draws a number from the first bag and a number from the second bag, and then sums 

them modulo 𝑀. 

 

What are the residues modulo 𝑀 that Ajs cannot obtain with this action? 

 

Input: 

The first line contains two positive integers 𝑁 and 𝑀, denoting the number of the elements in 

the first bag and the modulus, respectively. 

The second line contains 𝑁 nonnegative integers 𝑎1, 𝑎2, … , 𝑎𝑁, the contents of the first bag. 

Output: 

In the first line, output the cardinality 𝐾 of the set of residues modulo 𝑀 which Ajs cannot 

obtain. 

In the second line of the output, print 𝐾 space-separated integers greater than zero and less 

than 𝑀, which represent the residues Ajs cannot obtain. The outputs should be sorted in 

increasing order of magnitude. If 𝐾 = 0, do not output the second line. 

Constraints: 

• 1 ≤ 𝑁 ≤ 200 000 

• 𝑁 + 1 ≤  𝑀 ≤ 1 000 000 000 

•  0 ≤  𝑎1 < 𝑎2 <  … <   𝑎𝑁 < 𝑀 

 

 

 

 



 

MDCS – Bubble Cup 2018   33 

Example input 1: 

2 5 

3 4 

Example output 1: 

1 

2 

Explanation 1: 

The first bag and the second bag contain {3, 4} and {0, 1, 2}, respectively. Ajs can obtain every 

residue modulo 5 except the residue 2:  4 + 1 ≡ 0,   4 + 2 ≡ 1,   3 + 0 ≡ 3,   3 + 1 ≡ 4 modulo 

5.  

One can check that there is no choice of elements from the first and the second bag which 

sum to 2 modulo 5. 

Example input 2: 

4 1000000000 

5 25 125 625 

 

Example output 2: 

0 

Explanation 2: 

The contents of the first bag are {5, 25, 125, 625}, while the second bag contains all other 

nonnegative integers with at most 9 decimal digits. Every residue modulo 1 000 000 000 can 

be obtained as a sum of an element in the first bag and an element in the second bag. 

 

Example input 3: 

2 4 

1 3 

Example output 3: 

2 

0 2 

Time and memory limit: 1.5s / 256MB 



 

  MDCS – Bubble Cup 2018 34 

Solution and analysis: 

Solution 1 

Let’s assume that we cannot obtain residue X modulo 𝑀. 

Then if there is a number 𝑦 in the first bag, there has to be a number 𝑋 − 𝑦 modulo 𝑀, also. 

Otherwise, a magician could draw numbers 𝑦 and 𝑋 − 𝑦, and obtain number 𝑋 

For our solution it is important to notice that if 𝑦 <  𝑋, then (𝑋 − 𝑦 modulo 𝑀)  <  𝑋. Also, if 𝑦 >

 𝑋, then (𝑋 − 𝑦 modulo 𝑀)  >  𝑋. 

The smallest member is paired with the largest member that is less or equal than 𝑋. 

The second smallest member is paired with the second largest member that is less or equal than 

𝑋, etc. 

The smallest member that is larger than 𝑋 is paired with the greatest member of an array. 

We need to find a boundary of the input array and check if all the pairs bring the same result. 

How can we do that? 

We can make another array 𝑏 of 𝑛 − 1 length, where 𝑏𝑖 =  𝑎𝑖+1 − 𝑎𝑖 . 

We can iterate by boundary and check if the both left and right side are palindrome. If they are, 

sum of any pair is the residue which magician cannot obtain. 

We can hash the input array and in 𝑂(1) check if some consecutive subset is palindrome. 

Time Complexity: 𝑂(𝑛). 

 

Solution 2 

Let 𝐴 and 𝐵 be the sets of numbers in the first and second bags, respectively. We need to find 

all the residues that are not in the sumset 𝐴 + 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.   We start with the 

following lemma: 

𝑥 ∉ 𝐴 + 𝐵  <==>    𝐴 = 𝑥 − 𝐴, 

where 𝑥 − 𝐴 = {𝑥 − 𝑎 ∶ 𝑎 ∈ 𝐴}. 

Proof: If 𝑎 ∈ 𝐴 and 𝑥 ∉ 𝐴 + 𝐵, then 𝑥 − 𝑎 ∈ 𝐵, for otherwise 𝑎 + (𝑥 − 𝑎) = 𝑥 would be in 𝐴 + 𝐵. 

That gives 𝑥 − 𝐴 ⊆ 𝐴, and symmetry gives the equality.  

As in the previous solution, we consider the array of modulo 𝑀 differences between the numbers 

𝑎𝑖 . If we denote 𝑏𝑖 = 𝑎𝑖 − 𝑎𝑖−1 ( with 𝑏1 = 𝑎1 − 𝑎𝑁 ),  we can state the following lemma: 

  𝐴 = 𝑥 − 𝐴 =>  The string 𝑏𝑁𝑏𝑁−1 … 𝑏1 is a cyclic shift of the string 𝑏1𝑏2 … 𝑏𝑁. 



 

MDCS – Bubble Cup 2018   35 

Proof: Left as exercise. Hint: try placing the numbers on a discrete circle, which 𝑍/𝑍𝑀 indeed is. 

It is a well-known exercise to find all matches of a string in another string – one particularly nice 

way here is the Z-Algorithm, which we use in the second official solution: it is a standard trick to 

run it on the string 𝑏𝑁𝑏𝑁−1 … 𝑏1(−1) 𝑏1𝑏2 … 𝑏𝑁𝑏1𝑏2 … 𝑏𝑁. (It will work because -1 doesn’t appear 

among the 𝑏𝑖-s.) 

Now, it’s intuitive that each found match gives an unique 𝑥 that we should output. With a little 

bit of math, one can prove a bijection: 

𝑏𝑁𝑏𝑁−1 … 𝑏1 =  𝑏𝑗𝑏𝑗+1 … 𝑏𝑗−1  <==>   𝑎𝑁 + 𝑎𝑗−1 ∉ 𝐴 + 𝐵. 

We can keep track of the “overflow” point to avoid sorting, so the complexity here can be 𝑂(𝑁). 

Of course, we allowed sorting to pass. 



 

  MDCS – Bubble Cup 2018 36 

Problem H: Interstellar battle 

Premier League and Rising Stars 

Author:  

Ognjen Tošić 

Implementation and analysis:  

Kosta Grujčić 

Daniel Paleka 

 

Statement: 

In the intergalactic empire Bubbledom there are 𝑁 planets, of which some pairs are directly 

connected by two-way wormholes. There are 𝑁 − 1 wormholes. The wormholes are of extreme 

religious importance in Bubbledom, a set of planets in Bubbledom consider themselves one 

intergalactic kingdom if and only if any two planets in the set can reach each other by 

traversing the wormholes. You are given that Bubbledom is one kingdom. (In other words, the 

network of planets and wormholes is a tree.) 

However, Bubbledom is facing a powerful enemy also possessing teleportation technology. 

The enemy attacks every night, and the government of Bubbledom retakes all the planets 

during the day. In a single attack, the enemy attacks every planet of Bubbledom at once, but 

some planets are more resilient than others. Planets are number 0,1, … , 𝑁 − 1 and the planet 𝑖 

will fall with probability 𝑝𝑖 . Before every night, (including the very first one) the government 

reinforces or weakens the defenses of a single planet. 

The government of Bubbledom is interested in the following question: what is the expected 

number of intergalactic kingdoms Bubbledom will be split into, after a single enemy attack 

(before they get a chance to rebuild)? (In other words, you need to print the expected number 

of connected components after every attack.) 

Input: 

The first line contains one integer number 𝑁 denoting the number of planets in Bubbledom 

(numbered from 0 to 𝑁 − 1).  

The next line contains 𝑁 different real numbers in the interval [0,1], specified with 2 digits after 

the decimal point, denoting the probabilities that the corresponding planet will fall. 

The next 𝑁 − 1 lines contain all the roads in Bubbledom, where a wormhole is specified by the 

two planets it connects. 

The next line contains a positive integer 𝑄, denoting the number of enemy attacks. 



 

MDCS – Bubble Cup 2018   37 

The next 𝑄 lines each contain a non-negative integer and a real number from interval [0, 1], 

denoting the planet the government of Bubbledom decided to reinforce or weaken, along 

with the new probability that the planet will fall. 

Output: 

Output contains 𝑄 numbers, each of which represents the expected number of kingdoms that 

are left after each enemy attack. Your answers will be considered correct if their absolute or 

relative error does not exceed 10−4. 

Constraints: 

• 1 ≤ 𝑁 ≤ 105 

• 1 ≤ 𝑄 ≤ 105 

 

Example input: 

5 

0.50 0.29 0.49 0.95 0.83 

2 3 

0 3 

3 4 

2 1 

3 

4 0.66 

1 0.69 

0 0.36 

 

Example output: 

1.68040 

1.48440 

1.61740 

 

Time and memory limit: 1s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 38 

Solution and analysis: 

Let 𝐺 be the tree representing the planets of Bubbledom. Suppose that the survival probability 

of a vertex 𝑣 is 𝑝(𝑣). After the enemy strike and before the government rebuilds, what used to 

be Bubbledom will no longer be a tree, but a forest. If the forest has 𝑉 vertices and 𝐸 edges, it 

has 𝑉 − 𝐸 connected components, i.e. new intergalactic kingdoms. 

Hence the expected number of connected components is  

𝔼[𝑉 − 𝐸] = 𝔼[𝑉] − 𝔼[𝐸] = ∑ 𝑝(𝑣)

𝑣∈𝐺

− ∑ 𝑝(𝑢)𝑝(𝑣)
(𝑢,𝑣)∈𝐺

 

by linearity of expectation (the second sum denotes the sum over all (𝑢, 𝑣) such that 𝑢 and 𝑣 are 

connected in 𝐺).  Now root the tree at any vertex. Let  

𝑓(𝑣) = ∑ 𝑝(𝑢)

𝑢 is a child of 𝑣

 

It is easy to see that  

𝔼[connected components] = ∑ 𝑝(𝑣)

𝑣∈𝐺

− ∑ 𝑝(𝑣)𝑓(𝑣)

𝑣∈𝐺

 

After the government changes 𝑝(𝑣), only 𝑝(𝑣) and 𝑓(parent(𝑣)) are changed, which can be 

easily updated in 𝑂(1) . The total time complexity of this algorithm is 𝑂(𝑁 + 𝑄). 

  



 

MDCS – Bubble Cup 2018   39 

Problem I: Hyperspace™ highways 

Premier League and Rising Stars 

Author:  

Daniel Paleka 

Implementation and analysis:  

Ognjen Tošić 

Daniel Paleka 

Statement: 

In an unspecified solar system, there are 𝑁 planets. A space government company has recently 

hired space contractors to build 𝑀 bidirectional Hyperspace™ highways, each connecting two 

different planets. The primary objective, which was to make sure that every planet can be 

reached from any other planet taking only Hyperspace™ highways, has been completely 

fulfilled. Unfortunately, lots of space contractors had friends and cousins in the Space Board 

of Directors of  the company, so the company decided to do much more than just connecting 

all planets.  

In order to make spending enormous amounts of space money for Hyperspace™ highways 

look neccessary, they decided to enforce a strict rule on the Hyperspace™ highway network: 

whenever there is a way to travel through some planets and return to the starting point without 

travelling through any planet twice, every pair of planets on the itinerary should be directly 

connected by a Hyperspace™ highway. In other words, the set of planets in every simple cycle 

induces a complete subgraph. 

You are designing a Hyperspace™ navigational app, and the key technical problem you are 

facing is finding the minimal number of Hyperspace™ highways one needs to use to travel 

from planet A to planet B. As this problem is too easy for Bubble Cup, here is a harder task: 

your program needs to do it for 𝑄 pairs of planets. 

 

Input: 

The first line contains three positive integers 𝑁, 𝑀 and 𝑄, denoting the number of planets, the 

number of Hyperspace™ highways, and the number of queries, respectively. 

Each of the following 𝑀 lines contains a highway: highway 𝑖 is given by two integers 𝑢𝑖 and 𝑣𝑖, 

meaning the planets 𝑢𝑖 and 𝑣𝑖 are connected by a Hyperspace™ highway. It is guaranteed that 

the network of planets and Hyperspace™ highways forms a simple connected graph. 

Each of the following 𝑄 lines contains a query: query 𝑗 is given by two integers 𝑎𝑗 and 𝑏𝑗, 

meaning we are interested in the minimal number of Hyperspace™ highways one needs to 

take to travel from planet 𝑎𝑗 to planet 𝑏𝑗. 



 

  MDCS – Bubble Cup 2018 40 

Output: 

Output 𝑄 lines: the j-th line of output should contain the minimal number of Hyperspace™ 

highways one needs to take to travel from planet 𝑎𝑗 to planet 𝑏𝑗. 

Constraints: 

• 1 ≤ 𝑁 ≤  100 000 

• 1 ≤ 𝑀 ≤  500 000 

• 1 ≤ 𝑄 ≤  200 000 

• 1 ≤ 𝑎𝑗 < 𝑏𝑗 ≤ 𝑁 

• 1 ≤ 𝑢𝑖 < 𝑣𝑖 ≤ 𝑁 

 

 

Example input 1: 

5 7 2 

1 2 

1 3 

1 4 

2 3 

2 4 

3 4 

1 5 

1 4 

2 5 

Example output 1: 

1 

2 

 

 

 

 



 

MDCS – Bubble Cup 2018   41 

Example input 2: 

8 11 4 

1 2 

2 3 

3 4 

4 5 

1 3 

1 6 

3 5 

3 7 

4 7 

5 7 

6 8 

1 5 

2 4 

6 7 

3 8 

Example output 2: 

2 

2 

3 

3 

 

Time and memory limit: 1s / 256MB 



 

  MDCS – Bubble Cup 2018 42 

Solution and analysis: 

Let  𝐺 = (𝑉, 𝐸) be a graph where each simple cycle is a clique.  

The idea is the following: for every maximal clique (in the sense that no other clique contains it), 

remove all the edges between its vertices, and add a single vertex that is adjacent to all of its 

vertices.  

This is well-defined, since we can do this for one clique of the original graph at a time (and the 

order of cliques doesn’t matter), because if two maximal cliques intersect in an edge, one is 

contained in the other. The graph obtained by applying this transformation as long as possible 

is  a tree (if it had a cycle, the cycle would correspond to a cycle of the original graph, hence 

would be a clique, hence the vertices of the new graph wouldn’t correspond to maximal cliques). 

Let the resulting graph be 𝑇′. For example, if the graph 𝐺 is as in the first picture below, graph 𝑇′ 

would be the second picture. 

 

 

If 𝑢, 𝑣 ∈ 𝐺, the claim is that 𝑑𝐺(𝑢, 𝑣) =
1

2
𝑑𝑇′(𝑢, 𝑣). This is easiest to see by considering the 

following operation on 𝐺: for each maximal clique 𝐶, remove the edges of 𝐶, and add a new 



 

MDCS – Bubble Cup 2018   43 

vertex connected to each vertex in 𝐶, but with edges of weight 
1

2
. Then this operation doesn’t 

change lengths of shortest paths between vertices. Suppose that after applying this operation as 

many times as possible, we get a graph 𝑇′′. But 𝑇′′ can’t have any edges of weight 1, since they 

are themselves cliques, so must be contained in some maximal clique. Hence all the edges in 𝑇′′ 

are of weight 
1

2
. Hence we can just remove the weights from the edges of 𝑇′′ to obtain  the 

unweighted graph 𝑇′.  

We can easily prove that 𝑇′ is, in fact, always a tree: a cycle in 𝑇′ would induce a bigger clique in 

the original graph 𝐺. Also, note that the number of vertices in 𝑇′ is 𝑂(𝑉). Now our solution splits 

in two parts: creating 𝑇′ from 𝐺, and answering shortest path queries on the tree 𝑇′.  

Let us first address the second part. Answering “the length of the shortest path from 𝐴 to 𝐵 in a 

tree” is the most frequent application of the lowest common ancestor (LCA) algorithms. In the 

official solution, we used the standard approach of preprocessing the tree in 𝑂(𝑉 log 𝑉) and 

answering every query in 𝑂(log 𝑉).  

The problem is now reduced to finding an efficient construction of 𝑇′. Suppose 𝑇 is the directed 

subtree of 𝐺 generated by a depth-first search starting at any vertex 𝑟 ∈ 𝐺. We need a few 

observations.  

Observation 1: Consider any pair of adjacent vertices 𝑢, 𝑣. Either 𝑢 is an ancestor of 𝑣 or 𝑣 is an 

ancestor of 𝑢 in 𝑇. Suppose 𝑢 is reached first in the depth-first search. Then 𝑣 will either be a 

direct child of 𝑢 or will be explored from a direct child of 𝑢, hence will be a descendant of 𝑢. 

Observation 2: Let 𝐶 be a set of pairwise adjacent vertices of 𝐺 (i.e. a clique). Let 𝑢 be a vertex in 

𝐶 of maximal depth. Suppose that 𝑢 ≠ 𝑣 ∈ 𝐶. Then, because of observation 1, 𝑢 must be an 

ancestor of 𝑣 . Hence all the vertices of 𝐶 lie on the path from 𝑟 to 𝑢.  

For the graph given above, the depth-first-search tree along with other edges would look like 

the picture below (the edges going upward are the edges of 𝐺 but not in 𝑇). 



 

  MDCS – Bubble Cup 2018 44 

 

Now direct the edges of 𝐺 so that there is a directed edge 𝑢 → 𝑣 only when 𝑣 is  a descendant 

of 𝑢. The idea is to construct the tree 𝑇′ recursively along 𝑇: we want to have, for each vertex 

𝑣 ∈ 𝐺 the solution of the problem for the induced subgraph on the descendants of 𝑣 in 𝑇. 

Define a function 𝑠𝑜𝑙𝑣𝑒(𝑣) that is supposed to replace all maximal cliques in the induced 

subgraph of 𝐺 on the descendants of 𝑣, and for each descendant of 𝑣 find the value 𝑓(𝑣) defined 

as follows: 

If 𝑣 is not the vertex of the biggest depth in some clique, then 𝑓(𝑣) = −1 

Otherwise, 𝑓(𝑣) =the vertex of the smallest depth belonging to the clique where 𝑣 is the vertex 

of the biggest depth. 

Suppose that 𝑣 ∈ 𝐺 and 𝑣1, … , 𝑣𝑘 are the children of 𝑣 in 𝑇, and that 𝑠𝑜𝑙𝑣𝑒(𝑣1), … , 𝑠𝑜𝑙𝑣𝑒(𝑣𝑘) 

have already been called. Then iterate over the edges of 𝑣 in 𝐺, and check if the other end of 

that edge is the vertex of the biggest depth of some clique. If some vertex 𝑢 adjacent to 𝑣 is, this 

clique must contain  𝑣 (since 𝑢, 𝑣, parent(𝑣), parent(parent(𝑣)), … , 𝑢 is a cycle). Hence 𝑓(𝑢) is 

currently one of the children of 𝑣. Mark that this child has been “visited”, and set 𝑓(𝑢) = 𝑣. Now 

iterate over all children 𝑣𝑖 of 𝑣 that were not “visited” and set 𝑓(𝑣𝑖) = 𝑣. By observation 2, this 

must find all cliques that 𝑣 belongs to.  

This algorithm is 𝑂(𝑉 + 𝐸) for the construction of 𝑇′ (since each edge of 𝐺 is processed at most 

once), 𝑂(𝑉 log 𝑉) for LCA preprocessing, and 𝑂(log 𝑉) per query due to a call to the lowest 

common ancestor function. Hence the total time complexity is 𝑂(𝐸 + (𝑄 + 𝑉) log 𝑉). 



 

MDCS – Bubble Cup 2018   45 

Remark: It is also possible to construct 𝑇′ by just finding maximal cliques a vertex belongs to, 

removing them and doing the same procedure on the connected components of the remaining 

graph. To find maximal cliques vertex 𝑣 belongs to, just check for each neighbour 𝑢 of 𝑣, all the 

common neighbours of 𝑢 and 𝑣. This can be done in 𝑂(deg(𝑢)) if before that we just mark all 

the neighbours of 𝑣 as currently active (this takes 𝑂(deg(𝑣))). After removing all the cliques 𝑣 

belongs to, in the resulting graph, there can't be any paths between some two (former) 

neighbours of 𝑣. Then just repeat this operation for each such neighbour. Since each 

neighbourhood of each vertex is searched at most twice, this runs in 𝑂(𝐸). Naive implementation 

of this is 𝑂(𝐸 log 𝑉) (because of edgde deletions) but by reusing the marks, it is possible to bring 

this down to 𝑂(𝐸). 



 

  MDCS – Bubble Cup 2018 46 

Problem J: Ancient civilizations 

Premier League and Rising Stars 

Author:  

Aleksandr Milanin 

Implementation and analysis:  

Ibragim Ismailov 

David Milićević 

 

Statement: 

On the surface of a newly discovered planet which we model by a plane, explorers found 

remains of two civilizations in number of different locations. They would like to learn more 

about those civilizations and to explore the area they need to build roads between some of 

the locations. But as always, there are some restrictions: 

1) Every two locations of the same civilization are connected by a unique path of roads  

2) No two locations from different civilizations may have road between them (explorers 

don’t want to accidentally mix civilizations they are currently exploring) 

3) Roads must be straight line segments 

4) Since intersections are expensive to build, they don’t want any two roads to intersect 

(that is, only common point for any two roads may be at some of locations) 

Obviously, all locations are different points in the plane, but explorers found out one more 

interesting information that may help you – no three locations lie on the same line! 

Help explorers and find a solution for their problem, or report it is impossible. 

Input: 

In the first line, integer 𝑁 – the number of locations discovered. 

In next 𝑁 lines, three integers 𝑥, 𝑦, 𝑐 – coordinates of the location and number of civilization it 

belongs to (0 or 1). 

Output: 

In first line print number of roads that should be built. 

In the following lines print pairs of locations (their 0-based indices) that should be connected 

with a road. 

If it is not possible to build roads such that all restrictions are met, print „Impossible“. You 

should not print the quotation marks. 

 



 

MDCS – Bubble Cup 2018   47 

Constraints: 

• 1 ≤ 𝑁 ≤ 103 

• 0 ≤ 𝑥, 𝑦 ≤ 104 

• c ∈ {0, 1} 
 

Example input: 

5 

0 0 1 

1 0 0 

0 1 0 

1 1 1 

3 2 0 

Example output: 

3 

0 3 

1 4 

2 4 

Explanation: 

By connecting locations 0-3 all civilization-1 locations are connected, and by connecting 

locations 1-4 and 2-4 all civilization-0 locations are connected and there are no intersections. 

Time and memory limit: 0.5s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 48 

Solution and analysis: 

Let's call 0 points „white“ (W) and 1 points „black“ (B). What should be clear from the statement 

is that we need to create two trees of black and white color by connecting some of the nodes 

(locations) without any edges intersecting. Firstly, let's create a convex hull for all points. Then, 

there are three cases: 

1. If black and white points alternate on the hull (if the circle of points consists of more than 

two color segments, like WBBBWWBBBW – 4 segments) it is obvious that we won't be 

able to make two trees without intersections, so print „Impossible“. 

2. If all points on convex hull are of the same color (let's say color X) then connect all but 

one consecutive pairs. After that find any Y colored point inside the hull and for each XXY 

triangle (where X points are consecutive on the hull) apply the following algorithm. Given 

two points of color X and one point of color Y check if there is any Y colored point inside 

the triangle. If there is not, just connect all X colored points in any way. Otherwise, pick 

random Y colored point inside the triangle. Then you have three triangles: XXY, YYX and 

YYX. Apply the same algorithm recursively on each of those. 

3. If convex hull is like BB...BWW...W (it consists of two color segments) then connect all 

consecutive B and W pairs and create following triangles: All consecutive W pairs with 

first B and all consecutive B pairs with first W (respective to the convex hull orientation). 

Then run the algorithm described in case 2) recursively on each of those triangles. 

Calculating convex hull is 𝑂(𝑁𝑙𝑜𝑔𝑁). The other part of algorithm is trickier. We should notice that 

each point „generates“ at most three triangles, which means there are 𝑂(𝑁) triangles. We search 

for the points inside triangles by having set of points not yet processed and trying to find if there 

is any point that lies inside the current triangle. For all triangles that sums up to 𝑂(𝑁2). When we 

find a point inside the current triangle we remove it from the set, and for all points that is 

𝑂(𝑁𝑙𝑜𝑔𝑁). Based on that, overral complexity is 𝑂(𝑁2). 

  



 

MDCS – Bubble Cup 2018   49 

Problem K: Last chance 

Premier League division only 

Author:  

Filip Vesović 

 

Implementation and analysis:  

Filip Vesović 

Kosta Grujčić 

Statement: 

It is the year 2969. 1000 years have passed from the moon landing. Meanwhile, the humanity 

colonized the Hyperspace™ and lived in harmony. 

Until we realized that we were not alone. 

Not too far away from the Earth, the massive fleet of aliens' spaceships is preparing to attack 

the Earth. For the first time in a while, the humanity is in real danger. Crisis and panic are 

everywhere. The scientists from all around the solar system have met and discussed the 

possible solutions. However, no progress has been made. 

The Earth's last hope is YOU! 

Fortunately, the Earth is equipped with very powerful defense systems made by MDCS. There 

are 𝑁 aliens' spaceships which form the line. The defense system consists of three types of 

weapons: 

• SQL rockets – every SQL rocket can destroy at most one spaceship in the given set. 

• Cognition beams – every Cognition beam has an interval [𝑙, 𝑟] and can destroy at 

most one spaceship in that interval. 

• OMG bazooka – every OMG bazooka has three possible targets, however, each 

bazooka can destroy either zero or exactly two spaceships. In addition, due to the 

smart targeting system, the sets of the three possible targets of any two different 

OMG bazookas are disjoint (that means that every ship is targeted with at most 

one OMG bazooka). 

Your task is to make a plan of the attack which will destroy the largest possible number of 

spaceships. Every destroyed spaceship should be destroyed with exactly one weapon. 

 

Input: 

The first line contains two numbers. Number of your weapons 𝑁 and number of spaceships 𝑀.  

In the next 𝑁 lines, each line has one integer that represents type (either 0, 1 or 2). If the type 

is 0, then the weapon is SQL rocket, the rest of the line contains strictly positive number 𝐾 and 

array 𝑘𝑖 of 𝐾 integers (1 ≤ 𝑘𝑖 ≤ 𝑀). If the type is 1, then the weapon is Cognition beam, the 



 

  MDCS – Bubble Cup 2018 50 

rest of the line contains integers 𝑙 and 𝑟. If the type is 2 then the weapon is OMG bazooka, the 

rest of the line contains distinct numbers 𝑎, 𝑏 and 𝑐. 

Output: 

The first line should contain the maximum number of destroyed spaceships – 𝑋. In the next 𝑋 

lines, every line should contain two numbers 𝐴 and 𝐵, where 𝐴 is an index of the weapon and 

𝐵 is an index of the spaceship which was destroyed by the weapon 𝐴. 

Constraints: 

• 1 ≤ 𝑁 ≤ 5000 

• 1 ≤ 𝑀 ≤ 5000 

• ∑ 𝐾 ≤ 100 000 

• 1 ≤ 𝑘𝑖 ≤ 𝑀 

• 1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑀 

• 1 ≤  𝑎, 𝑏, 𝑐 ≤  𝑀 

 

Example input: 

3 5 

0 1 4 

2 5 4 1 

1 1 4 

Example output: 

4 

2 1 

3 2 

1 4 

2 5 

 

Explanation: 

SQL rocket can destroy only 4th spaceship. OMG Bazooka can destroy two of 1st, 4th or 5th 

spaceship, and Cognition beam can destroy any spaceship from the interval [1,4]. 

The maximum number of destroyed spaceship is 4, and one possible plan is that SQL rocket 

should destroy 4th spaceship, OMG bazooka should destroy 1st and 5th spaceship and 

Cognition beam should destroy 2nd spaceship. 

Time and memory limit: 2s / 128 MB 



 

MDCS – Bubble Cup 2018   51 

Solution and analysis: 

This problem can be modeled as a maximum matching problem and can be solved using a 

standard flow algorithm. However, there are few details which we need to take into consideration. 

First of all, we will create a bipartite graph with weapons in one set and spaceships in another. 

Every spaceship will be connected to the sink vertex with the edge of unit capacity. From the 

source, there will be an edge to every weapon with the unit capacity if the weapon is SQL rocket 

or Cognition beam and 2 if the weapon is OMG bazooka. Every SQL rocket will be connected 

with spaceships which it can destroy with an edge of unit capacity. 

If we connect Cognitive beams with every spaceship they can destroy, that will result with 𝑂(𝑁 ⋅

𝑀) edges and a solution will TLE or MLE. In order to reduce the number of edges for Cognition 

beams, we can construct the segment tree on the top of spaceships nodes and connect Cognition 

beams with the minimum number of nodes which will cover the whole interval. It's similar to 

querying a standard RMQ segment tree. Edges in segment tree have infinite capacity. 

And finally, we need to connect every OMG bazooka with three possible targets. In addition, we 

need to ensure that all OMG bazookas destroy zero or two spaceships. After we find maximum 

flow for every OMG bazooka that has destroyed only one spaceship, we can easily find which 

other weapon has destroyed other two and assign one of them to the bazooka. That assignment 

is valid since there is no target overlaping between bazookas and total number of destroyed 

spacehips remains the same. 

Overall time complexity is 𝑂(min(𝑁, 𝑀) ⋅ max(𝑁, 𝑀) log 𝑀) and space complexity is 

𝑂(max (𝑁, 𝑀) log 𝑀). 

  



 

  MDCS – Bubble Cup 2018 52 

Problem L: Moonwalk challenge 

Premier League division only 

Author:  

Ibragim Ismailov 

Implementation and analysis:  

Ibragim Ismailov 

David Milićević 

 

Statement: 

Since astronauts from BubbleCup XI mission finished their mission on the Moon and are big 

fans of a famous singer, they decided to spend some fun time before returning to the Earth 

and hence created a so called “Moonwalk challenge” game. 

Teams of astronauts are given the map of craters on the Moon and direct bidirectional paths 

from some craters to others that are safe for “Moonwalking”. Each of those direct paths is 

colored in one color and there is a unique path between each two craters. Goal of the game is 

to find two craters such that given array of colors appears most times as continuous subarray 

on the path between those two craters (overlapping appearances should be counted). 

To help your favorite team of astronauts win, you should make a program that, given the map, 

answers queries of the following type: For two craters and array of colors answer how many 

times given array appears as continuous subarray on the path from the first crater to the 

second. 

Colors are represented as lowercase English alphabet letters. 

Input: 

In the first line, integer 𝑁 – number of craters on the Moon. Craters are numerated with 

numbers 1 to 𝑁. 

In next 𝑁 − 1 lines, three values 𝑢, 𝑣, 𝐿 denoting that there is a direct path with color 𝐿 between 

craters u and v. 

Next line contains integer 𝑄 – number of queries. 

Next 𝑄 lines contain three values 𝑢, 𝑣, 𝑆 where 𝑢 and 𝑣 are two craters for which you should 

find how many times array of colors 𝑆 (represented as a string) appears on the path from 𝑢 to 

𝑣. 

 

 



 

MDCS – Bubble Cup 2018   53 

Output: 

For each query output one number that represents number of occurrences of array 𝑆 on the 

path from 𝑢 to 𝑣. 

Constraints: 

• 2 ≤ 𝑁 ≤ 105 

• 1 ≤ 𝑢, 𝑣 ≤  N 

• 1 ≤ 𝑄 ≤ 105 

• |𝑆|  ≤ 100 
 

Example input: 

5 

1 2 a 

1 3 b 

1 4 a 

4 5 c 

4 

2 4 a 

2 5 aa 

2 5 ac 

3 5 c 

Example output: 

2 

1 

1 

1 

Time and memory limit: 6s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 54 

Solution and analysis: 

The key idea behind this solution is to split the tree into chains using Heavy-Light Decomposition. 

When the tree is decomposed, we notice that the query string length is at most 100. It means 

that for each chain in decomposition we can make dictionary containing all substrings of lengths 

from 1 to 100 in the chain as keys and positions of occurrences of those substrings in the chain 

as values. 

There are few notes about building the dictionary. Firstly, since having strings as keys will take up 

too much memory, we should have their hash values as keys. Next, we can optimize dictionaries 

by adding only substrings that are equal to some string from the set of query strings, meaning 

we should solve queries offline afterwards. And lastly, indices of occurrences of substrings inside 

chains that are stored in the dictionary should be sorted in order to improve counting later on. 

For each query we find Lowest Common Ancestor of the two given nodes and split solving into 

two parts: (u to LCA) and (v to LCA). Notice that in one of the two parts we should search for the 

reverted query string since we are going up the tree and we built the dictionary by going down 

the tree. Both parts are solved in the same manner. For each chain on the path from node to LCA 

we are counting number of matching substrings that start in that chain. We do so by checking 

values in dictionary entries (using binary search to find range of appropriate starting indices inside 

the chain). Separately, we should consider strings that start in one chain, but end in some other 

chain. This problem is solved by taking last 100 characters from the chain and concatenating next 

100 characters on the path to the LCA (because query string is at most 100 characters long). Also 

note that if chain is shorter than 100 characters then we should take needed characters from 

previous chains (if there are some) and so on... Now it is easy to find number of occurrences of 

query string in the string we built (by using KMP algorithm, for example). After both paths are 

processed, it remains to check for occurrences that contain LCA and that is done similarly. Take 

100 adjacent characters from both paths and build a string of at most 200 characters. In that 

string search for occurrences of our query string (like we did earlier). 

For Heavy-Light Decomposition complexity is 𝑂(𝑁). Saving query strings is done in 𝑂(𝑄|𝑆|) 

because for each string we need to hash it and save the hash value in some hash map. Building 

dictionary is 𝑂(𝑁|𝑆|) because for each node we add at most |S| strings to the dictionary and we 

can hash longer strings based on shorter ones. Sorting all dictionary entries is for sure less than 

𝑂(𝑁|𝑆| log(𝑁|𝑆|)) since that would be the complexity if all of the entries were stored in single 

array. So, the previous two sum up to 𝑂(𝑁|𝑆| log(𝑁|𝑆|)). For each query finding LCA is 𝑂(𝑙𝑜𝑔𝑁). 

Then, for each chain (we have at most 𝑙𝑜𝑔𝑁 chaing on the path from node to LCA) there is 

𝑂(𝑙𝑜𝑔𝑁) for binary search for correct start indices in dictionary values and 𝑂(|𝑆|) for finding 

occurrences that end outside the current chain. Total complexity is then 𝑂(𝑄|𝑆| +

𝑁|𝑆| log(𝑁|𝑆|) + 𝑄𝑙𝑜𝑔𝑁(𝑙𝑜𝑔𝑁 + |𝑆|)). 

  



 

MDCS – Bubble Cup 2018   55 

Problem M: Shady Lady 

Premier League division only 

Author:  

Daniel Paleka 

Implementation and analysis:  

Daniel Paleka 

Aleksandar Lukac 

Statement: 

Ani and Borna are playing a short game on a two-variable polynomial. It's a special kind of a 

polynomial: the monomials are fixed, but all of its coefficients are fill-in-the-blanks dashes, e.g. 

__𝑥𝑦 + __𝑥4𝑦7 +  __𝑥8𝑦3  +  …  

Borna will fill in the blanks with positive integers. He wants the polynomial to be bounded from 

below, i.e. his goal is to make sure there exists a real number 𝑀 such that the value of the 

polynomial at any point is greater than 𝑀.  

Ani is mischievous, and wants the polynomial to be unbounded. Along with stealing Borna’s 

heart, she can also steal parts of polynomials. Ani is only a petty kind of thief, though: she can 

only steal at most one monomial from the polynomial before Borna fills in the blanks. 

If Ani and Borna play their only moves optimally, who wins? 

 

Input: 

The first line contains a positive integer 𝑁, denoting the number of the terms in the starting 

special polynomial. 

Each of the following 𝑁 lines contains a description of a monomial: the 𝑘-th line contains two 

space-separated integers 𝑎𝑘 and 𝑏𝑘 which means that the starting polynomial has the term  

__𝑥𝑎𝑘𝑦𝑏𝑘 .  

It is guaranteed that for 𝑘 ≠ 𝑙, either 𝑎𝑘 ≠ 𝑎𝑙 or 𝑏𝑘 ≠ 𝑏𝑙. 

 

Output: 

If Borna can always choose the coefficients such that the resulting polynomial is bounded from 

below, regardless of what monomial Ani steals, output „Borna“. Else, output „Ani“.  

You shouldn't output the quotation marks. 

 



 

  MDCS – Bubble Cup 2018 56 

Constraints: 

• 2 ≤ 𝑁 ≤  200 000 

•  0 ≤  𝑎𝑘 , 𝑏𝑘 ≤  1 000 000 000  

 

Example input 1: 

3 

1 1 

2 0 

0 2 

Example output 1: 

Ani 

Explanation 1: 

The initial polynomial is __𝑥𝑦 + __𝑥2 + __𝑦2. If Ani steals the __𝑦2 term, Borna is left with  __𝑥𝑦 +

__𝑥2. 

Whatever positive integers are written in the blanks, 𝑦 →  −∞ and 𝑥 ∶= 1 makes the whole 

expression go to negative infinity. 

Example input 2: 

4 

0 0 

0 1 

0 2 

0 8 

Example output 2: 

Borna 

Explanation 2: 

The initial polynomial is  __1 +  __𝑥 +  __𝑥2  + __𝑥8.  One can check that no matter what term 

Ani steals, Borna can always win. 

Time and memory limit: 1s / 256MB 



 

MDCS – Bubble Cup 2018   57 

Solution and analysis: 

Let's call a set of monomials (in other words, a polynomial with blanks for 

coefficients) boundable if the blanks can be filled with positive integers such that the 

resulting polynomial is bounded.  

 The problem can now be rephrased as follows: does there exist an element in a given set of 

monomials, which when removed, leaves a set that is not boundable?  

 To solve the problem, we use a geometric reinterpretation of the setting.  

 Define the Cartesian representation of a set of monomials to be a set of points in the Cartesian 

the coordinate plane, constructed as follows:  𝑥𝑎𝑦𝑏 →  (𝑎, 𝑏) for all monomials in the set.   

Call a lattice point even if both of its coordinates are even, and odd otherwise.  

 The key lemma, which crushes the problem, is: 

A set is boundable if and only if its Cartesian representation, together with the origin, has a 

convex hull with all vertices even.  

Proof: We will first prove the backward direction, i.e. convex hull even implies boundable. 

Each point 𝑸 = (𝑎, 𝑏) that is not a vertex of the convex hull can be expressed as a weighted mean 

of the vertices of the convex hull: 

𝑸 =  𝛼1𝑷𝟏 + 𝛼2𝑷𝟐 +  … + 𝛼𝑚𝑷𝒎 , 

where 𝑷𝟏, 𝑷𝟐, … , 𝑷𝒎 are the vertices of the convex hull, and 𝛼1 + 𝛼2 +  … + 𝛼𝑚 = 1. 

Now the inequality between weighted arithmetic and geometric means gives us:  

 𝛼1𝑥𝑷𝟏.𝒙𝑦𝑷𝟏.𝒚 + 𝛼2𝑥𝑷𝟐.𝒙𝑦𝑷𝟐.𝒚 + … +  𝛼𝑚𝑥𝑷𝒎.𝒙𝑦𝑷𝒎.𝒚 ≥ |𝑥𝑎𝑦𝑏|, 

where we omitted the moduli on the right side because 𝑷𝒊-s are even. 

We claim that we can obtain a bounded polynomial by setting the coefficients to 1 for all 

monomials corresponding to the non-vertices of the convex hull, and setting the coefficients to 

the vertex-monomials to 𝑁, the total number of monomials. The boundedness follows by 

summing the inequalities for all points 𝑸. 

Now we prove the forward direction by contradiction: assume there is an odd vertex  𝑸 = (𝑎, 𝑏) 

of the convex hull. Without losing generality, we can assume 𝑎 is odd. 

It’s well known one can choose a line which intersects the convex hull of points only in 𝑸. Let the 

normal vector to the line from the origin (which is unique, as 𝑸 is not the origin because 𝑎 is odd) 

be (𝑝, 𝑞). 



 

  MDCS – Bubble Cup 2018 58 

We claim that putting (𝑥, 𝑦) = (−𝑡𝑝, 𝑡𝑞) and sending 𝑡 → ∞ makes the monomial 

𝑥𝑎𝑦𝑏 corresponding to the point 𝑸 go to negative infinity at a rate faster than the growth of any 

other monomial. 

That is true because each monomial 𝑥𝑐𝑦𝑑 becomes ±𝑡𝑝𝑐+𝑞𝑑, and the exponent in −𝑡𝑝𝑎+𝑞𝑏 is 

maximal among all exponents, because every exponent is now the length of the projection of the 

point vector to the normal vector of the line, and the point 𝑸 has the maximal projection due to 

the way we chose the line. Also, the exponent 𝑝𝑎 + 𝑞𝑏 is positive, because in the other case 𝑝 ⋅

0 + 𝑞 ⋅ 0 > 𝑝𝑎 + 𝑞𝑏. End of proof. 

The problem is now reduced to the question: 

Given a set of points in the plane, can we remove a point (bar the origin) such that the convex hull 

of the remaining points has at least one odd vertex?  

 That problem can be solved with a smart modification of one of the standard convex hull 

algorithms.  We will describe a more straightforward approach here: first find the non-strict 

convex hull of the set of points, and colour the points on the hull alternately black and white. 

(Don’t colour the origin.) Now find the strict convex hulls of the uncoloured+white points, and 

the uncoloured+black points. If any of these convex hulls has an odd point, Ani wins, otherwise 

Borna wins. 

We leave the proof of the algorithm to the reader. 

There is also a second type of solution, which can be thought as a dual to the one previously 

described: for each point (𝑎, 𝑏) as in the previous solution, draw the line 𝑦 = 𝑎𝑥 + 𝑏. Now it can 

be seen that a set is boundable if and only if (bar some cases) the upper convex envelope contains 

only even lines, i.e. lines with both 𝑎 and 𝑏 even. One then proceeds similarly as in the first 

solution to find Ani's best move in 𝑂(𝑛) or 𝑂(𝑛 log(𝑛)).  

This second solution, while being slightly harder to implement, is somewhat easier to come up 

with: when one substitutes (𝑥, 𝑦) = (−𝑡𝑝, 𝑡𝑞) in the polynomial, the monomial 𝑥𝑎𝑦𝑏 with the 

maximal 𝑎𝑝 + 𝑏𝑞 becomes the dominant term. By a suitable transformation, the problem is now 

just a variant on the „convex hull trick“ technique. 

  



 

MDCS – Bubble Cup 2018   59 

 

 

 

 

Qualification problems   



 

  MDCS – Bubble Cup 2018 60 

Round 1: Big Snowfall 

 

Statement: 

Anders the cat has been hired to clean the snow of the streets of Heavy Metal City. He drives 

a cleaning machine of the well-known brand the Blue-White Tree, and when he gets his 

machine stuck, he removes the snow by using a shovel made of the best wood around 

extracted from Quad Segment Trees, and the best steel out of Manowar factories. His 

laziness doesn’t allow him to work too much; therefore, he does not want to pass the same 

street more than once. He has a map of the neighborhood he needs to clean: it is mainly 

built of streets and intersections. 

Due to the fierce traffic, the streets of Heavy Metal City can be traversed only in their original 

direction with the aim to avoid any accident. In addition to that, due to Anders' aim, the 

Mayor of the city is strongly thinking about stopping the traffic for a certain amount of time 

which will be long enough to clean the city, allowing Anders to traverse streets in both 

directions.   

Given the number of intersections and the streets between them, tell Anders if he can clean 

all the streets without passing any of them more than once. In addition to that, you must tell 

him that if the traffic stopping is needed or not. 

Input: 

The first line contains an integer number 1 ≤  𝑇 ≤  100 representing the amount of cases. 

For each one: 

• The first line contains two space-separated integer numbers 1 ≤  𝑁 ≤  50 and  

0 ≤  𝑀 ≤  𝑁 ∗ (𝑁 − 1): the amount of intersections and streets respectively. The 

intersections are conveniently numbered between 1 and 𝑁. And the cleaning machine 

can start and finish in arbitrary intersections. 

• The following 𝑀 lines contain two space-separated integer numbers 𝐴 and 𝐵  

(1 ≤  𝐴, 𝐵 ≤  𝑁, 𝐴 ! =  𝐵), to describe a street going from the intersection 𝐴 to 

intersection 𝐵. 

Output: 

If Anders can clean the city normally as he wants, the output is "𝑌𝐸𝑆". If the traffic stopping is 

needed in order to complete Anders’ aim, the output is "𝑇𝑅𝐴𝐹𝐹𝐼𝐶 𝑆𝑇𝑂𝑃𝑃𝐼𝑁𝐺 𝑁𝐸𝐸𝐷𝐸𝐷". 

Otherwise the output is "𝑊𝐴𝐾𝐸 𝑈𝑃 𝐸𝐴𝑅𝐿𝐼𝐸𝑅" 

 

 

 



 

MDCS – Bubble Cup 2018   61 

Example input: 
3 

2 2 

1 2 

2 1 

4 3 

1 2 

1 3 

1 4 

3 3 

1 2 

1 3 

2 3 

Example output: 
YES 

WAKE UP EARLIER 

TRAFFIC STOPPING NEEDED 

Time and memory limit: 2s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 62 

Solution: 

Let’s interpret the problem as a graph and recall the concept of a Eulerian path/cycle. 

A Eulerian cycle is a cyclic path (meaning it starts and ends at the same vertex) that passes through 

every edge exactly once (it can go through any vertex as much as it needs to). A Eulerian path is 

essentially the same thing sans the requirement of it being cyclic (although a Eulerian cycle is still a 

Eulerian path). 

It’s easy to see that the question is equivalent to testing whether the given directed graph has a 

Eulerian path, and if it does not, does it have one if we strip the directions from the edges. There is a 

well-known test for these two questions, which states the following: 

Given an undirected graph, it admits a Eulerian cycle if and only if it’s connected (the isolated vertices 

aren’t taken into consideration here, as they are irrelevant to visiting the edges) and every vertex has 

an even degree. 

Given a directed graph, it admits a Eulerian cycle if and only if it’s connected (isolated vertices aren’t 

taken into consideration here, either) and every vertex has an indegree equal to its outdegree. 

We shall now present a short outline of the proof of the directed case (the undirected case easily 

follows analogously):  

We shall induct on the number of edges in the graph 𝐺, the case of 0 edges being trivial. 

Since every vertex which we don’t ignore has an outdegree of at least 1, it is not a directed acyclic 

graph, hence it contains a cycle 𝐶. Now take the cycle out of the graph (we’ll call this graph 𝐺/𝐶). 

Since we have decreased the indegree and outdegree of every vertex by the same amount the “equal 

indegree and outdegree” condition holds true, and the graph is split into more (maybe 1) connected 

components that have this condition. Now take the cycle that traverses 𝐶 and every time it reaches a 

new connected component in 𝐺/𝐶 it traverses its Eulerian cycle, which exists given the inductive 

hypothesis. This construction gives the Eulerian cycle for graph 𝐺. 

These easily generalize into finding whether a Eulerian path exists, by adding a phantom edge 

between the starting and finishing vertices of the path and we get that we want to have exactly: 

0 or 2 vertices of an odd degree, in the undirected case. 

Every vertex having its indegree equal to its outdegree; or having exactly one vertex whose outdegree 

is larger than its indegree by exactly one, one vertex whose outdegree is smaller than its indegree by 

exactly one, and the rest have their indegree equal to its outdegree. 

(in both cases the connectivity argument needs to hold true) 

Using this theorem, using Depth-First-Search (for checking whether the graph is connected) and 

degree counting arguments, we can derive an easy algorithm implementing it in 𝑂(𝑛 + 𝑚) time.  

 



 

MDCS – Bubble Cup 2018   63 

Problem source: COJ 

Solution by: 

Name: Pavle Martinovic 

  



 

  MDCS – Bubble Cup 2018 64 

Round 1: Bono 

 

Statement: 

Kang and Kung are board games enthusiasts. However, they like to play only deterministic 

games, such as chess. Since there are only a few deterministic games, they decided to create 

a new one. This game is called 'Bono'. 

The rule of Bono is simple. The board consist of a 3x3 grid. The game is turn-based for 2 

players. On each turn, the current player must fill an empty cell with a piece of water spinach. 

Players may not move any water spinaches that have been placed. The board will destroy 

itself if there is a row or column or diagonal consisting of 3 pieces of water spinach. A player 

loses if he can't make a move in his turn.  

Of course, the first player will always win the game if he plays optimally. That is why they 

created Bono v2. In Bono v2, the number of boards used in a game is 𝑁 (𝑁 ≤  1000). On 

each turn, the current player must fill an empty cell on an undestroyed board with the same 

ruling as Bono. A player loses if he can't make a move in his turn. 

Bono v2 is still too easy since if they both play optimally, player 1 will always win if 𝑁 is odd, 

and player 2 will always win if 𝑁 is even. To solve this matter, Bono v3 is created. In Bono v3, 

the initial state of each board might not be empty. Some cells might already be occupied 

with a piece of water spinach. Other than that, the rules are same as Bono v2. 

Kang and Kung decide to play Bono v3 𝑇 times (𝑇 ≤  1000). Kang always moves first and 

they both play optimally. Who will win each game?  

Input: 

The first line of input is 𝑇, the number of games is (𝑇 ≤  1000). For each game, the first line 

is 𝑁, the number of boards (𝑁 ≤  1000). Next 𝑁 lines consist of the starting boards. A board 

is represented with a 9-digit binary string. Cell in (𝑟, 𝑐) position is represented by 

((𝑟 − 1)𝑥3 + 𝑐)𝑡ℎ character in the string. 0 means the cell is empty, 1 means the cell is filled.  

Output: 

For each game, output a line containing the winner's name. 

Example input: 
3 

1 

000000000 

2 

000000000 

000000000 

2 

100010000 

001010000 



 

MDCS – Bubble Cup 2018   65 

Example output: 
Kang 

Kung 

Kung  

Time and memory limit: 2s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 66 

Solution: 

Firstly, let's notice that this game is impartial (for a single board). An impartial game is such a 

game that both players have the perfect information, the same moveset in a given state and 

that the losing player is the one who can't make a move. This means that we can apply the 

Sprague-Grundy theorem to help us solve the problem.  

The theorem tells us that every state in an impartial game (and as such every table in this 

game) is equivalent to a 𝑁𝑖𝑚 heap of a certain size.  Size of that heap for a certain state is 

often called that state's 𝑁𝑖𝑚𝑏𝑒𝑟. 𝑁𝑖𝑚𝑏𝑒𝑟 of a losing state is 0. We can find the 𝑁𝑖𝑚𝑏𝑒𝑟 of a 

state using the formula given by the theorem: 𝑁𝑖𝑚𝑏𝑒𝑟[𝑠𝑡𝑎𝑡𝑒0] =

𝑚𝑒𝑥{𝑁𝑖𝑚𝑏𝑒𝑟[𝑠𝑡𝑎𝑡𝑒1], 𝑁𝑖𝑚𝑏𝑒𝑟[𝑠𝑡𝑎𝑡𝑒2], … 𝑁𝑖𝑚𝑏𝑒𝑟[𝑠𝑡𝑎𝑡𝑒𝑁]} 

where 𝑠𝑡𝑎𝑡𝑒1, … 𝑠𝑡𝑎𝑡𝑒𝑁 are all the states you can get to from 𝑠𝑡𝑎𝑡𝑒0 in a single move, and 

𝑚𝑒𝑥 meaning minimum excludant (the smallest nonnegative integer not included in the set). 

We use recursion with memorization to find the 𝑁𝑖𝑚𝑏𝑒𝑟𝑠 for all possible states of the board. 

Complexity is 𝑂(2𝐾 log 𝐾), where 𝐾 is the number of spaces on the board. In this problem, 

𝐾 = 9. 

Now that we know 𝑁𝑖𝑚𝑏𝑒𝑟𝑠 for all N boards and that those 𝑁𝑖𝑚𝑏𝑒𝑟𝑠 are equivalent to 𝑁𝑖𝑚 

heaps, we can just solve a regular 𝑁𝑖𝑚 problem with 𝑁 heaps, which has a well-known 

solution. 𝑁𝑖𝑚 is a game with multiple coin heaps where players take turns, taking any 

amount of coins from a single heap of their choosing. The player who plays the first- wins 

(considering optimal play) if and only if the bitwise xor of all heap sizes is greater than zero. 

 

Problem source: SPOJ 

Solution by: 

Name: Mladen Puzić 

  



 

MDCS – Bubble Cup 2018   67 

Round 1: Changu Mangu in a Football Team 

 

Statement: 

Changu and Mangu are a part of a football team which is going to participate in a 

tournament. There are 𝑛 teams in total in the tournament. Each team plays twice against 

every other team (home and away fixture). The team that wins, is awarded 3 points. The team 

that draws, gets 1 point, while the team that loses gets no points. 

At the end of the tournament, the teams are ranked 1 to 𝑛 according to total points. The 

rank of each team 𝑡 having 𝑝 points is one plus the number of teams having more than 𝑝 

points. It is possible that more than one team have the same ranks. 

In addition to the team that has rank 1, the 𝐿𝑢𝑐𝑘𝑦 team is also awarded, if it exists. The 

𝐿𝑢𝑐𝑘𝑦 team is the one that has absolutely the highest number of wins (absolutely means that 

no other teams have the same number of wins), absolutely the highest number of goals 

scored, and absolutely the lowest number of goals conceded, is called the 𝐿𝑢𝑐𝑘𝑦 team. 

(𝐿𝑢𝑐𝑘𝑦 Team should have all these properties.) 

Changu keeps dreaming about being a part of the Lucky team. Your task is to find out the 

worst possible rank for the 𝐿𝑢𝑐𝑘𝑦 Team. 

Input: 

The first line contains 𝑇, the number of test cases. The next 𝑇 (𝑇 ≤  105) lines contain a 

number 𝑛 (1 ≤  𝑛 ≤  1018), the number of teams participating in the tournament.  

Output: 

For each test case, print on a separate line, the worst possible rank for the 𝐿𝑢𝑐𝑘𝑦 Team 

Example input: 
2 

1 

3 

Example output: 
1 

1 

Time and memory limit: 2s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 68 

Solution: 

Let's prove that if 𝑛 > 4 the answer is 𝑛. The Lucky team will win once against teams 𝐴 and 𝐵 

and they (both) will beat the Lucky team once in their second match. Every other team will 

beat the Lucky team once. 

All other matches on the tournament will end as a draw. This way every team except teams 

𝐴, 𝐵 and the Lucky team will have 3 ∗ 1 + 1 ∗ (2𝑛 − 3) = 2𝑛 points. 

Teams 𝐴 and 𝐵 will have one less so 2𝑛 − 1, and the Lucky team will have 3 ∗ 2 + (𝑛 − 3) =

𝑛 + 3,so for every 𝑛 > 4the Lucky team is the last. The Lucky team has 2 wins and every other 

team only 1. 

We can easily handle the condition about goals, let's say that the result of Lucky's team 

victories against 𝐴 and 𝐵 is 𝐿: 0, let’s say that every lost game of the Lucky team is by 1: 0. Let 

every draw of the Lucky team be 0: 0 and let every draw between teams that are not the 

Lucky team be by 2: 2. Now the Lucky team gave 2 ∗ 𝐿 goals (𝐿 is some very large number) 

and conceded 𝑛 − 1,every other team conceded at least (2 ∗ 𝑛 − 3) ∗ 2 goals so all conditions 

are fulfilled since we can pick 𝐿that’s large enough. 

If 𝑛 = 2 it's obvious that the Lucky team must finish first. 

If 𝑛 = 3 and number of wins of the Lucky team is 1 it's obvious that the Lucky team finishes 

first (because all other games on the tournament ended as a draw). 

If it's 2, other teams can get only one win so there are 3 more games where they can get 

max 3 points (all draws) so they can't have more then 6 pts. 

Finally, if 𝑛 = 4  we will prove that the answer is 2. Again, if the number of wins of the Lucky 

team is 1 he will obviously end as first. 

If the number of wins is 3 or more it's same as case where 𝑛 = 3 and number of wins is 2. 

So, the only possible number of wins of the Lucky team where it won't finish first is 2. Lucky 

team will have 2 wins and the other teams will have in sum 3 wins, so from 6 matches the 

Lucky team will have at least 7 points. If the Lucky team beats the same team 2 times (let's 

say team 𝐶) he can lose only 2 times so it can have at least 8 points, which is the maximum 

number of points that the other 2 teams can have. So, it's obvious that the Lucky team must 

beat 2 different teams (let's say 𝐵 and 𝐶) and they can't have as much points as he has and 

team 𝐴 will have more points so Lucky team will finish second. 

So finally, if 𝒏 > 𝟓 answer is 𝒏, if 𝒏 = 𝟒 answer is 𝟐, otherwise it's 𝟏. 

 



 

MDCS – Bubble Cup 2018   69 

Problem source: SPOJ 

Solution by: 

Name: Jovan Pavlović 

  



 

  MDCS – Bubble Cup 2018 70 

Round 1: Crazy LCP 

 

Statement: 

You are given an array of strings in this problem; these strings are given unique indexes from 

1 to 𝑁 (in the same order as in the input). Then you are given 𝑄 queries, each query consists 

of 2 integers 𝐿 and 𝑅, to answer the query you need to find a pair of strings with different 

indexes in the range from 𝐿 to 𝑅 (inclusive), where the length of the longest common prefix 

for these 2 strings is the maximum among all other possible pairs. 

Input: 

Your program will be tested on one or more test cases. The first line of the input will be a 

single integer 𝑇 (1 ≤  𝑇 ≤  20) representing the number of test cases. Followed by 𝑇 test 

cases. Each test case starts with a line containing an integer 𝑁 (2 ≤  𝑁 ≤  105) representing 

the number of strings followed by a line containing 𝑁 non-empty strings of lower case 

English letters separated by a single space, representing the list of strings. The sum of 

lengths of the strings in each test case is not greater than 200,000.  

Followed by a line containing an integer 𝑄 (1 ≤  𝑄 ≤  105) representing the number of 

queries followed by 𝑄 lines, each line will contain 2 integers separated by a space, 𝐿 𝑅, which 

represent a query as described above (1 ≤  𝐿 <  𝑅 ≤  𝑁).  

Output: 

For each query print a single line containing an integer which is the maximum length of the 

longest common prefix as described above. 

Example input: 
1 

4 

aab abc aac xba 

3 

2 3 

1 3 

3 4 

Example output: 
1 

2 

0 

Time and memory limit: 2s / 256 MB 

 

  



 

MDCS – Bubble Cup 2018   71 

Solution: 

The main idea is that we can find an answer to a query with binary search. Let’s sort strings 

by lexicographical order, but also remember their indexes in the original array. Now we 

calculate the LCP of each two consecutive strings. As an example, add these values to set. 

Iterate over these values in an increasing order. Now observe that when we are at some 

value v we are going to have some mutually non-intersecting groups consisting of 

consecutive elements. In each of those groups, any two strings are going to have LCP of at 

least v. So, if we sort their indexes and pair consecutive, we have just found the nearest right 

for each of them so that they have LCP at least v. We can add these pairs to vector and sort 

them by left value. Now to check if the answer exists for some value, we can just check if 

there is a pair within range in the vector corresponding to that value. But we have our pairs 

sorted, so it is easier for us to check. We just need to find the position of a pair with at least L 

in left value with the lower bound. In addition to that, just check the minimum value over 

right values in pair in suffix that starts from this position. For example, we can do this with 

the segment tree. 

Let’s analyze the complexity of this approach now. Iterating through LCP values costs us 

𝑂(𝑆 𝑙𝑜𝑔𝑁) where 𝑆 is sum of strings’ lengths. That’s due to the fact that each string cannot 

be in an iterator more times than its length. And for the query it is 𝑂(log 𝑉 ∗ log 𝑁) where 𝑉 is 

the number of different LCP values (SQRT(S)) which is easily provable using the 𝑛 ∗ (𝑛 + 1)/2 

formula. We can also easily prove why these are the only possible values for the solution by 

verifying the fact that LCP of strings at positions 𝑖 and 𝑗 in the sorted order is the minimum 

value over LCPs of consecutive strings, and the fact about our groups being consecutive is a 

consequence of this fact. 

But we can do this even faster and without the advanced data structures like the segment 

tree, sparse table, etc... 

Firstly, notice that we can just check the suffix. So, we can get this in 𝑂(1). But there is still 

the lower bound. This is not a big problem if we sort the queries by 𝐿. So, we can just move 

the pointers to “delete” the strings that are never going to be checked (the ones with the 

index less than 𝐿). Thus, we can again simulate the lower bound and get 𝑂(1). 

 

Problem source: A2OJ 

Solution by: 

Name: Aleksa Miljković 

  



 

  MDCS – Bubble Cup 2018 72 

Round 1: Find the Next Letter 

Statement: 

Anders the cat is playing with their party´s partners Vinagrito and Klaus, playing with letters 

this time; he has a list of 𝑁 lowercase letters in an arbitrary order and not particular 

distribution. Letters are conveniently numbered between 1 and 𝑁. The game is simple; each 

time one of them selects some letter (their respective position) of the list, the other cats must 

find (if it exists) the first letter (their respective position), to the right in the given list which is 

greater than the selected letter.  

Anders hates losing, so he needs your help to find the solution rapidly.  

Input: 

In the first line an integer number 𝑇 ≤  1000 will be given corresponding to the number of 

test cases. The next 𝑇 lines contains an integer number 1 ≤  𝑁 ≤  105 representing the 

number of letters in the list, followed by 𝑁 lowercase letters as a whole string of size 𝑁 which 

are the elements of the list itself. You can safely assume that the sum of the sizes of all the 

strings will not exceed 105. The first line contains 𝑇, the number of test cases.  

Output: 

For each case output a line with 𝑁 space-separated integer numbers not greater than 𝑁 

representing the respective position of the solution for each letter in the list. You must print 

the solution for the first letter first, then the solution for the second letter, and so on. If there 

is no solution for some letter/position in the list, you must print -1 instead (note that the last 

number must be always -1). 

Example input: 
3 

1 r 

5 abcde 

9 uprdesoft 

Example output: 
-1 

2 3 4 5 -1 

-1 3 6 5 6 9 9 9 -1 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   73 

Solution: 

For every test case we will have a stack in which we will keep a letter and its position. We just 

need to go through the list of letters and whenever we get to a new letter 𝑖, until the letter 

on top of the stack is greater than letter i, we need to remove that letter and set the solution 

for the removed letter to 𝑖. When we are finished, we just need to set the solution of all the 

letters that are left in the stack to -1. 

Problem source: COJ 

Solution by: 

Name: Ivan Avirović 

  



 

  MDCS – Bubble Cup 2018 74 

Round 1: Oil Skimming 

Statement: 

Thanks to a certain "green" resources company, there is a new profitable industry of oil 

skimming. There are large slicks of crude oil floating in the Gulf of Mexico just waiting to be 

scooped up by enterprising oil barons. One such oil baron has a special plane that can skim 

the surface of the water collecting oil on the water's surface. However, each scoop covers a 

10m by 20m rectangle (going either east/west or north/south). It also requires that the 

rectangle is completely covered in oil, otherwise the product is contaminated by pure ocean 

water and thus unprofitable! 

Given a map of an oil slick, the oil baron would like you to compute the maximum number of 

scoops that may be extracted. The map is an 𝑁𝑥𝑁 grid where each cell represents a 10m 

square of water, and each cell is marked as either being covered in oil or pure water. 

Input: 

The input starts with an integer 𝐾 (1 ≤  𝐾 ≤  100) indicating the number of cases. Each case 

starts with an integer 𝑁 (1 ≤  𝑁 ≤  600) indicating the size of the square grid. Each of the 

following 𝑁 lines contains 𝑁 characters that represent the cells of a row in the grid. A 

character of '#' represents an oily cell, and a character of '.' represents a pure water cell. 

Output: 

For each case, one line should be produced, formatted exactly as follows: "Case X: M" where 

𝑋 is the case number (starting from 1) and 𝑀 is the maximum number of scoops of oil that 

may be extracted. 

Example input: 
1 

6 

...... 

.##... 

.##... 

....#. 

....## 

...... 

Example output: 
Case 1: 3 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   75 

Solution: 

We want to fill oil cells in the matrix with as many rectangles of the dimension 2 × 1 as 

possible. One oil cell can share a rectangle with only one neighboring oil cell from the same 

row or column.  

If we color cells of matrix like on a chessboard (cell in position (𝑖, 𝑗) is black if (𝑖 + 𝑗) % 2 = 0 

and white otherwise) every rectangle would be on exactly one black and one white square. 

We can create bipartite graph of oil cells. The first partition consists of black squares, and 

second of white squares. There is an edge between every two neighboring oil cells with 

different color.  

Then we should find maximum bipartite matching. Every pair of matched vertex represents 

one placed rectangle. Maximum matching is equal to the maximum number of rectangles 

that are possible to place. 

Every vertex can be connected with most 4 other vertices so that there are not so many 

edges in the graph and we can use the Ford-Fulkerson algorithm to find the maximum 

bipartite matching. 

Problem source: A2OJ 

Solution by: 

Name: Filip Ćosović 

 

  



 

  MDCS – Bubble Cup 2018 76 

Round 1: Optimum Click 

 

Statement: 

An electronic apparatus consists of a display and two buttons 𝑆 and 𝑀. When connecting the 

machine, zero is displayed. If the 𝑆 key is pressed, the number on screen increases to 1 and if 

the 𝑀 key is pressed, the number that is displayed is multiplied by 𝑛. Find the least amount 

of clicks needed to display a number 𝑘 and the string formed by 𝑆 and 𝑀 with minimal 

sequence in which keys must be pressed to display 𝑘 on the computer screen.  

Input: 

The input consists of lines with two numbers separated by a single space 𝑘 (1 ≤  𝑘 ≤  1012) 

and 𝑛 (2 ≤  𝑛 ≤  100). The inputs end with a line containing 0 0.  

Output: 

For each input line output the minimum amount of clicks needed to display 𝑘, separated by 

a space, the minimum string formed by 𝑆 and 𝑀 in the order in which you must press these 

keys to achieve objective. If you have more than one string to return, use the one which 

minimizes the number of 𝑀. 

Example input: 
4 3 

0 0 

Example output: 
3 SMS 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   77 

Solution: 

We will first consider a dynamic programming solution. Let's 𝑑𝑝[𝑖] denote minimum number 

of clicks to obtain number 𝑖 starting from 0. 

Then 𝑑𝑝[𝑘] is the solution. It is easy to see that 𝑑𝑝[𝑖] is equal to 𝑑𝑝[𝑖 − 1] + 1 if 𝑖 is not 

divisible by 𝑛. Otherwise, 𝑑𝑝[𝑖] is  1 + 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑝[𝑖 − 1] 𝑎𝑛𝑑 𝑑𝑝[𝑖/𝑛]. This 

approach requires 𝑂(𝑘) time and memory which is not acceptable for the given constraints. 

We can avoid calculating all the values in 𝑑𝑝, and use greedy approach.  

We claim that 𝑑𝑝[𝑖/𝑛] is always lower than 𝑑𝑝[𝑖 − 1] when 𝑖 is divisible by 𝑛. 

 𝑑𝑝[𝑖 ∗ 1] = 1 + min(𝑑𝑝[𝑖], 𝑑𝑝[𝑖 ∗ 𝑛 − 1]) = 

1 + min(𝑑𝑝[𝑖], 𝑑𝑝[(𝑖 − 1) ∗ 𝑛 + 𝑛 − 1]) = 

1 + min(𝑑𝑝[𝑖], 𝑑𝑝[(𝑖 − 1) ∗ 𝑛] + 𝑛 − 1) = 

1 + min(𝑑𝑝[𝑖], 𝑑𝑝[𝑖 − 1] + 1 + 𝑛 − 1) = 

1 + min(𝑑𝑝[𝑖], 𝑑𝑝[𝑖 − 1] + 𝑛) = 

1 + min (𝑑𝑝[𝑖], 𝑑𝑝[𝑖] − 1 + 𝑛]) = 

1 + 𝑑𝑝[𝑖] (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑛 > 1) 

Now we know that there is a unique sequence that leads to value n in minimal amount of 

clicks. Initial value is 𝑘. When current value is divisible by 𝑛, 'M' is appended to the sequence 

and current value is divided by 𝑛. If it is not divisible, 'S' is appended. The algorithm ends 

when value becomes zero. Note that we need to reverse the string at the end.  

There could be maximum log(𝑘) 'M'-s in the sequence, and for each 'M' maximum of 𝑛 − 1 

'S'-s. Because of that, overall complexity is 𝑂(𝑛 ∗ log (𝑘)). 

Problem source: COJ 

Solution by: 

Name: Andrijana Dejković 

  



 

  MDCS – Bubble Cup 2018 78 

Round 1: Origami 

 

Statement: 

You would like to mail to your mom some origami you have made. 

The price of mailing depends on the area of the envelope: the smaller the envelope area, the 

less cost to ship. You cannot fold the origami shape to make it smaller. Of course, the 

envelope you are shipping the origami in must be rectangular. 

Consider the vertices which represent the points along the boundary of the paper in order, 

such that the edge of the paper may fold over itself. Given the vertices describing the 

origami shape, what is the area of the smallest envelope that you can use to mail the 

origami? 

Input: 

The first line contains the integer 𝑁 (3 ≤  𝑁 ≤  100 000) which is the number of vertices 

describing your origami. The next 𝑁 lines contain two integers, 𝑥 𝑦, the 𝑥-coordinate and 𝑦-

coordinate of that particular vertex 0 ≤  𝑥 ≤  107;  0 ≤  𝑦 ≤  107. You should assume all 

vertices are distinct, and that there is no line which contains all vertices.  

Output: 

Output the area of the smallest envelope that will contain the origami, rounded to the 

nearest integer. You can assume that no test case will have the area of the smallest envelope 

containing the given vertices that have a fractional part between 0.49 and 0.51. 

Example input: 
6 

4 9 

8 13 

8 9 

0 13 

4 0 

0 3 

Example output: 
104 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   79 

Solution: 

First of all, we should remove every vertex from set of vertices of polygon that isn’t contained 

in convex hull of that polygon, because if all vertices from convex hull are contained in some 

rectangle, then obviously all given points are also contained in that rectangle. 

The key observation that is used in this solution is that the minimum area rectangle 

containing all of the vertices must have one of its edges coincident to one of the edges of 

the polygon. Using this observation, we can calculate area of every rectangle that has stated 

property. 

Here is the brute-force approach for this problem: for each edge of polygon, we calculate 

the area of minimal-area rectangle that has one of its edges (call it bottom edge) coincident 

to that edge of the polygon. This is being done by scanning through all vertices of the  

polygon and finding extreme vertices that will determine the rectangle (in other words, we 

are looking for the leftmost, the rightmost and the uppermost vertex in coordinate system 

rotated so that 𝑥-axis is parallel to the bottom edge). Time complexity of this solution is 

𝑂(𝑛2), because for each edge of the convex hull we iterate through all vertices and look for 

the three remaining vertices needed to determine the size of rectangle. 

Time complexity of 𝑂(𝑛) can be accomplished by using rotating calipers approach. Instead of 

iterating through all remaining vertices of convex hull when looking for extreme vertices that 

determine the rectangle, we can instead rotate some rectangle by minimal angle such that 

one of its edges becomes coincident to some other convex hull edge. 

For each rectangle that has one of its edges 

coincident to one of the edges of convex hull, we 

define set of supporting points as set of four 

points of convex hull where each of those points 

touches one of the edges of the rectangle (if 2 

vertices touch the same edge of the rectangle, we 

take one that appears later when iterating through 

vertices counterclockwise). In example provided 

here, for rectangle 𝐾𝐿𝑀𝑁, set of supporting points 

is {𝐴, 𝐵, 𝐶, 𝐸}. When we rotate this rectangle 

counterclockwise keeping the set of supporting points the same, the next rectangle that will 

have one of its edges coincident to one of the edges of convex hull is rectangle 𝐺𝐻𝐽𝐼, and 

the corresponding set of supporting points will be {𝐷, 𝐸, 𝐴, 𝐵}. We notice that when we rotate 

some rectangle by minimal angle with stated constrains, the set of supporting points will 

differ by only one vertex. 

Using this observation, the solution becomes much more efficient. At the beginning, we 

compute the initial rectangle whose one edge is coincident to some arbitrarily chosen edge 



 

  MDCS – Bubble Cup 2018 80 

of polygon. This is being done by using idea from above mentioned brute-force approach. 

Then, once we have the initial rectangle computed, at each step, we compute all angles that 

the edges of the rectangle form with the corresponding edges of the polygon. We choose 

the smallest of those angles and rotate the rectangle by that angle. This rotation is being 

done in 𝑂(1) time complexity. After each rotation, new edge of polygon will become 

coincident to an edge of rectangle, and after 𝑛 rotations, the area of smallest rectangle for 

every edge of polygon will be calculated. Of all those rectangles, the one with smallest area 

is the one we are looking for. 

 

Problem source: DMOJ 

Solution by: 

Name: David Milinković 

 

  



 

MDCS – Bubble Cup 2018   81 

Round 1: Real Phobia 

 

Statement: 

Bert is a programmer with a real fear of the floating-point arithmetic. Bert has quite 

successfully used rational numbers to write his programs, but he does not like it when the 

denominator grows large. 

Your task is to help Bert by writing a program that decreases the denominator of a rational 

number, whilst introducing the smallest error possible. For a rational number 𝐴 𝐵⁄ , where 

𝐵 > 2 and 0 < 𝐴 < 𝐵, your program needs to identify a rational number 𝐶 𝐷⁄  such that all of 

the following are true: 

• 0 < 𝐶 < 𝐷 < 𝐵 

• the error |𝐴 𝐵⁄ − 𝐶 𝐷⁄ | is the minimum over all possible values of 𝐶 and 𝐷 

• 𝐷 is the smallest such positive integer 

Input: 

The input starts with an integer 𝐾 (1 ≤ 𝐾 ≤ 1000) that represents the number of cases on a 

line by itself. Each of the following 𝐾 lines describe one of the cases and consists of a fraction 

formatted as two integers, 𝐴 and 𝐵, separated by "/" such that: 

• 𝐵 is a 32 bit integer strictly greater than 2, and 

• 0 < 𝐴 < 𝐵 

Output: 

For each case, the output consists of a fraction on a line by itself. The fraction should be 

formatted as two integers separated by "/". 

Example input: 
3  

1/4 

2/3 

13/21 

Example output: 
1/3 

1/2 

8/13 

Time and memory limit: 2s / 256 MB 

 

 

Solution: 

We will solve each query separately. 



 

  MDCS – Bubble Cup 2018 82 

We can assume that 𝑎 𝑏⁄  is given in the lowest terms because otherwise, the solution is 

trivial. 

We want to find the nearest neighbor 𝑐 𝑑⁄  of 𝑎 𝑏⁄  such that 𝑑 < 𝑏 and gcd(𝑐, 𝑑) = 1.  

Let's assume that 𝑎 𝑏⁄  < 𝑐 𝑑⁄ . Consider 𝑐 𝑑⁄ . It is the element after 𝑎 𝑏⁄  in the Farey sequence 

Fb, which means that c𝑏 − 𝑎𝑑 = 1. In particular, 𝑑𝑎 + 1 = 0 (𝑚𝑜𝑑 𝑏), i.e. 𝑑 = −1 𝑎⁄  (𝑚𝑜𝑑 𝑏). 

So, let  

𝑟 = 1 𝑎⁄  (𝑚𝑜𝑑 𝑏). We can calculate it using extended Euclidean algorithm.  

Now make d as big as possible, such that 𝑑 = −𝑟 (𝑚𝑜𝑑 𝑏) and 𝑑 ≤ 𝑏. Then just put c =

 (𝑑𝑎 + 1) 𝑏⁄ . 

In the case 𝑎 𝑏⁄ >  𝑐 𝑑⁄  we can calculate it in a similar way. 

Problem source: A2OJ 

Solution by: 

Name: Stjepan Požgaj 

  

https://en.wikipedia.org/wiki/Farey_sequence


 

MDCS – Bubble Cup 2018   83 

Round 1: Rocks 

Statement: 

Nikita has a profound collection of rocks, all of which have names. In his spare time, Nikita 

loves to play with these rocks. He does this by arranging the rocks in a line. He occasionally 

adds more rocks to the end of the line. Unfortunately, he has so many rocks, that he often 

forgets which rocks he already added. He is not allowed to add a rock that is already in the 

line (because they're all unique!). He may also switch the position of two rocks. More 

importantly, the most fun part is finding the mass of a few consecutive rocks! Obviously, you 

get the mass of each rock from its name. The name of each rock is unique and consists only 

of lowercase letters. The longest name Nikita will assign a rock is 100 letters long. The mass 

of a rock is the sum of the letters in its name, where a = 1, b = 2, c = 3 … z = 26. E.g. rock will 

have a mass of 47. 

Input: 

You will execute (1 ≤  𝐶 ≤  100 000) commands. There are 5 types of commands, in the 

following format: 

• 𝐴 𝑅 - add rock 𝑅 to the end of the line, 𝑅 is a string – the name of the rock, output 

"𝐶𝑎𝑛′𝑡 𝑎𝑑𝑑 𝑅" if rock 𝑅 already exists in the line. 

• 𝑆 𝑋 𝑌 - swap the position of rocks 𝑋 and 𝑌 –  𝑋 and 𝑌 are both strings – the name of 

the two rocks, it is guaranteed that both 𝑋 and 𝑌 exist in the line. 

• 𝑀 𝑋 𝑌 - output the mass of rocks in between (inclusive) the rocks 𝑋 and 𝑌. Both the 

rocks are guaranteed to exist in the line. 

• 𝑅 𝑋 𝑌 - replace rock 𝑋 with new rock 𝑌 –  𝑋 and 𝑌 are both strings. 𝑋 is guaranteed to 

exist in the line and 𝑌 is guaranteed to not exist in the line. 

• 𝑁 - output the number of rocks currently in the line. 

The next C lines contain these 1 lined commands. There will be at most 1 ≤  𝑁 ≤

 10 000 rocks in the line at a time. The longest name Nikita will assign a rock is 100 letters 

long.  

Output: 

Output depends on the commands in input. See the input specification. All output for each 

command goes on its own separate line. 

  



 

  MDCS – Bubble Cup 2018 84 

Example input: 
12 

A a 

A b 

A c 

M a c 

M b c 

S a c 

M b a 

R c d 

M d b 

A c 

A d 

N 

Example output: 
6 

5 

3 

6 

Can't add d 

4  

Explanation: 

After the first 3 commands, the rocks that exist in the line are a, b, c, in that order. The mass 

of a to c is a + b + c = 1 + 2 + 3 = 6. The mass of b, c is 2 + 3 = 5. The position of a and b 

are swapped so that the line is now c, b, a. The mass of b and a is 2 + 1 = 3. Rock c is taken 

out and replaced with rock d so the line becomes d, b, a. The mass of d and b is 4 + 2 = 6. 

Rock c gets added successfully into the line, which is now d, b, a, c. Rock d can't get added 

since it already exists. Finally, there are 4 rocks in the line at the end. 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   85 

Solution: 

To solve this problem, we need to somehow maintain the order in which rocks are placed in 

line. Let's create associative array 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑟𝑜𝑐𝑘_𝑛𝑎𝑚𝑒] in which we'll store position of every 

rock already placed in the line. Also, let's create dynamic array 𝑀𝑎𝑠𝑠[𝑟𝑜𝑐𝑘_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛] in which 

we will store for every position in the line mass of rock on this position.  

Now let's describe how to perform all five types of queries using these two arrays. 

1) "Add rock to the end of line". This one is quite easy: just check whether new rock 𝑅 is 

present in associative array Position and depending on it either add 𝑅 to this array and 

extend Mass by one element, or print "Can't add 𝑅". 

2) "Swap positions of rocks 𝑋 and 𝑌". We need to swap values 𝑀𝑎𝑠𝑠[𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑋]] and 

𝑀𝑎𝑠𝑠[𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑌]], then swap values 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑋] and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑌]. 

3) "Output the mass of rocks in between (inclusive) the rocks 𝑋 and 𝑌". To be able to perform 

this type of queries one needs to quickly compute sum of values in some subsegment of 

array Mass. This is standard task called Range Sum Query and it can be solved by using many 

different techniques: Fenwick trees, Segment trees or SQRT-decomposition. To get bounds for 

range sum query we need to examine values 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑋] and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑌]. 

4) "Replace rock 𝑋 with new rock 𝑌". Just assign 𝑀𝑎𝑠𝑠[𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑋]] =

𝑀𝑎𝑠𝑠(𝑌), 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑌) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑋] and remove key 𝑋 from associative array. 

5) "Output the number of rocks currently in the line" - output size of array Position. 

We can use various data structures to represent associative array Position. It can be a Trie 

(lookup time is 𝑂(|𝑆|), where 𝑆 is a lookup key), some Balanced Search Tree (lookup time 

𝑂(|𝑆| log 𝑁) or Hash Table (lookup time is 𝑂(1) on average and 𝑂(𝑆𝑢𝑚𝑖|𝑆𝑖|) to precompute 

hashes of all strings in input). 

Problem source: DMOJ 

Solution by: 

Name: Andrei Valchok 

 

  



 

  MDCS – Bubble Cup 2018 86 

Round 1: Fire Evacuation Plan 

 

Statement: 

At RHHS, the school is on fire every other day, because safety is our number one priority. 

After administration has decided enough was enough, they decided to place detailed 

evacuation plans in each and every classroom to ensure everyone's safety during the fire 

evacuations. 

An evacuation plan consists of a list of movements in the cardinal directions (North, South, 

East, West), which detail the exact movements a student must make in order to make it to 

safety. One such evacuation plan may be NNWS, which describes an evacuation plan where 

the student must move one meter north, one meter north, one meter west, and then one 

meter south in order to reach safety. 

However, the administration has decided that these evacuation plans were too easy to follow 

and did not foster the academic atmosphere the RHHS is so famously known for having. As a 

result, the administration decided to encode the evacuation plans with a different encoding 

for each room. With this encoding, each cardinal direction is replaced with a string of letters, 

and the final evacuation plan is the concatenation of this string of letters. For example, the 

following mapping represents a possible encoding: 

N → AA 

S → A 

E → B 

W → AB 

With this encoding, our original evacuation plan of NNWS becomes AAAAABA. 

A side effect of this encoding is that it may represent multiple possible original evacuation 

plans. With the above encoding, AAAAABA could not only represent NNWS, but also 

SSSSSES. 

Given an encoding and an evacuation plan, determine the number of possible distinct 

destinations the evacuation plan could lead to. 

Input: 

The first four lines will contain the encoding for north, south, east, and west respectively. 

Each encoding will not exceed 128 characters. The next line will contain an evacuation plan 

encoded with the given encoding, of length 𝐿 (1 ≤  𝐿 ≤  2500)  



 

MDCS – Bubble Cup 2018   87 

Output: 

Output a single integer representing the number of possible distinct destinations the 

evacuation plan may lead to. 

Example input: 
AA 

A 

B 

AB 

AAAAABA  

Example output: 
6  

Time and memory limit: 2s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 88 

Solution: 

First, we hash the strings that represent north, south, east and west (cardinal directions). 

Then we hash string 𝐿 using the following formula: 

ℎ[𝑖] = (𝐿1𝑝0 + 𝐿2𝑝1+ . . . +𝐿𝑖𝑝𝑖−1) 𝑚𝑜𝑑 𝑀 

Where 𝑝 and 𝑀 are prime numbers. For example: 𝑝 = 31 and 𝑀 = 109 + 7. Array ℎ contains 

hash values of every prefix of 𝐿. 

For matching the strings, we will use the Rabin-Karp algorithm. Destinations are represented 

by the Cartesian coordinate system. 

Using dynamic programming, we will go over the string 𝐿 and for every position 𝑖 calculate 

the number of distinct destinations. We will also have for each position 𝑖  a set or an 

unordered set in which we will store all possible distinct destination (pairs of coordinates). 

The reason we use the term set is because it can’t have any duplicates.  

We will call this array of sets 𝑆. 𝑆[0] contains only pair (0,0). 

The program does the following things: For each position 𝑖 it checks for every cardinal 

direction, if it matches to any suffix of this prefix of 𝐿 (which ends at position 𝑖). If it matches 

and the starting position of that suffix is 𝑗 then we shall insert in 𝑆[𝑖] every destination that is 

present in 𝑆[𝑗 − 1] but changed by 1 (it depends which cardinal direction is in question). In 

the end, answer is the size of 𝑆[𝑠𝑖𝑧𝑒(𝐿)]. 

Problem source: DMOJ 

Solution by: 

Name: Aleksandar Maksimović 

  



 

MDCS – Bubble Cup 2018   89 

Round 1: PIEK 

 

Statement: 

Ms. Magda likes cookies very much. She decided to organize an expedition during summer 

which would consist of tasting pastries from each bakery. Our heroine has been thinking 

about finding the track length that’s as minimal as possible; which passes through each 

bakery exactly once and returns to the start point.  She managed to get the table of 

distances between every two bakeries. You, as a good friend of Magda’s, decided to help her 

with the problem and here is our task: you have to write a program, which calculates the 

minimal length of the track in exchange for cookies. The shorter your track is, the more 

cookies you get, and Magda is more satisfied. 

Example: 

We've got 4 bakeries: 1, 2, 3, 4. The table of distances looks as follows: 

1 2 3 4 

1 0 4 7 3 

2 4 0 5 8 

3 7 5 0 6 

4 3 8 6 0 

The shortest length equals to 18. An example way how the track may look: 1 −>  4 −>  3 −>

 2 −>  1 

Input 

In the first line the number of bakeries is 𝑛. Next, you should follow 𝑛 lines, each consisted of 

𝑛 (𝑛 ≤  400) numbers (which are the distances between bakeries). Distance 𝑑 between any 

two bakeries 𝑎 and 𝑏 is always between 0 and 100 000 (0 ≤  𝑑(𝑎, 𝑏)  =  𝑑(𝑏, 𝑎)  ≤  100 000).  

Output: 

In the first line the calculated length of your track. In the second line 𝑛 +  1 numbers 

separated by whitespaces (from 1 to 𝑛 including) where the first and the last must be the 

same, it's the order of visiting bakeries. 

Example input: 
4 

0 4 7 3 

4 0 5 8 

7 5 0 6 

3 8 6 0 

Example output: 
18 

1 4 3 2 1 



 

  MDCS – Bubble Cup 2018 90 

Score: 

It's the number of cookies that Magda gives to you, she will give you more if the track is 

shorter.  

Exact formula per test case is [𝑥/(𝑙𝑒𝑛𝑔𝑡ℎ −  𝑦)], where the 𝑙𝑒𝑛𝑔𝑡ℎ is your answer, while 𝑥 and 

𝑦 are Magda’s constants per test case. Your score will be considered wrong if 𝑙𝑒𝑛𝑔𝑡ℎ >  𝑥 +

 𝑦. Constants per test case are created such to allow a wide variety of solutions. 

Time and memory limit: 1s / 256 MB 

  



 

MDCS – Bubble Cup 2018   91 

Solution: 

After reading the problem statement, it is clear that it asks for solving the, quite standard, 

Travelling Salesman Problem (https://en.wikipedia.org/wiki/Travelling_salesman_problem). As 

this problem is 𝑁𝑃-complete, it cannot be solved exactly, and we must rely on approximate 

approaches. 

The TSP problem can be approximated with various approximation ratios, however, only if 

we assume that the edge weights satisfy the triangle inequality. In PIEK, the edge weights 

can be arbitrary, and it can be easily proven that no approximation algorithm exists in that 

case. Hence, we must resort to heuristics, hoping that they will work well in practice, or at 

least on the data in the judge system. 

One of the most useful ideas that work both for TSP with and without triangle inequality are 

processes which maintain a candidate solution, which is a valid tour, and perform 

improvement steps, in each decreasing the total length of the tour. Usually, it is possible to 

use such an approach to make use of the time limit to its fullest. 

Let us fix some solution and consider a connected interval of the visited cities. If we reverse 

the order of the cities in that interval and keep the positions of all the other cities intact, we 

can see that only two edges that were previously used are no longer used, and that the other 

two edges are used in their place. In particular, given an interval to reverse, in 𝑂(1) time we 

can compute the length of the tour after the change. 

With the abovementioned idea in mind, I will present the first algorithm present in my 

solution, which is the so-called Lin-Kernighan heuristic. In each phase, the algorithm starts 

with some candidate solution and ends which a solution that is at least as good as the initial 

one. Each phase works as follows. First, we randomly rotate the tour. Then, we consider 

prefixes of the rotated tour and compute what would be the length of the tour if a given 

prefix was reversed. Here we can either check all prefixes, or only some of them, chosen 

heuristically. Now, we take the prefix which results in the shortest possible tour after the 

reversal and reverse it. However, it is important that we perform that move even if it 

increases the length of the tour. Then, we continue to consider the prefixes of the tour after 

the change. After some number of iterations, say 15, we end up with a sequence of tours, 

with not necessarily decreasing lengths. Now, we pick the shortest one (which can also be 

the initial tour), and this tour is our new candidate solution after the end of the phase. Within 

a single phase, some care should be taken to ensure that the process does not “flip” between 

just two solutions and does some exploration of other solutions instead. Some speedup can 

be attained by using a balanced binary search tree to store the tour (treap, splay etc.) – then 

interval reversals can be executed in 𝑂(log 𝑁) time – although with the length of the tour 

being only 400 it is not necessary to get an acceptable performance. This concludes the 

https://en.wikipedia.org/wiki/Travelling_salesman_problem


 

  MDCS – Bubble Cup 2018 92 

description of the Lin-Kernighan heuristic, which my program performs in a loop as long as it 

still has time. 

It is left to discuss what tour to supply as an initial solution to 𝐿𝐾. One can start with a 

random tour (possibly a few different random tours), a tour created by some greedy process, 

or use a simple algorithm such as Christofides’ algorithm. Each of those propositions is 

viable, and will likely converge to a sensible tour, after sufficiently many 𝐿𝐾 iterations. A 

better starting tour will often lead to a better final solution, although this is not a strict rule. 

Intuitively, solutions that are “locally optimal”, and are only “globally entangled” in a few 

places, will be easier to be “uncross” for LK, than solutions that contain many “local” errors. 

This intuition stems from the fact, that many iterations of LK would be needed in order to fix 

many, arbitrarily placed, “local” errors. 

My solution uses a rather sophisticated process to select the initial solution. This algorithm 

has a theoretical basis in a Lagrange relaxation of the linear program formulation of TSP, 

however, understanding that basis is by no means necessary to understand the resulting 

algorithm. I will describe the algorithm in the following paragraph. 

First, take the minimum spanning tree of the given graph. MST’s are present in many 

algorithms for the TSP – indeed, the correspondence between the two is clear: a TSP tour can 

be thought of as a specialized spanning tree (after adding one additional edge). 

If we imagine that our MST has many vertices of degree 2, then we can split it into a small 

number of paths, those paths will form “reasonable” parts to be used in a tour. Hence, we 

can greedily order those paths to get a short tour. Note that the intuition from one of the 

previous paragraphs holds: a path consisting of edges from our spanning tree is “locally 

good”, and “the largest errors” are introduced when our greedy approach tries to glue the 

paths together, possibly using some expensive edges in the process. Thus, a tour of such 

form is a good candidate for an initial solution, and also a candidate that should work well 

with 𝐿𝐾. 

Of course, it will be rarely the case that many vertices of our MST have degree 2. Some of 

them will be leaves (degree 1), and some will have degree 3 or more. Intuitively, the former 

are incident to expensive edges, while the latter to cheap edges. We want to ensure that the 

minimum spanning trees will contain more edges incident to vertices that currently are 

leaves and fewer edges incident to vertices that currently have a degree 3 or more. If we 

increase the weights of all edges incident to some vertex by a fixed value, then we will likely 

decrease its degree in the subsequent minimum spanning trees, analogously we can increase 

the degree by decreasing the edge weights. Thus, we perform an iterative process of 

changing the weights and trying to “fix” the degrees of vertices, rebuilding the MST after 

each change. We can use the final obtained MST as a basis for creating our paths, and then 

the initial solution. More information on this, as well as other algorithms for TSP, can be 

found in the works of K. Helsgaun. 



 

MDCS – Bubble Cup 2018   93 

This concludes the description of my algorithm. To wrap up, note that there are many 

possible approaches to this problem, and it’s impossible to exactly compare them to each 

other without trying them out on the provided test data. Hence, many different solutions are 

possible. Well-established algorithms with provable guarantees in the metric case will often 

still perform well on the non-metric instances. 

Problem source: SPOJ 

Solution by: 

Name: Krzysztof Maziarz 

  



 

  MDCS – Bubble Cup 2018 94 

Round 2: NEO 

 

Statement: 

You are given an array a with n integer elements. You can divide it into several parts (may be 

1), each part consisting of consecutive elements. The NEO value in that case is computed by: 

Sum of value of each part. Value of a part is the sum of all elements in this part multiple by 

its length. 

Example: We have array: [ 2 3 -2 1 ]. If we divide it, so it looks like: [2 3] [-2 1], then NEO = (2 

+ 3) * 2 + (-2 + 1) * 2 = 10 - 2 = 8. 

Because there are many ways to divide an array into several parts, we can get many different 

NEO values. Your task is to find the NEO with the maximum value. 

Input: 

First line: 𝑇 (number of test cases, T ≤  10) For each of testcase: 

• First line: 𝑛 (1 ≤  𝑛 ≤  105) 

• Second line: 𝑎[1], 𝑎[2], … , 𝑎[𝑛](−106 ≤  𝑎[𝑖] ≤  106) 

Output: 

For each test case, print the maximum NEO value. 

Example input: 
1 

4 

1 2 -4 1  

Example output: 
3  

Time and memory limit: 4s / 256 MB 

  



 

MDCS – Bubble Cup 2018   95 

Solution: 

In the problem NEO we are given an array 𝐴 = [𝐴1, 𝐴2, . . . , 𝐴𝑁]. Now we want to divide the 

array into parts, so that each part consists of consecutive elements. The value of the part 

[𝐴𝑙 , 𝐴𝑙+1, . . . , 𝐴𝑟] equals to (𝐴𝑙 + 𝐴𝑙+1+. . . +𝐴𝑟)(𝑟 − 𝑙 + 1). The value of a division of the array 

equals to the sum of values of the parts. We want to find out what is the maximum possible 

value of a division of the array. 

The problem looks like a simple and standard dynamic programming problem. But it’s by far 

trickier than it looks at first sight. Let’s assume that 𝐴0 = 0. Now let’s define the array of 

partial sums 𝑆 = [𝑆0, 𝑆1, . . . , 𝑆𝑁] so that 𝑆𝑖: = 𝐴0 + 𝐴1+. . . +𝐴𝑖. Let’s apply a dynamic 

programming approach to the problem. Let 𝐹𝑖 be the maximum possible value of a division 

of the array [𝐴0, 𝐴1, . . . , 𝐴𝑖] and let’s assume that we already know all the values 𝐹0, 𝐹1, . . . , 𝐹𝑖−1. 

How can we compute 𝐹𝑖? It’s pretty straightforward. Let us fix the last part. We know that the 

last element of the last part is 𝑖. Let’s iterate over the last element of the previous part (and 

call it 𝑗). Then 𝐹𝑖 = 𝑚𝑎𝑥0≤𝑗<𝑖{𝐹𝑗 + (𝑆𝑖 − 𝑆𝑗)(𝑖 − 𝑗)}. Now we’ve got an easy approach to solve 

the problem in 𝑂(𝑁2). It looks like this approach doesn’t have any chance to get accepted. 

It’s true, the solution is too slow, but we can optimize it drastically with the following 

optimizations: 

● We can use a subset of optimizations from here: 

https://codeforces.com/blog/entry/56101?#comment-398797 

● It can be proven that if we have two consecutive elements 𝑥, 𝑦 and 𝑥 ≥ 0, 𝑦 ≥ 0, then 

we can replace these two elements with the element 𝑥 + 𝑦 (we also need to remember 

that the new element should be counted as several elements, not just one). Now we 

can assume that among every pair of consecutive elements, at least one of them is 

negative and elements have “weights” (remember, some elements are counted as 

several elements). We can use the dynamic programming approach to solve this 

problem as well (it’s extremely similar to the one described above, so it’s left as an 

exercise to the reader). The number of states can be reduced by this trick. 

Unfortunately, these optimizations allow us reduce the hidden constant factor of our 

solution, not the complexity. But applying them was enough to get the solution accepted by 

the judge system. It’s also possible to apply a kd-tree data structure 

(https://en.wikipedia.org/wiki/K-d_tree) to solve this problem, but it wasn’t faster than the 

previously mentioned approach. 

 

It’s also worth noting that here (http://codeforces.com/blog/entry/59694) you can find a 

discussion about this problem and the possible approaches. It’s possible to solve the 

problem in 𝑂(𝑁 𝑙𝑜𝑔2𝑁) time, but the solution is extremely complicated, so we won’t present 

it here (you can find it under the link).  

https://codeforces.com/blog/entry/56101?
http://codeforces.com/blog/entry/59694


 

  MDCS – Bubble Cup 2018 96 

Problem source: SPOJ 

Solution by: 

Name: Vladyslav Hlembotskyi 

  



 

MDCS – Bubble Cup 2018   97 

Round 2: Ada and Homework 

Statement: 

Ada the Ladybug came home with some difficult homework. Since she is a very skilled 

mathematician, she already deduced how to count the answer for 𝑁. Consider all numbers 𝐾 

(in range 2 ≤  𝐾 ≤  𝑁), for which it is true that 𝑔𝑐𝑑(𝑁, 𝐾) == 1 and add 𝑔𝑐𝑑(𝑁, 𝐾 − 1) to 

sum. What is the sum? 

More formally put, find: ∑ 𝑔𝑐𝑑(𝐾 − 1, 𝑁), for 𝐾 ∈  [2, 𝑁] where 𝑔𝑐𝑑(𝑁, 𝐾) == 1 . 

Anyway, the numbers are too large, so she can't do that without your help. Can you help 

her? 

Input: 

The first line contains 1 ≤  𝑇 ≤  1000, number of test-cases. Each of following 𝑇 lines 

contains  

2 ≤  𝑁 ≤  1018, number for which Ada wants the answer.  

Output: 

For each test case, print the sum of deduced formula. 

Example input: 
11 

2 

5 

6 

7 

8 

10 

50 

100 

1000 

524288 

945406969379503350 

Example output: 
0 

3 

2 

5 

8 

6 

70 

260 

5400 

4718592 

1381966975399059833610 

Time and memory limit: 6s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 98 

Solution: 

Let 𝑓(𝑛) = ∑ gcd (𝑛, 𝑖 − 1)2 ≤𝑖 ≤𝑛,gcd(n,i)=1 . Our task is to compute the value 𝑓(𝑛) for several (up 

to one thousand) values of 𝑛 which may be as large as 1018. First, we will show that 𝑓(𝑛) =

ɸ(𝑛)𝑑(𝑛) − 𝑛, where ɸ(𝑛) is the totient function and 𝑑(𝑛) is the number of divisors of 𝑛. 

Then, we will give an efficient method to compute ɸ(𝑛), 𝑑(𝑛). 

Part 1 

Define 𝑔(𝑛) = 𝑓(𝑛) + 𝑛 = ∑ gcd (𝑛, 𝑖 − 1)1 ≤𝑖 ≤𝑛,gcd(n,i)=1 . This is true since gcd(𝑛, 1) = 1 and 

gcd(𝑛, 0) = 𝑛. Now we only need to show that 𝑔(𝑛) = ɸ(𝑛)𝑑(𝑛). We will do this by showing 

that 𝑔(𝑛) is a multiplicative function and that 𝑔(𝑝𝑘) =  ɸ(𝑝𝑘)𝑑(𝑝𝑘) = (𝑝 − 1)𝑝𝑘−1(𝑘 + 1), for 

all primes 𝑝 and positive integers 𝑘. In number theory, a function 𝑓 is said to be 

multiplicative if 𝑓(𝑛𝑚) = 𝑓(𝑛)𝑓(𝑚) for all coprime positive integers 𝑛, 𝑚, ɸ(𝑛) and 𝑑(𝑛) are 

well known to be multiplicative. 

Let’s compute 𝑔(𝑝𝑘) according to the definition above. The value of 𝑔𝑐𝑑(𝑝𝑘 , 𝑖) can only be 

one of the following: {1, 𝑝, 𝑝2, … , 𝑝𝑘}. Let’s count the number of occurrences of 𝑝𝑗 in the sum 

for some 𝑗, 0 < 𝑗 < 𝑘. Whenever 𝑖 − 1 is divisible by 𝑝𝑗 , 𝑔𝑐𝑑(𝑝𝑘 , 𝑖) = 1. So, the value  𝑝𝑗 will 

divide exactly  𝑝𝑘−𝑗 summands. Since each summand is a power of 𝑝, the number of 

summands which are exactly equal to  𝑝𝑗 can be found by subtracting the number of 

summands divisible by  𝑝𝑗+1, so the number is  𝑝𝑘−𝑗 +  𝑝𝑘−𝑗−1. So, the values 𝑗, 0 < 𝑗 <

𝑘 contribute∑  𝑝𝑗( 𝑝𝑘−𝑗 −  𝑝𝑘−𝑗−1)𝑘−1
𝑗=1  to the total. The sum can easily be computed and is 

equal to  (𝑝 − 1)𝑝𝑘−1(𝑘 − 1). The value 𝑝𝑗 , 𝑗 = 𝑘 appears exactly once (when 𝑖 = 1) and 

contributes 𝑝𝑘 to the sum. The values 1 appear whenever we have an adjacent pair 𝑖, 𝑖 + 1 

which are both coprime with 𝑝𝑘, and, in any 𝑝 consecutive values of 𝑖 there are exactly 𝑝 − 2 

such pairs. So 𝑗 = 0 contributes  (𝑝 − 2)𝑝𝑘−1 to the sum. Overall, the sum is equal to: 

(𝑝 − 1) 𝑝𝑘−1(𝑘 − 1) +  𝑝𝑘 + (𝑝 − 2) 𝑝𝑘−1 

= 𝑝𝑘−1((𝑝 − 1)(𝑘 − 1) + 𝑝 + (𝑝 − 2)) 

= 𝑝𝑘−1(𝑝𝑘 − 𝑝 − 𝑘 + 1 + 2𝑝 − 2) 

= 𝑝𝑘−1(𝑝𝑘 + 𝑝 − 𝑘 − 1) 

= (𝑝 − 1) 𝑝𝑘−1(𝑘 + 1) 

as we supposed. All that remains now is to show that 𝑔 is multiplicative. Let 𝑛, 𝑚 be two 

coprime integers. Let 𝛿 be the map from 𝐸𝑛𝑚 to 𝐸𝑛 × 𝐸𝑚, where 𝐸𝑘 is the set of all integers 𝑥 

between 0 and 𝑘 − 1 coprime with 𝑘, defined as δ(𝑥) = (𝑥 𝑚𝑜𝑑 𝑛, 𝑥 𝑚𝑜𝑑 𝑚). It can be shown 

that this map is well defined and is in fact a bijection. Since 𝑛, 𝑚 are coprime, gcd(𝑛𝑚, 𝑥) =

gcd(𝑛, 𝑥) gcd (𝑚, 𝑥) for all integers 𝑥. Let’s expand 𝑔(𝑛𝑚): 

𝑔(𝑛𝑚) = ∑ gcd (𝑛𝑚, 𝑖 − 1)

𝑖∊𝐸𝑛𝑚 

 



 

MDCS – Bubble Cup 2018   99 

∑ gcd(𝑛, 𝑖 − 1) gcd (𝑚, 𝑖 − 1)

𝑖∊𝐸𝑛𝑚 

 

= ∑ gcd (𝑛,  δ−1(𝑥, 𝑦) − 1)gcd (𝑚,  δ−1(𝑥, 𝑦) − 1)

(𝑥,𝑦)∊𝐸𝑛 ×𝐸𝑚

 

= ∑ gcd(𝑛, 𝑥 − 1) gcd (𝑚, 𝑦 − 1)

(𝑥,𝑦)∊𝐸𝑛 ×𝐸𝑚

 

= ∑ ∑ gcd(𝑛, 𝑥 − 1) gcd (𝑚, 𝑦 − 1)

𝑦∊𝐸𝑚 𝑥∊𝐸𝑛 

 

= ∑ gcd (𝑛, 𝑥 − 1)

𝑥∊𝐸𝑛 

∑ gcd (𝑚, 𝑦 − 1)

𝑦∊𝐸𝑚 

 

= 𝑔(𝑛)𝑔(𝑚) 

as we supposed. 𝑔(𝑛) = ɸ(𝑛)𝑑(𝑛) for all 𝑛 > 1 follows from the base case (prime powers) 

and the multiplicativity of ɸ(𝑛)𝑑(𝑛). 

Part 2 

There are simple closed form formulas for ɸ(𝑛) and 𝑑(𝑛) based on the prime factorization of 

𝑛. If 𝑛 = ∏ 𝑝𝑖
𝛼𝑖, where 𝑝𝑖  are primes and 𝛼𝑖 are positive integers: 

• ɸ(𝑛) = ∏
𝑝𝑖−1

𝑝𝑖
𝑝𝑖

𝛼𝑖 

• 𝑑(𝑛) = ∏(𝛼𝑖 + 1) 

The hardest part is to find an efficient factorization algorithm which works well for numbers 

up to 1018. For this, we can use Pollard’s rho algorithm. This algorithm only works when its 

input is a composite number, so to obtain the factorization of a number we have to be able 

to stop when we reach a prime. This can be done efficiently using the Miller-Rabin primality 

test. Pollard’s rho has expected time complexity of 𝑂(𝑛1 4⁄ ) while the Miller-Rabin primality 

test has time complexity of 𝑂(𝑙𝑜𝑔2𝑛) for each so-called witness. For numbers up to 1018, 

there is a fixed list of 12 witnesses of primality. We have to call the Miller-Rabin test and 

Pollard’s rho algorithm exactly once for every inner node of the factorization tree, and the 

Miller-Rabin test for every leaf. Since the factorization tree is a proper binary tree and it has 

no more than 59 leaves, it can have no more than 58 internal nodes. Informally, we can 

estimate the running time as 117 ∙ 12 𝑙𝑜𝑔2𝑛 + 58 𝑛1 4⁄ , which, for 𝑛 ≤ 1018 ≤ 1.92 × 106. In 

practice, caching the results of each factorization can greatly improve performance. 

Remark 

Both ɸ(𝑛) and 𝑑(𝑛) are no greater than 𝑛, however, their product may not fit into an 

unsigned 64-bit integer. For this, we can implement bignums or use the builtin type __int128 

which is supported by newer versions of GCC on 64-bit platforms. 



 

  MDCS – Bubble Cup 2018 100 

Problem source: SPOJ 

Solution by: 

Name: Ivan Stošić 

  



 

MDCS – Bubble Cup 2018   101 

Round 2: Count the Graphs 

 

Statement 

First, let’s define an undirected connected labeled graph, it’s a graph with 𝑁 nodes with a 

unique label for each node and some edges. There’s no specific direction for each edge, and 

in addition to that, duplicate edges and edges from a node to itself aren’t allowed. You can 

reach any other node from any node. 

A bridge in such a graph is an edge which will, if we remove it, disconnect the graph (there 

will exist nodes which aren’t reachable from each other). 

In this problem you are given 𝑁 and 𝐾, and your task is to count the number of different 

undirected connected labeled graphs with exactly 𝑁 nodes and 𝐾 bridges. Since that number 

can be huge, print it modulo 𝑀. 

An edge is defined by using the labels of the nodes it connects, for example we can say 

(𝑋, 𝑌) is an edge between 𝑋 and 𝑌, also (𝑌, 𝑋) is considered the same edge (since it’s 

undirected). Two graphs are considered different if there’s an edge which exists in one of 

them but not in the other. 

Input 

Your program will be tested on one or more test cases. The first line of the input will be a 

single integer 𝑇 (1 ≤  𝑇 ≤  30) representing the number of test cases. Followed by 𝑇 test 

cases.  

Each test case will be just one line containing 3 integers separated by a space, 𝑁 (1 ≤  𝑁 ≤

 50), 𝐾 (0 ≤  𝐾 <  𝑁) and 𝑀 (1 ≤  𝑀 ≤  109), which are the numbers described in the 

statement. It’s guaranteed that 𝑁 will not be more than 25 in 80% of the test cases. 

Output 

For each test case, print a single line with the number of graphs as described above modulo 

𝑀. 

Example input 
4 

3 2 10 

3 0 10 

6 3 10000 

6 3 1000 

Example output 
3 

1 

2160 

160   



 

  MDCS – Bubble Cup 2018 102 

Explanation 

The following are the 3 graphs for the first test case: 

 

The following is the only graph for the second test case: 

 

Time and memory limit: 5 s / 256 MB 

  



 

MDCS – Bubble Cup 2018   103 

Solution 

We’re going to use dynamic programming to compute the number of graphs with 𝑛 nodes 

and exactly 𝑘 bridges for all values of 𝑛, 𝑘 up to 50. We will store the result as bigints and 

take it modulo 𝑀 only when a query arrives. So, the language of choice for this problem is 

Python since it has native bigint support. Let 𝑑𝑛,𝑘 be the number of such graphs and let 𝑘 >

0. We are going to count such graphs by observing one bridge. After removing this bridge, 

the graph becomes disconnected (by definition) and the two resulting components 

have 𝑛 nodes and 𝑘 − 1 bridges in total. So, we’re just going to iterate over all ways of 

partitioning the set of nodes into an ordered pair of sets of size 𝑎, 𝑏, respectively 

(𝑎 + 𝑏 = 𝑛, 𝑎, 𝑏 > 0). This can be done in (
𝑛
𝑎

) ways. After that, we’re going to choose the 

number of bridges in the first and the second component, let these numbers be equal to 

𝑖, 𝑗(𝑖 + 𝑗 = 𝑘 − 1, 𝑖, 𝑗 ≥ 0), and, since we’re using dynamic programming, we will already have 

computed the values 𝑑𝑎,𝑖, 𝑑𝑏,𝑗. Finally, we’re going to choose two nodes, one from 𝑎 and one 

from 𝑏 where we will put our final bridge. Note that we will count each graph with 𝑘 bridges 

exactly 2𝑘 times, once for each bridge and the factor of two comes from the fact that we’re 

counting ordered partitions into two subsets. So, the final recurrence relation is: 

𝑑𝑝𝑛,𝑘 =
1

2𝑘
∑ (

𝑛
𝑎

) ∙ a ∙ b ∙ 𝑑𝑎,𝑖 ∙ 𝑑𝑏,𝑗

1≤𝑎,𝑏;𝑎+𝑏=𝑛;𝑖+𝑗=𝑘−1;𝑖,𝑗≥0

 

Note that this only works for 𝑘 > 0. For 𝑘 = 0 we’re going to have to use a different strategy. 

We can use that fact that ∑ 𝑑𝑛,𝑘
𝑛−1
𝑘=0  is equal to the number of connected graphs on 𝑛 nodes. 

Let’s call that value 𝑐𝑛, so, if we find a way to compute 𝑐𝑛, we can compute 𝑑𝑛,0 as 𝑐𝑛 −

∑ 𝑑𝑛,𝑘
𝑛−1
𝑘=1 . Let’s find a recurrence relation for 𝑐𝑛. Assume we have computed 𝑐𝑖 for 𝑖 < 𝑛. Let’s 

count the number of disconnected graphs on  𝑛 nodes now instead (let that be 𝑦𝑛) and then 

use the fact that 𝑐𝑛 + 𝑦𝑛 = 2
𝑛(𝑛−1)

2
. Let’s observe the connected component of node 𝑛, let 

that be 𝑖. It can have any size from 1 to 𝑛 − 1. So, for each such 𝑖, the number of ways to 

choose nodes from the set {1, … 𝑛 − 1} which will be in the same connected component 

as 𝑛 is (
𝑛 − 1
𝑖 − 1

). Now, there are exactly 𝑐𝑖 ways to add edges to this component to make it 

connected. We must not add any edges between these ii nodes and the rest of the graph. 

Finally, within the rest of the graph (the remaining 𝑛 − 𝑖 nodes) we can add edges arbitrarily, 

in 2
(𝑛−𝑖)(𝑛−𝑖−1)

2
 ways. So, the recurrence relation for 𝑐𝑖 is: 

𝑐𝑛 = 2
𝑛(𝑛 − 1)

2
− ∑ (

𝑛 − 1
𝑖 − 1

) ∙ 𝑐𝑖 ∙ 2
(𝑛 − 𝑖)(𝑛 − 𝑖 − 1)

2

𝑛−1

𝑖=1

 

Overall, the time complexity for precomputation is 𝑂(𝑛4) bignum operations, plus one 

bignum modulo operation per query. The hidden constant is quite small, so this solution is 

more than fast enough to pass. 



 

  MDCS – Bubble Cup 2018 104 

 

Problem source: A2OJ 

Solution by: 

Name: Ivan Stošić 

  



 

MDCS – Bubble Cup 2018   105 

Round 2: Fox Girls 

 

Statement: 

You woke up this morning and realized that some foxes have turned into girls! In the light of 

this exciting event, you have kindly invited Izuna, a fox-girl, over to your house (with the 

purest of intentions, of course). You have some anime that you want to share with Izuna, but 

your list of anime is very long. Therefore, you will create a strategy which consists of 

watching some anime with Izuna while she's at your house, and then leaving her with a list of 

recommendations. 

For each anime on your list, you will recommend another anime from the list to Izuna, 

meaning that if she has watched one at your house, she should definitely watch the other 

sometime later. Being an obedient fox-girl, Izuna will always follow your recommendations. 

Of course, you have to start watching some anime with Izuna at your house in order for her 

to follow all the recommendations and eventually watch them all, but since you are short on 

time, you need to determine the minimum number of minutes you spend watching anime at 

your house before Izuna can follow some of the recommendations and eventually watch all 

the anime from the list. 

Input: 

The first line of input will have 𝑁 (2 ≤  𝑁 ≤  100 000), the number of anime on your list, 

numbered from 1 to 𝑁. The second line of input will have 𝑁 space-separated integers, the 

time it takes in minutes to watch the ith anime (1 ≤  𝑡𝑖𝑚𝑒𝑖 ≤  109). The third line of input 

will have 𝑁 space-separated integers, meaning that you will recommend the 𝑖𝑡ℎ anime if 

Izuna watched the anime with the 𝑖𝑡ℎ number in this list at your house, and vice versa (1 ≤

 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑖 ≤  𝑁, 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑖 ≠  𝑖).  

Output: 

The first and only line of output should be the minimal number of minutes spent watching 

anime so that Izuna will eventually finish watching all the anime on your list. 

Example input 1: 
3 

20 23 42 

2 3 1  

Example output 1: 
20  

Explanation 1: 

By taking 20 minutes to watch the first anime, Izuna will definitely watch the other two anime 

due to the recommendations. 

Example input 2: 
4 



 

  MDCS – Bubble Cup 2018 106 

100 23 23 24 

2 3 1 1 

Example output 2: 
47 

Explanation 2: 

Although watching solely the first anime is enough for Izuna to watch the rest of the anime 

on her own, that will take 100 minutes. It is much more efficient to watch the fourth anime 

and either the second or the third anime at your house for a total of 47 minutes. 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   107 

Solution 1: 

First, let's reformulate the given problem in terms of graph theory. We're given 𝑛 vertices 

and 𝑛 undirected edges, and there is at least one edge going out of each vertex. Each vertex 

has a cost assigned to it (the time needed to watch the anime). Our task is to choose a 

subset of vertices, with the minimum possible cost, and mark all the vertices in this subset, so 

that each vertex is marked itself or there exists an edge from this vertex to some marked 

vertex. Let's call all vertices satisfying these criteria "good" (the vertices that are not good are 

called "bad").  

The straightforward algorithm finds an optimal selection by checking every subset of vertices 

and returns a correct one with the least cost. Unfortunately, this solution works in 𝑂(2𝑛∗𝑛) 

time which is unacceptable, considering the input data limits.  

In order to solve this task more effectively, we must observe a distinctive feature of the given 

graph. It consists of one or several connected components, each one being a tree with a 

cycle. This is the case because a connected graph with 𝑛 − 1 edges is a tree and adding one 

more edge creates a cycle in this graph.  

Vertices that belong to different connected components obviously don't affect one another 

so we can calculate the answer for each component independently. The final answer will be 

the sum of the answers for all the connected components.  

Now, let's analyze the problem for a single component. First, let's ignore the edges that 

belong to the cycle in this component. That is, we'll consider trees rooted in a vertex from 

the cycle. 

For each vertex in the tree we want to calculate the following 3 values: 

1. The minimum cost, so that all the vertices in its subtree are good and the vertex itself 

is bad. 

2. The minimum cost, so that all the vertices in its subtree are good and the vertex itself 

is marked. 

3. The minimum cost, so that all the vertices in its subtree and the vertex itself are good, 

but the vertex itself isn't marked (that means at least one of its children has to be 

marked). 

We can easily calculate these values using depth-first search and simple dynamic 

programming over subtrees. One possible C++ implementation of this approach is attached 

below. 

 

 

 

 

 



 

  MDCS – Bubble Cup 2018 108 

 

 
void dfs(int v, int parent){ 
 long long a1 = 0, a2 = 0, a3 = INF; 
 
 for(auto it:Graph[v]){  
  if (it != parent){ // it - vertex adjacent to v 
   dfs(it,v); 

// we are looking for good, not marked vertices 
   a1 += dp[it][3];  

// we are looking for the cheapest option because they are all 
// good (because v is marked) 

   a2 += min(dp[it][1],min(dp[it][2],dp[it][3]));  
// we are looking for  the „cheapest” marked son 

   a3 = min(a3,dp[it][2] - min(dp[it][2],dp[it][3]));  
  } 
 } 
 dp[v][1] = a1; 
 dp[v][2] = a2 + t[v]; // t[v] - cost of marking vertex v 
 dp[v][3] = a1 + a3; 
 
 return; 
} 

Let's get back to the cycle. We will simplify our problem once again and assume that we 

know what is going on with one arbitrary vertex from the cycle. As described above, there 

are only 3 possibilities  

— it is either marked, covered by its marked neighbor on the cycle, or covered by its marked 

child in the tree rooted in it. 

Having made such assumptions, we can theoretically forget about the edge connecting the 

chosen vertex with one of its neighbors and analyze the rest of the cycle as a path. Next, let's 

calculate the answer for this component by using dynamic programming along the path, 

which is very similar to that which we used before. The details are left as an exercise for the 

reader. 

To sum up, we choose an arbitrary vertex from the cycle and we consider its three possible 

initial states. The rest of the cycle forms a path for which we can calculate the answer by 

using dynamic programming. The only question left is what to do with that "forgotten" edge 

connecting the vertex  

to its other neighbor on the cycle. It turns out that one additional if statement in our 

algorithm is enough to solve this problem (depending on what’s the initial state of the vertex 

we've assumed). 

Complexity: 

To separate the cycle vertices from the tree vertices we used the set from the STL — 𝑂(𝑛 ∗

log 𝑛). Each tree vertex has been visited once and processed in constant time, which gives us 

𝑂(𝑛) in this phase  



 

MDCS – Bubble Cup 2018   109 

of the algorithm. Each cycle vertex has been processed in constant time which also gives us 

an 𝑂(𝑛) complexity.  

The final complexity is 𝑂(𝑛 ∗ log 𝑛) + 𝑛 + 𝑛) = 𝑂(𝑛 ∗ log 𝑛), which easily fits the time limits. 

Problem source: DMOJ 

Solution by: 

Name: Piotr Nawrot 

  



 

  MDCS – Bubble Cup 2018 110 

Solution 2: 

Firstly, we construct a graph with 𝑁 nodes (representing 𝑁 anime) and 𝑁 edges (representing 

connections between every anime and the one that we recommend after watching it). 

Because there are only 𝑁 edges, the graph can either be a tree or a graph that has exactly 

one cycle. Note that the graph can be made up of multiple connected components that all 

have the properties described above. Some terms I will use: 

To watch a node – to take the time to watch the anime which that node represents at your 

house, 

Recommended node – the anime that that node represents is recommended for Izuna to 

watch later, 

𝐷𝑃[𝑖][2] – firstly, to call the function for node 𝑖 and state 2 and then take the value from the 

𝐷𝑃 table. 

1. Let’s first consider the case when the connected component has no cycle. 

We can use the dynamic programing on trees to solve this case, we will do a recursive tree 

traversal (just like dfs) and fill up our 𝐷𝑃 table using memorization (we can imagine the tree 

as if it was rooted at the starting node of our traversal). Our 𝐷𝑃 table will have 3 different 

states for every node in the graph: 

State 0: the last node that we visited isn’t watched or recommended, 

State 1: the last node that we visited is recommended, 

State 2: the last node that we visited is watched. 

𝐷𝑃[𝑖][0] will store the minimum amount of time required to watch/recommend all the nodes 

in the subtree of node 𝑖 when the state of node 𝑖 is, in this case, 0. 

We have the following transitions: 

From 𝑠𝑡𝑎𝑡𝑒 0, we only have the option to watch the current node. Then add the values of 

𝐷𝑃[𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑛𝑜𝑑𝑒𝑠][2] to the solution. 

From 𝑠𝑡𝑎𝑡𝑒 0, we have the option to watch the current node and do the same as in 𝑠𝑡𝑎𝑡𝑒 0 

(first solution) or not to watch the current node but instead watch one of its children nodes. 

To do this we need to calculate the values of 𝐷𝑃[𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑛𝑜𝑑𝑒𝑠][1] 

and 𝐷𝑃[𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑛𝑜𝑑𝑒𝑠][0]. Then, for every child node, we find 𝐷𝑃[𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒][0] −

𝐷𝑃[𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒][1]. Take the minimum of these values (let’s call that node 𝑚𝑖𝑛 𝑛𝑜𝑑𝑒), and our 

second solution is 𝐷𝑃[𝑚𝑖𝑛 𝑛𝑜𝑑𝑒][0] + 𝐷𝑃[𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒𝑠][1]. Then we choose our final 

solution to be the minimum of these two solutions. 

From 𝑠𝑡𝑎𝑡𝑒 2, we again have the option to watch the current node and do the same as in 

𝑠𝑡𝑎𝑡𝑒 0 or not to watch the current node. The solution of the case when we don’t watch the 



 

MDCS – Bubble Cup 2018   111 

current node is just the sum of 𝐷𝑃[𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑛𝑜𝑑𝑒𝑠][1]. And we again take the minimum 

of these two solutions. 

Our final solution is 𝐷𝑃[𝑎𝑛𝑦 𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒][1]. 

2. For the case when the connected component has a cycle, the solution is almost the 

same as case 1. just with a few changes. 

First we need to find any 2 adjacent nodes in the cycle (let’s call them 𝑛𝑜𝑑𝑒 1 and 𝑛𝑜𝑑𝑒 2) 

and delete the edge between (the graph becomes a tree), then we have the following cases: 

We don’t watch either of them: we can solve this case with the exact same solution as in 

the case 1. starting from any one of these 2 nodes with the state of 1 (𝐷𝑃[𝑛𝑜𝑑𝑒 1][1] or 

𝐷𝑃[𝑛𝑜𝑑𝑒 2][1]), 

We watch node1: To solve this we need to make it so if we ever get to 𝐷𝑃[𝑛𝑜𝑑𝑒 2][1], we do 

𝐷𝑃[𝑛𝑜𝑑𝑒 2][2] instead (𝑛𝑜𝑑𝑒 2 is already recommended by 𝑛𝑜𝑑𝑒 1). The final solution 

is 𝐷𝑃[𝑛𝑜𝑑𝑒 1][1], 

We watch node2: just like in the last case, add an exception that if we get to 𝐷𝑃[𝑛𝑜𝑑𝑒 1][1], 

we do 𝐷𝑃[𝑛𝑜𝑑𝑒 2][2] instead. The final solution is 𝐷𝑃[𝑛𝑜𝑑𝑒 2][1]. 

Solution by: 

Name: Nikola Pešić 

  



 

  MDCS – Bubble Cup 2018 112 

Round 2: Alphabetic Rope 

 

Statement: 

The Alphabetic Rope is now available in the market. The Alphabetic Rope consists of the 

alphabetic characters in each stripe, which looks like a string. 

You are given an Alphabetic rope, which consists of lowercase alphabetic characters only, 

you have to perform some operations on the rope and answer some queries within it. 

There are 3 types of queries: 

• 1 𝑋 𝑌: Cut the rope segment from 𝑋 to 𝑌 and reverse it, then join at the front of the 

rope. 

• 2 𝑋 𝑌: Cut the rope segment from 𝑋 to 𝑌 and reverse it, then join at the back of the 

rope. 

• 3 𝑌: Print on a new line of the Alphabet on 𝑌𝑡ℎ position of the current rope. 

Input: 

There is only one input. The input begins with a single line giving the Alphabetic Rope as a 

string 𝑆. The next line containing 𝑄, follows 𝑄 lines giving queries as mentioned above. 

(Index used are 0-based) 

Output: 

For each type 3 query, print a single character in a new line. 

Example input: 
gautambishal 

5 

1 3 5 

3 0 

3 3 

2 2 4 

3 9 

Example output: 
m 

g 

a 

Constraints: 

• 1 ≤  |𝑆|  ≤  100 000 
• 1 ≤  𝑄 ≤  100 000 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   113 

Solution: 

In this problem, we are given a string of length 𝑁 and we should be able to handle 𝑄 queries 

of 3 types, two of them being: 

Cut out a part of the rope, reverse it, and append it to the beginning/end of the remainder of 

the string. 

The third type of the query we are to handle is to print 𝑘𝑡ℎ character at any given point. 

Now, unfortunately, for this problem, the straightforward brute force 𝑂(𝑁𝑄) solutions 

accepted this verdict: the solution is to basically remove every element in the given segment 

and add them to the beginning/end of the string.  

In more complexity, there is a pretty straightforward solution with the time complexity of 

𝑂(𝑄 log 𝑁) using the well-known data structure named Treap. 

 

A very useful link: http://e-maxx.ru/algo/treap, which basically explains the Treap data 

structure and even provides a very good implementation of one. Using this data structure, 

we can literally cut the string (our original treap) in 𝑂(log 𝑁) time, to set a flag inside it as 

reversed too, and then to union the two treaps (with the given order, equivalent to 

concatenating two strings). 

 

Now, to make all of this even more formal and clear, I can provide a short explanation 

Assume that we are given these methods:  

split(treap whole, treap &left, treap &right, int number), which splits the whole treap into two 

parts, left and right, with the fact that first cnt elements go into the left part, and all the other 

elements go into the right part 

unite(treap &where, treap left, treap right), where we basically concatenate two strings (a 

treap represent a string) 

reverse(treap &t), where we just reverse one string (it does so by setting some flags, but there 

is no point in explaining the stuff that’s already explained in the link I’ve provided) 

Now, using these three functions, it’s easy to do all 3 operations in 𝑂(log 𝑁). 

 

If you think I should elaborate some more on treap functions and stuff, I can do so, but I 

don’t think it’s necessary (I’d just copy paste them from the link above).  

http://e-maxx.ru/algo/treap


 

  MDCS – Bubble Cup 2018 114 

 

There is also a C++ built-in structure called rope, which supports string cuttings in same 

complexity as in the abovementioned solution, but I haven’t found a way to reverse a string 

by using that notation and thus to solve the problem. If anybody did, maybe it’d be a nice 

extra solution to this problem. 

 

Problem source: SPOJ 

Solution by: 

Name: Vladimir Milenković 

  



 

MDCS – Bubble Cup 2018   115 

Round 2: Winter Is Here 

 

Statement: 

Winter is here, and the great wall was destroyed. The night king and his army of dead control 

the North now, they attacked every place there, except the Castle of Winterfell, because it is 

protected from the army of the dead and the white walkers by some old magic. 

The North can be represented as a directed rooted tree with 𝑁 nodes (each node gets a 

unique ID from 1 to 𝑁), the nodes are connected by using directed edges, each edge 

represents a road (the roads can be traversed in just 1 way) with exactly 1 white walker 

protecting each road, the root of the tree will be node 1, and from the root it will always be 

possible to follow some roads to reach any other node. Winterfell is placed in some node 

with the ID 𝑣 (not necessarily the root). Jon Snow and the rest of the surviving people who 

are in Winterfell heard that the night king is in some node with an ID in the range from 𝐿 to 

𝑅 inclusive, and since Jon knows that there is no hope for them to win the war against the 

white walkers unless they kill the night king, he decided to go on a suicide mission and try to 

do that. 

Daenerys, Tyrion and Sir Davos tried to convince him otherwise, but we all know Jon. When 

they lost all hope and realized that they will never stop him, Tyrion put together the 

following plan for him (given the values of 𝑣, 𝐿 and 𝑅): 

• Jon and Sir Jorah Mormont will go on this mission. 

• Each one of them should choose a node with an ID in the range from 𝐿 to 𝑅, that can 

be reached from 𝑣, and go to check that chosen node. Note that they can’t choose the 

same node, but it’s okay if any of them chooses 𝑣 itself. 

• For safety reasons, their paths from 𝑣 to the chosen nodes shouldn’t have any common 

road. 

• To increase the profit of the mission, each of them should kill the white walker that 

protects the road they pass by. 

Now, given some possible scenarios for 𝑣, 𝐿 and 𝑅, can you find the optimal pair of nodes 

that they should choose to increase the total number of white walkers which they will kill? 

Input: 

Your program will be tested on one or more test cases. The first line of the input will be a 

single integer 𝑇 (1 ≤  𝑇 ≤  10) representing the number of test cases. Followed by the 𝑇 test 

cases. 

Each test case starts with a line containing 2 integers separated by a space, 𝑁 (1 ≤  𝑁 ≤

 20,000) representing the number of nodes and 𝑞 (1 ≤  𝑞 ≤  100,000) representing the 

number of scenarios. 



 

  MDCS – Bubble Cup 2018 116 

Followed by a line which contains 𝑁 −  1 space separated integers 𝑝1, 𝑝2, … , 𝑝𝑁 − 1, which 

means there’s a road from node 𝑝𝑖 to node 𝑖 +  1. 

Followed by 𝑞 lines, each line contains 3 space separated integers 𝑣, 𝐿 and 𝑅 (1 ≤  𝑣, 𝐿, 𝑅 ≤

 𝑁) representing a scenario (𝐿 ≤  𝑅). 

Output: 

For each test case print q lines, each of them contains the answer of the corresponding 

scenario by printing the maximum total number of white walkers that can be killed by 

choosing the optimal pair of nodes that satisfies the plan or print -1 if you can’t find a pair of 

different nodes that satisfies the plan 

Example input: 
1 

6 4 

1 2 2 3 4 

2 5 6 

1 2 6 

2 1 3 

2 1 2 

Example output: 
4 

-1 

1 

-1 

Explanation 1: 

In the first scenario, one will go to node 5 and the other will go to node 6, each of them will 

kill 2 white walkers, so the total is 4. In the second scenario, to reach any node in that range, 

they must go through the road from node 1 to node 2, which isn’t allowed according to the 

plan. In the third scenario, one of them will choose to stay at node 2, and the other one will 

go to node 3. In the fourth scenario, they can’t go to node 1 from node 2 (the road is in the 

other direction), and they can’t both choose node 2. 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   117 

Solution: 

Let's consider a single scenario (𝑣, 𝐿, 𝑅). Since the task is to find two paths that start in v and 

have no common edge, we must choose two different subtrees of 𝑣 with the deepest nodes 

in each of them. A trivial solution would be to iterate over the subtrees of 𝑣, for each of them 

determine the deepest node from the given range [𝐿, 𝑅] and finally pick two best results. This 

algorithm gives us the complexity 𝑂(𝑞 ∗ 𝑁). 

To improve the running time, we should avoid iterating over the tree for every scenario. 

Since the queries are somehow connected with intervals, it seems that a segment tree can be 

helpful. In this case, we can use a multidimensional segment tree. 

Let's consider a grid 𝑁 × 𝑁, where the dimensions refer to the tree nodes, sorted in two 

orders: node id and post-order. For every vertex with node id 𝑣1 and post-order id 𝑣2 let's 

put a value equal to its depth in the cell with coordinates (𝑣1, 𝑣2). It is known that in the 

post-order sequence vertices from any subtree of the node graph form a single interval. Now 

if we want to find the deepest node in the given subtree with the node id from the given 

range, all we need to do is to find the maximal value in segment [𝑎, 𝑏] × [𝑐, 𝑑], where 𝑎, 𝑏 are 

the node id boundaries and 𝑐, 𝑑 refer to the minimal and maximal post-order label from the 

subtree. Such queries can be efficiently computed by using a 2D segment tree, built on the 

grid described above. Since its size is too big to keep it in the memory, it must be 

constructed dynamically. It should be noticed that from 𝑁2 base fields only 𝑁 contains 

information. 

The algorithm is as follows: firstly, we create a 2D segment tree over a square 𝑁 × 𝑁, which 

can put value in the given point and find the maximal value in the given rectangle. Then, for 

every vertex vi on depth 𝑑𝑖 with post-order 𝑝𝑖 we insert value 𝑑𝑖 to the tree, on the field 

(𝑣𝑖, 𝑝𝑖). Finally, we process our scenarios. For every query (𝑣, 𝐿, 𝑅) we find the maximal node 

𝑛1 by asking the segment tree for range [𝐿, 𝑅] × [𝑎, 𝑏], where 𝑎, 𝑏 refer to minimal and 

maximal post-order in the subtree of 𝑣. Let's denote the id of the result by 𝑟1. If there is no 

such vertex or the answer is 𝑣 itself, no valid pair of paths can be found. Otherwise, we must 

find the second path. Since the post-orders are naturally sorted, we can easily binsearch the 

child of 𝑣 which contains 𝑟1 in its subtree 𝑆. To get a valid second path, we must find the 

second deepest vertex 𝑟2 in the very same segment, excluding the subtree 𝑆. Since the post-

orders of vertices in 𝑆 form a single interval, this splits the next query in at most two - lower 

and higher post-orders. Finally, if 𝑟2 is found, we can output the answer, which is the sum of 

the depths found, subtracted by the depth of 𝑣. If 𝑟2 was not found and cannot be replaced 

with 𝑣, there is no valid answer. 

The solution for a single scenario includes finding the maximum in the segment tree and 

binsearching through the children of 𝑣. This gives us the complexity of 𝑂(𝑙𝑜𝑔2 𝑁 + log 𝑁), 



 

  MDCS – Bubble Cup 2018 118 

which means total 𝑂(𝑞 𝑙𝑜𝑔2 𝑁). It should also be noticed that this approach computes all the 

answers online. 

Another solution uses only 1D segment tree. Firstly, we read all the scenarios and group 

them in the corresponding vertices. Then, traversing the tree bottom-up, we build a segment 

tree over the subtrees and answer the queries from their roots. 

Specifically, suppose we stand in the vertex 𝑣. Firstly, we process the children of 𝑣 recursively. 

This way, we have a segment tree for every child of 𝑣. Since these trees are built on pairwise 

disjoint sets, we can naturally merge them into one segment tree by copying every 

meaningful node. Then for every scenario stored in 𝑣 we get the deepest vertex in the proper 

range. Finally, we iterate over the children of 𝑣. For a child 𝑣𝑖, if there is at least one scenario 

for which a vertex in 𝑣𝑖's subtree was selected, we temporarily subtract all vertices in this 

subtree from the merged segment tree and compute the answer for every such scenario. As 

a result, we return the merged segment tree. 

This approach obviously leads to a valid solution but is too slow to be used. However, it can 

be improved to achieve sufficiently short running time. 

Let's look at the subtrees of children of 𝑣 and let's denote the biggest one as 𝑊. When 

merging the segment trees, we can merge the subtrees excluding 𝑊 and for every query 

asked, look for the answer in both. When subtracting the subtrees in the final stage, now 

there is no need to do it for 𝑊. Finally, when returning the structure, we add the merged part 

to the one obtained from 𝑊.  

This way we process the vertex v in a time proportional to the sum of 𝑣's children subtrees 

sizes, excluding the biggest one. It is known that for any tree, the sum 

∑ ∑ |𝑇𝑘|

𝑘∊𝑆(𝑣)𝑣 ∊𝑉

 

where 𝑆(𝑣) is the set of children of v excluding the one with biggest subtree and 𝑇𝑘 denotes 

the subtree rooted in k, is 𝑂(𝑁). The cost of adding a segment tree of size 𝑎 to another can 

be bounded by 𝑎 ∗ log 𝑁. Therefore, the complexity of this solution is 𝑂(𝑞 log 𝑁 + 𝑁 log 𝑁). 

This is even faster than the previous one, though the answers are computed offline. 

Problem source: A2OJ 

Solution by: 

Name: Michał Zawalski 

  



 

MDCS – Bubble Cup 2018   119 

Round 2: This Means War 

 

Statement: 

An army is going into war, and they want to divide all soldiers into some groups, in a way 

that maximizes their total strength. Let’s consider the 𝑁 soldiers as points in a 2-dimensional 

plane, with all soldiers standing on the 𝑥-axis at distinct locations, the 𝑖𝑡ℎ soldier will be 

standing at 𝑥𝑖 on the 𝑥-axis (the soldiers are numbered from 1 to 𝑁). You will be given the 

soldiers in a sorted order based on their x value, from left to right. 

Your task is to divide them into one or more groups, where each soldier belongs to exactly 

one group, and all members of any group are next to each other without anyone else from 

other groups in between them, so each group will be defined using 2 integers, 𝑎 and 𝑏 

(where 𝑎 ≤  𝑏), which means this group includes all soldiers from the 𝑎𝑡ℎ position to the 𝑏𝑡ℎ 

position (inclusive). 

Each soldier will be given a function 𝑓𝑖 to be used (only if that soldier is the left most soldier 

of a group) to evaluate the strength of the group. You will be given a list of 𝑀 different 

values, each value is 𝑧𝑗 (they are numbered from 1 to 𝑀), which will be used to evaluate all 

the functions, for each function 𝑓𝑖 you will be given the value of 𝑓𝑖(𝑧𝑗). To get the value of 

any 𝑧 other than the given 𝑀 ones, you just consider (𝑧𝑗, 𝑓𝑖(𝑧𝑗)) as a point, and connect every 

2 consecutive points (based on 𝑧𝑗) in each function using a straight line segment, and now 

you have a function which covers all possible values from 𝑧1 to 𝑧𝑀. 

The strength of the whole army is the sum of strengths of each group, the strength of a 

group from the 𝑎𝑡ℎ position to the 𝑏𝑡ℎ position is 𝑓𝑎(𝑥𝑏), in other words, it’s the value of the 

function for the most left soldier when we pass the 𝑥 value of the most right soldier to it. 

Check the notes at the end for more explanation of the first test case. 

You are given all the required details as described above, and your task is to divide the 

soldiers into groups to maximize the total strength of the whole army. 

Input: 

Your program will be tested on one or more test cases. The first line of the input will be a 

single integer 𝑇 (1 ≤  𝑇 ≤  10) representing the number of test cases. Followed by 𝑇 test 

cases. 

Each test case starts with a line containing 2 integers separated by a space, 𝑁 (1 ≤  𝑁 ≤

 105) representing the number of soldiers and 𝑀 (2 ≤  𝑀, 𝑁 × 𝑀 ≤  105) representing the 

number of z values. 

Then follows a line containing 𝑁 sorted integers separated by a space, which are the 

positions of the soldiers 𝑥1, 𝑥2, … , 𝑥𝑁(−106 ≤  𝑥𝑖 ≤  106). 



 

  MDCS – Bubble Cup 2018 120 

A line containing 𝑀 sorted integers separated by a space, which are the 𝑧 values as described 

above 𝑧1, 𝑧2, … , 𝑧𝑀(−106 ≤  𝑧𝑗 ≤  106) follows. 

Then, they are followed by 𝑁 lines, where each line contains 𝑀 integers separated by a space. 

The 𝑗𝑡ℎ value from the left in the ith line from the top is the value of 𝑓𝑖(𝑧𝑗) (−106  ≤  𝑓𝑖(𝑧𝑗)  ≤

 106). 

It is guaranteed that 𝑧1  ≤  𝑥1 and 𝑥𝑁  ≤  𝑧𝑀 . 

Output: 

For each test case print a single line containing a single decimal number rounded to exactly 

6 decimal places, which is the maximum strength of the whole army you can get. 

 

Example input: 
3 

3 4 

-5 2 3 

-6 1 4 5 

-1 3 6 0 

2 -2 -4 -6 

-4 0 4 5 

5 2 

-2 5 8 9 10 

-2 10 

-7 -6 

-3 -7 

0 -8 

9 -10 

5 -4 

2 2 

0 7 

-2 7 

-10 -2 

-4 -10 

Example output: 
6.666667 

-6.000000 

-2.000000 

  



 

MDCS – Bubble Cup 2018   121 

Explanation: 

The following image represents the first test case: 

 

 3 solid circlers on the x-axis are the locations of the 3 soldiers, and we have the 3 functions 

𝑓1, 𝑓2 and 𝑓3 (one for each soldier) plotted as described above. The best solution here is to 

put the first 2 soldiers in a group, the strength of that group will be 𝑓1(𝑥2), which is 𝑓1(2)  =

 4, and the last soldier alone and the strength of that group will be 𝑓3(𝑥3), which is 𝑓3(3)  =

 2.666667, so the total strength is 6.666667 (everything rounded to 6 decimal places). 

Time and memory limit: 5s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 122 

Solution: 

We will start with a dynamic programming approach. Let’s denote 𝐷𝑃𝑟 as the maximum strength 

of the army we can obtain if we use only first 𝑟 soldiers. For a fixed 𝑟 we can focus on the last group 

of soldiers to devise the following recurrence relation: 

𝐷𝑃𝑟 = max
1≤𝑙≤𝑟

(𝐷𝑃𝑙−1 + 𝑓𝑙(𝑥𝑟)) 

𝐷𝑃0 = 0 

We want to calculate 𝐷𝑃𝑖 for 𝑖 ∈ {1,2, … , 𝑛}, and output 𝐷𝑃𝑛 as our final solution. To find an efficient 

way to solve this let’s consider a simpler case with two assumptions: 

1. Each 𝑓𝑙 is a linear function 

2. 𝐷𝑃𝑙−1 can be ignored 

The expression to maximize becomes just 𝑓𝑙(𝑥𝑟), where 𝑓𝑙 is linear. In other words, for each 𝑥𝑟 we 

are looking for a “highest” linear function from the set {𝑓1, 𝑓2, … , 𝑓𝑟}. This can be solved in 𝒪(𝑟log𝑟) 

with a technique based on envelopes, known as convex hull trick (CHT). The linked tutorial describes 

CHT well, but since it’s a very popular method among BubbleCup setters, you can find its 

description in several places in the last year’s booklet. To solve the original problem, we have to 

adapt CHT to a case where the two assumptions stated above don’t hold. 

Firstly, 𝑓𝑙 being piecewise linear instead of linear can be solved easily by rebuilding the whole CHT 

structure whenever we come across a 𝑧 value. At any time during our algorithm, we consider exactly 

one linear piece for each piecewise linear function (the piece above 𝑥𝑟). The total complexity of all 

rebuilding steps is 𝒪(𝑁𝑀), which does not harm the overall performance since the problem 

statement explicitly states that 𝑁𝑀 ≤ 105. 

Secondly, introducing 𝐷𝑃𝑙−1 to the expression that needs to be maximized merely changes the 

equation of a line that we add to our CHT structure. Instead of adding 𝑓𝑙(𝑥) = 𝑘𝑙 ⋅ 𝑥 + 𝑛𝑙 we will 

add 𝑓𝑙(𝑥) + 𝐷𝑃𝑙−1 = 𝑘𝑙 ⋅ 𝑥 + 𝑛𝑙 + 𝐷𝑃𝑙−1 = 𝑘𝑙 ⋅ 𝑥 + 𝑛’𝑙 . After modifying the line insertion part, we can 

keep the rest of the algorithm unchanged. 

The complexity of the entire solution is 𝒪(𝑇 ⋅ (𝑀𝑁 + 𝑁log𝑁)). 

Problem source: A2OJ 

Solution by: 

Name: Nikola Jovanović 

  

https://en.wikipedia.org/wiki/Envelope_(mathematics)
http://wcipeg.com/wiki/Convex_hull_trick
http://www.bubblecup.org/Content/Media/Booklet2017.pdf


 

MDCS – Bubble Cup 2018   123 

Round 2: Lannister Army 

 

Statement: 

In Jaime's army there is a total 𝑁 number of warriors. All of them are standing in a single row. 

Now Jaime wants to convey a message to his warriors. But it's very difficult to convey a 

message if the warriors are standing in a single row. So, Jaime wants to break that single row 

into 𝐾 rows. This is such a formation that in each row at least one warrior should be present. 

It’s important mention that there is an amount of unhappiness associated with each warrior 

𝑥 which is equal to: number of warriors in front of 𝑥 (in his row) whose height is greater than 

the height of 𝑥. In addition to that, the total unhappiness is a sum of unhappiness of all 

warriors. Jaime wants his army to be as happy as possible. Now, Jaime wants you to break 

the single row into 𝐾 rows so that the total unhappiness of the army is minimum. 

Note : You just have to break the row, you are not allowed to change the position of the 

warriors. 

Input: 

The first line of input contains two integers 𝑁 and 𝐾. The second line of input contains 𝑁 

number of integers, 𝑖𝑡ℎ of which denote height of 𝑖𝑡ℎ warrior standing in that single row 

(represented as 𝐻[𝑖]).  

Constraints: 

• 1 ≤  𝑁 ≤  5000 

• 1 ≤  𝐾 ≤  𝑁 

• 1 ≤  𝐻[𝑖]  ≤  105 

Output: 

Output the minimum possible value of the "total unhappiness". 

Example input 1: 
6 3 

20 50 30 60 40 100 

Example output 1: 
0 

Explanation 1: 

Break as : 

Row 1 : 20 50 

Row 2 : 30 60 

Row 3 : 40 100 

Example input 2: 
8 3 

20 50 30 60 40 100 5 1 



 

  MDCS – Bubble Cup 2018 124 

Example output 2: 
2  

Explanation 2: 

Row 1 : 20 50 30 60, Unhappiness = 1  

Row 2 : 40 100, Unhappiness = 0  

Row 3 : 5 1, Unhappiness = 1  

Total = 2 

Time and memory limit: 2s / 256 MB 

  



 

MDCS – Bubble Cup 2018   125 

Solution: 

I will describe two solutions to this problem. 

The first solution is based on the divide and conquer optimization in dynamic programing.  

Our recurrent formula is 𝑑𝑝[𝑖][𝑗] = 𝑚𝑖𝑛{0 ≤ 𝑘 < 𝑗 | 𝑑𝑝[𝑖 − 1][𝑘] + 𝑐𝑜𝑠𝑡[𝑘 + 1][𝑗]}, 

where 𝑑𝑝[𝑖][𝑗] is the lowest possible level of unhappiness of the warriors if we break first 𝑖 of 

them in 𝑗 rows, 𝑐𝑜𝑠𝑡[𝑖][𝑗] is unhappiness of the warriors in row formed by taking continuous 

segment from 𝑖 to 𝑗 (both borders inclusive). We also know that 𝑐𝑜𝑠𝑡[𝑖][𝑗] ≤ 𝑐𝑜𝑠𝑡[𝑖][𝑗 + 1] 

and 𝑐𝑜𝑠𝑡[𝑖][𝑗] ≤ 𝑐𝑜𝑠𝑡[𝑖 − 1][𝑗] because adding one warrior to a row can't decrease the 

unhappiness. Another important inequation is that for each 𝑟 > 𝑙:  

(*) 𝑐𝑜𝑠𝑡[𝑟][𝑗 + 1] − 𝑐𝑜𝑠𝑡[𝑟][𝑗] ≤ 𝑐𝑜𝑠𝑡[𝑙][𝑗 + 1] − 𝑐𝑜𝑠𝑡[𝑙][𝑗] 

To prove it, let's look at the following equation: 𝑐𝑜𝑠𝑡[𝑖][𝑗 + 1] = 𝑐𝑜𝑠𝑡[𝑖][𝑗] +

𝑐𝑛𝑡[𝑖][𝑗], 𝑐𝑛𝑡[𝑖][𝑗]is the number of warriors 𝑘 such that 𝑖 ≤ 𝑘 ≤ 𝑗 and 𝐻[𝑘] > 𝐻[𝑗 + 1]. It's 

obvious that 𝑐𝑛𝑡[𝑙][𝑗] ≥ 𝑐𝑛𝑡[𝑟][𝑗] for each 𝑙 < 𝑟. (*) follows from 𝑐𝑛𝑡[𝑙][𝑗] = 𝑐𝑜𝑠𝑡[𝑙][𝑗 + 1] −

𝑐𝑜𝑠𝑡[𝑙][𝑗] and 𝑐𝑛𝑡[𝑟][𝑗] = 𝑐𝑜𝑠𝑡[𝑟][𝑗 + 1] − 𝑐𝑜𝑠𝑡[𝑟][𝑗] . When (*) is true we can use divide and 

conquer optimization in dynamic programing. It's based on fact that 𝑜𝑝𝑡[𝑖][𝑗] ≤ 𝑜𝑝𝑡[𝑖][𝑗 + 1], 

where 𝑜𝑝𝑡[𝑖][𝑗] is minimum index such that 𝑑𝑝[𝑖][𝑗] = 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] +

1][𝑗].  

I'll prove it before describing why this is helpful. Suppose that 𝑜𝑝𝑡[𝑖][𝑗] > 𝑜𝑝𝑡[𝑖][𝑗 + 1].  

From recurrence for 𝑑𝑝[𝑖][𝑗] follows: 

 𝑑𝑝[𝑖][𝑗] < 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗 + 1]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗] 

(1) 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] + 1][𝑗] < 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗 + 1]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] +

1][𝑗]  

From recurrence for 𝑑𝑝[𝑖][𝑗 + 1] follows: 

 𝑑𝑝[𝑖][𝑗 + 1] <= 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] + 1][𝑗 + 1] 

 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗 + 1]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗 + 1] <= 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] +

1][𝑗 + 1] 

Here we use <= because 𝑜𝑝𝑡[𝑖][𝑗] > 𝑜𝑝𝑡[𝑖][𝑗 + 1] so if two options are equal lower index is 

chosen to be 𝑜𝑝𝑡[𝑖][𝑗 + 1]. 

But if  

 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗 + 1]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗 + 1] = 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] + 1][𝑗 +

1] 

Then 



 

  MDCS – Bubble Cup 2018 126 

 𝑑𝑝[𝐼 − 1][𝑜𝑝𝑡[𝑖][𝑗 + 1]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗] <= 𝑑𝑝[𝐼 − 1][𝑜𝑝𝑡[𝑖][𝑗]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] +

1][𝑗]. Contradiction with (1)! 

Now we have: 

(2) 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗 + 1]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗 + 1] < 𝑑𝑝[𝑖 − 1][𝑜𝑝𝑡[𝑖][𝑗]] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] +

1][𝑗 + 1] 

By summing (1) and (2) we get: 

 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] + 1][𝑗] + 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗 + 1] < 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗] +

𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] + 1][𝑗 + 1] 

 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗 + 1] − 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗 + 1] + 1][𝑗] < 𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] + 1][𝑗 + 1] −

𝑐𝑜𝑠𝑡[𝑜𝑝𝑡[𝑖][𝑗] + 1][𝑗] 

Contradiction with (*)! 

Now I will describe algorithm based on above inequation. First, we precompute all costs in 

𝑂(𝑁2). After that we will run recursive algorithm 𝐾 times. Let’s say that we process 𝑖𝑡ℎ run 

and want to find values of 𝑑𝑝[𝑖][𝑘] for 𝑙 <= 𝑘 <= 𝑟. Let 𝑠 be 𝑜𝑝𝑡[𝑖][𝑙 − 1] and 𝑒 be 𝑜𝑝𝑡[𝑖][𝑟 +

1]. Then we take element 𝑚 in the middle between 𝑙 and 𝑟.  

Then 𝑑𝑝[𝑖][𝑚] = 𝑚𝑖𝑛{𝑠 <= 𝑘 <= 𝑚𝑖𝑛{𝑒, 𝑚 − 1}|𝑑𝑝[𝐼 − 1][𝑘] + 𝑐𝑜𝑠𝑡[𝑘][𝑚]}.  

Now we know values of 𝑜𝑝𝑡[𝑖][𝑚] and 𝑑𝑝[𝑖][𝑚] so we can recursively solve intervals from 𝑙 to 

𝑚 − 1 and from 𝑚 + 1 to 𝑟. Each run has time complexity of 𝑂(𝑁𝑙𝑜𝑔𝑁) because maximum 

depth of recursion is at most 𝑙𝑜𝑔𝑁 and in each depth we iterate over 𝑂(𝑁) elements. So, the 

total time complexity of this solution is 𝑂(𝐾𝑁𝑙𝑜𝑔𝑁). 

Second solution is based on binary search. 

Let’s say that 𝑠𝑜𝑙[𝑖] is minimum total unhappiness if we break warriors in exactly 𝑖 rows. It's 

obvious that 𝑠𝑜𝑙[𝑖] >= 𝑠𝑜𝑙[𝑖 + 1] because we can just take rows that are optimal for 𝑖 and 

break one of them into two and we get same or lower total unhappiness. Lets see what 

happens when we add additional unhappiness 𝐶 for each row in final answer. 

Solutions for this modified problem will be 𝑠𝑜𝑙2[𝑖] = 𝑠𝑜𝑙[𝑖] + 𝑖 ∗ 𝐶. Now solutions with more 

rows become worse. 

We can find minimum total unhappiness if we can split warriors in any number of rows in 

𝑂(𝑁2).  

Recurrent formula is: 𝑑𝑝[𝑖] = 𝑚𝑖𝑛{0 <= 𝑘 < 𝑖|𝑑𝑝[𝑘] + 𝑐𝑜𝑠𝑡[𝑘][𝑖] + 𝐶}. 

We can also find how many rows are in optimal solution. 



 

MDCS – Bubble Cup 2018   127 

Let’s define value 𝑓[𝐶] as the number of rows in optimal solution for 𝐶. If there are more 

optimal solutions take one with the maximum number of rows. It’s obvious that 𝑓[𝑖] >=

𝑓[𝑖 + 1]. 

Maybe it seems that this condition is enough to run binary search and find 𝐶 for which 

solutions is 𝑠𝑜𝑙[𝑘] + 𝐶 ∗ 𝑘, but we don’t know that there exists such 𝐶. Let’s look at functions 

𝑠𝑜𝑙2[𝑖](𝐶). They are linear functions with slope equal to 𝑖 and 𝑦-intercept equal to 𝑠𝑜𝑙[𝑖]. 

𝑓[𝐶] gives us the line that intersects vertical line 𝑥 = 𝐶 in the lowest point. Now we know that 

we can find solution for 𝑘 with binary search if and only if 𝑠𝑜𝑙2[𝑘] has some point on the 

lower convex hull of these functions. If we prove that each function has some integer point 

on the lower convex hull, then our algorithm is correct in every case. It’s true if and only if (3) 

𝑠𝑜𝑙[𝑖 − 1] − 𝑠𝑜𝑙[𝑖] >= 𝑠𝑜𝑙[𝑖] − 𝑠𝑜𝑙[𝑖 + 1]. I will prove it. 

Suppose that (3) is correct. Let 𝑥[𝑖][𝑗] be the 𝑥 coordinate of intersection of 𝑖𝑡ℎ and 𝑗𝑡ℎ 

function. It’s obvious that 𝑥[𝑖][𝑖 + 1] = 𝑠𝑜𝑙[𝑖] − 𝑠𝑜𝑙[𝑖 + 1], so from (3) follows that 𝑥[𝑖 −

1][𝑖] >= 𝑥[𝑖][𝑖 + 1].  

𝑖𝑡ℎ function is on lower convex hull between points 𝑥[𝑖 − 1][𝑖] and 𝑥[𝑖][𝑖 + 1]. Because of 

that each function has at least one point on the lower convex hull. 

Suppose that 𝑠𝑜𝑙[𝑖 − 1] − 𝑠𝑜𝑙[𝑖] < 𝑠𝑜𝑙[𝑖] − 𝑠𝑜𝑙[𝑖 + 1] for some 𝑖. Then 𝑥[𝑖 − 1][𝑖] < 𝑥[𝑖][𝑖 + 1]. 

(𝑖 − 1)𝑡ℎ 

 function is lower than 𝑖𝑡ℎ on segment from 𝑥[𝑖 − 1][𝑖] to infinity, and (𝑖 + 1)𝑡ℎ function is 

lower than 𝑖𝑡ℎ on segment from negative infinity to 𝑥[𝑖][𝑖 + 1], so 𝑖𝑡ℎ function has no points 

on the lower convex hull. 

The only thing left is to prove that 𝑠𝑜𝑙[𝑖 − 1] − 𝑠𝑜𝑙[𝑖] >= 𝑠𝑜𝑙[𝑖] − 𝑠𝑜𝑙[𝑖 + 1]. I will leave it as 

an exercise for the readers. 

Because 𝑓[0] = 𝑁 and 𝑓[𝑁2] = 1 we have to run binary search on interval from 0 to 𝑁2. The 

total time complexity of this solution is 𝑂(𝑁2𝑙𝑜𝑔(𝑁2)). 

First solution has slightly better time complexity, but it also has larger constant factor. 

Problem source: SPOJ 

Solution by: 

Name: Tadija Šebez 

  



 

  MDCS – Bubble Cup 2018 128 

Round 2: Ada and Cucumber 

 

Statement: 

Ada the Ladybug works as farmer. It’s the season of cucumbers and she wants to harvest 

them. There lie many cucumbers all around her house. She wants to choose a direction and 

follow it until all cucumbers in that direction are collected. 

Let’s consider Ada's house as centerpiece of whole universe, lying on [0,0]. The cucumbers 

are defined as lines on plane. No cucumber goes through Ada's house (and no cucumber 

touches it). 

How many cucumbers can Ada pick in one go if she chooses the best direction possible? 

Input: 

The first line contains an integer 𝑇, the number of test-cases. 

Each test-case begins with an integer 1 ≤  𝑁 ≤  105.  

Afterward 𝑁 lines follow, with four integers −106 ≤  𝑥1, 𝑦1, 𝑥2, 𝑦2 ≤  106, the beginning and 

end of each cucumber. Each cucumber has a positive length. 

Sum of all 𝑁 over all test-cases won't exceed 106. 

Note: Even though cucumber will not go through the house, they might touch, intersect or 

overlap other cucumbers! 

Output: 

For each test-case print one integer - the maximal number of cucumbers which could be 

picked if Ada chooses a direction and picks every cucumber lying in it. 

Example input: 
5 

4 

2 1 -1 4 

-2 1 1 3 

-3 2 0 5 

-2 -2 5 1 

3 

-2 2 -2 -2 

2 2 2 -2 

-3 -3 -6 -3 

3 

-2 1 -3 4 

3 1 5 5 

-2 -2 2 -2 

6 

-1 5 -6 5 

-3 -3 5 -3 

-2 -5 5 -5 

-1 -6 5 -6 



 

MDCS – Bubble Cup 2018   129 

5 1 5 5 

6 6 6 -11 

3 

1 3 4 3 

4 2 4 -1 

5 1 6 6  

Example output: 
3 

2 

1 

4 

2  

Possibly harvested cucumbers: 
1 2 3 

1 3 

1 

2 3 4 6 

2 3 

Time and memory limit: 2s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 130 

Solution: 

Every cucumber is a segment on a plane and we want to find a ray starting at (0, 0) which 

crosses the biggest number of such segments. 

First, let’s observe that there exists an optimal ray which passes through an endpoint of some 

segment. To prove it, let’s consider an optimal ray. If it doesn’t pass through any of the given 

endpoints, we can move it clockwise (or counterclockwise) until it reaches some endpoint – 

after that we obtain a ray which crosses the same segments as initial optimal ray and satisfies 

our requirement. 

Using this observation, we obtain a simple algorithm with complexity 𝑂(𝑁2) – it is enough to 

consider all possible 2𝑁 rays and calculate the score for each of them in 𝑂(𝑁) time. To solve 

this task, we need to do it faster. 

Let’s sort all the endpoints by a polar angle, which we define here as a number from interval 

(0, 2𝜋]. We will iterate over them in this order maintaining a counter – how many segments 

are currently considered ray crosses. 

To calculate the initial value of it, we count the segments which one of endpoints lies in 

upper half-plane and which touches or crosses axis 𝑥 > 0, 𝑦 = 0. If the current endpoint is a 

beginning of some segment (i.e. if the segment is directed counterclockwise), we increase 

the counter by one, otherwise – we decrease it by one. After each change, we check whether 

we can update the result. If more than one point lies on the same ray, we have to consider 

the beginnings of the segments before the endings. 

The overall complexity of the algorithm is 𝑂(𝑁 log 𝑁) per one test-case. 

Problem source: SPOJ 

Solution by: 

Name: Konrad Majewski 

  



 

MDCS – Bubble Cup 2018   131 

Round 2: Seedlings 

 

Statement 

Bogdan the Botanist is conducting a research on a certain species of plant, which supposedly 

has some miraculous healing properties. Thanks to his connections among other scientists, 

he can get as many seedlings for his research as he pleases. However, plants need proper 

conditions in order to grow properly. The best method to ensure that the seedlings develop 

correctly is to place them on specialized shelves, which have proper watering systems, 

lighting conditions etc. Many different shapes of the shelves are available. Apart from the 

standard square-shaped 1x1 shelves, it is also possible to obtain shelves that look like this: 

 

Each of the shelves presented above consists of four standard-shaped shelves. Standard 

shelf can hold one large flowerpot with seedlings. Shelves presented above can hold six 

flowerpots, thanks to the somewhat better use of available space. 

Bogdan already bought a room for storing the seedlings - from the bird's-eye view, it looks 

like a rectangle, 𝑛 meters high and 𝑚 meters wide, consisting of square-shaped fields, each 1 

meter wide. You can't place the shelves on some of the fields (due to wiring, water supply 

systems and other stuff) - we consider such fields blocked. There is a door on the wall above 

the field in the top left corner - it opens inward, so we can't place anything on this field 

either. Bogdan plans to fit as many flowerpots in the room as possible, by placing shelves on 

the remaining fields. Moreover, he wants to do it in such a way that the square-shaped 

segments of the shelves exactly cover the fields in the room. His research demands constant 

access to plants - every shelf must be accessible by walking over the non-blocked fields, 

starting from the field with the door. You can walk between two fields if they share a 

common edge. Help Bogdan! Place the shelves according to the rules, to fit as many 

flowerpots in the room as possible. 

Input 

The first line contains a single integer 𝑡, denoting the number of testcases. (𝑡 ≤  10). Then, 

the testcases follow. The description of a single testcase begins with two integers 

𝑛, 𝑚 (1 ≤  𝑛, 𝑚 ≤  50) - height and width of the rectangle representing the room. Then, the 𝑛 

lines follow, each containing 𝑚 characters. 𝑗𝑡ℎ character in 𝑖𝑡ℎ line denotes a square in 𝑖𝑡ℎ 

row and 𝑗𝑡ℎ column. "." (a dot) denotes a free square, "X" denotes a blocked square. The field 

in the top left corner is always free.  



 

  MDCS – Bubble Cup 2018 132 

Output 

You should find an arrangement of shelves that satisfies the rules from the problem 

statement for every testcase. The description begins with two integers 𝑝 and 

𝑑 (1 ≤  𝑝 ≤  𝑛 ∗ 𝑚) - the number of shelves and the number of flowerpots on the shelves, 

respectively. Then, the descriptions of 𝑝 shelves should follow. Each shelf is described by four 

integers 𝑤𝑖, 𝑘𝑖, 𝑟𝑖 and 𝑜𝑖 (1 ≤  𝑤𝑖  ≤  𝑛, 1 ≤   𝑘𝑖 ≤  𝑚, 0 ≤  𝑟𝑖 ≤  7, 0 ≤  𝑜𝑖  ≤  3) - it means 

that the anchor point of the 𝑖𝑡ℎ shelf is in the row number 𝑤𝑖 and column number 𝑘𝑖, the 

shelf is of type 𝑟𝑖, and is rotated 𝑜𝑖 times 90 degrees to the right, starting from the 

configuration on the picture. The anchor point of every shape is in the top left corner in the 

picture (and it is in the same segment after the rotation). Type 0 denotes standard 1x1 

square-shaped shelf, types from 1 to 7 correspond to shapes in the picture (counting from 

left to right). 

Example input 
1 

4 5 

..... 

....X 

.X... 

...X. 

Example output 
4 19 

1 2 1 3 

2 4 6 0 

3 3 5 1 

3 1 0 0 

Explanation 

The arrangement from the sample testcase looks as follows: 

 

 



 

MDCS – Bubble Cup 2018   133 

You can't place another shelf without violating the rules - for example, by putting the type 0 

shelf on the field at (2,3), the red shelf and the green shelf would be unreachable. The 

arrangement contains three larger shelves and one standard shelf, so the total number of 

flowerpots is 3*6+1 = 19. 

Scoring 

If the arrangement of the shelves is correct, and the given number of flowerpots 𝑑 is correct, 

it is worth 𝑑/(𝑛 ∗ 𝑚) points. Overall score is equal to the sum of individual scores. Score for 

the sample output is 19/(4*5) = 0.95. 

Time and memory limit: 5 s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 134 

Solution: 

The solution consists of two main parts. Firstly, it builds a network of paths used for walking. 

Then the remaining free spaces are filled with shelves. The second part of the solution will be 

explained first as it is simpler. 

On each step we check each free square and try to place each big (consisting of four 

squares) shelf with each orientation. Every time we find a valid shelf placement we grade it 

according to a certain heuristic. Then after checking every combination, if we have found at 

least one valid shelf placement, we place the best (graded highest) shelf and repeat. When 

no more shelves can be placed, the remaining free squares next to the paths are filled with 

small shelves. It is important to note that the solution does not regard the not-yet-filled 

squares as potential paths during this step. Only the squares marked during the first part of 

the solution are regarded as walkable. 

The heuristic used to grade each possible shelf placement consists of two parts. Firstly, a 

number of points is given for each square filled by the shelf, that does not touch a path. This 

encourages shelf placement that fills otherwise unreachable squares. Secondly, a number of 

points is given for each external edge of the shelf that touches an already filled (by a path, 

shelf or an X) square. This encourages shelf placement that neatly fits into the currently left 

gaps. Furthermore, the number of potential points is much higher in more complicated areas 

since a shelf can potentially touch many more filled squares. This way the solution naturally 

starts filling areas that if left until the end might not get filled. The exact values for each of 

the two rewards was obtained through testing. They are 13 points for the first type of reward 

and 9 or 10 for the second. 9 is normally used, but 10 is used when the shelf type is а two by 

two square because it has fewer external edges. 

The first part of the solution is more complicated as it is a combination of two approaches 

that were tried separately before that. The first one was to build the paths without taking the 

shelves into much consideration. The solution tried to build a semi-regular structure of 

parallel paths that were spaced about 3-4 squares from each other. This was done by having 

a list of potential extensions to the current path network — squares that touched the current 

path. Then the best one would be selected using some heuristic based on the distance from 

other squares that are a part of the current path. At each step, the current path network is 

scored based on the number of the squares that are reachable (or in a later version that are 

at distance two to the nearest path square). After all squares are processed, the path is 

rebuilt from the start, but this time up to the point where the score is highest. This approach 

performed rather poorly when compared to the following ones. This is because it doesn’t 

take into consideration what shelves can fit in the different squares. 

The second approach that was tried out consisted of writing а simpler but complete (not 

split into two parts) solution and after it terminates, to disregard its shelf placement but use 



 

MDCS – Bubble Cup 2018   135 

the paths it has found (so each free square that is reachable from the start is marked as part 

of the path). The solution itself was a greedy algorithm that at each step placed the shelf that 

cuts off the least amount of squares/shelves. This approach performed much better because 

the paths were suited to the possible shelf placements on the field. 

The final approach was a combination of the two. On each step, one of two things is done. 

Either the path network is extended in a manner similar to the one in the first approach (but 

with a different heuristic that will be described below), or a shelf is placed in a manner similar 

to the way they are placed in the second step of the solution (however the values for the 

rewards are different — the reward for using an unreachable square is 15, and the rewards 

for touching a taken square are -1 and -0.9, they are actually punishments because we want 

the initial shelves to be more spaced out to leave room for the path network). Again, at each 

point, the current path network is graded based on the reachable free squares plus the 

points from the shelves that are already placed. This would be done until all squares are 

processed but this exceeds the time limit, so it is done until the current score starts 

significantly decreasing when compared to the best score. Finally, the path network is rebuilt 

up to the point where the score is the highest, and the shelves are disregarded. 

The heuristic used to pick the square, with which to extend the path network, consists of the 

following steps: for each unreachable free square find which candidate (for extending the 

path network) is the closest; for each candidate count the number of free squares to which it 

is the closest; pick the candidate that is the closest to the freest cells. The only problem is 

that doing this as described actually exceeds the time limit, so an approximation of this is 

done. All candidates are added in a BFS queue simultaneously and we should remember 

where we originally started each square. This gives an unfair advantage to the candidates 

that are near the beginning of the queue but behave almost the same way as the intended 

heuristic. 

The only thing left to discuss is which of the two things (placing a shelf or extending the path 

network) is done at each step. Placing a shelf is done (or tried) at every third step and 

extending the path network is done at the other two. Furthermore, even on those other two 

steps there is a 10% chance to try placing a square instead. Again, these values were 

obtained through testing. 

Problem source: SPOJ 

Solution by: 

Name: Emil Indzhev 

  



 

  MDCS – Bubble Cup 2018 136 

Round 2: Big Integer 

 

Statement: 

Nathan is a big fan of recreational mathematics. For one of his problems, he needs to add 

together very large numbers. He created a class called BigInteger to help with the adding, 

but he isn't done yet! Nathan needs to stress test his code, so he devised the following 

problem. 

 

There will be 𝑁 instructions (which are given as a string of length 𝑁). There are two types of 

instructions: 

• 0 to 9:  Add this digit to the end of the current number. Afterwards, add the current 

number to the total 

• - : Remove the last digit from the current number. It is guaranteed that the current 

number will not be empty after this instruction. Afterwards, add the current number 

to the total. 

At the beginning, the total is 0 and the current number is 0. Nathan wrote a program in 

Python to solve this problem, but it is slow and drains his battery too much. Can you help 

Nathan double check his answers? 

Input: 

The first line will contain the integer 𝑁 (𝑁 ≤  500 000). The second line will contain a string 

of length 𝑁. Every character in this string can be found in 0123456789-.  

Output: 

Print the total. Leading zeroes will be ignored by the checker. 

Example input 1: 
8 

0100---5 

Example output 1: 
00000127  

Explanation 1: 

00 + 001 + 0010 + 00100 + 0010 + 001 + 00 + 005 = 127 

Example input 2: 
4 

1817  

Example output 2: 
2017  

Explanation 2: 

01 + 018 + 0181 + 01817 = 2017 



 

MDCS – Bubble Cup 2018   137 

Example input 3: 
2 

0- 

Example output 3: 
00  

Time and memory limit: 7s / 256 MB 

  



 

  MDCS – Bubble Cup 2018 138 

Solution: 

Let’s try to use the sqrt-decomposition. 

Firstly, split all the instructions in blocks of length 𝐾. We will operate the blocks from the first 

to the last. 

Now we have some new blocks. Let's say that the current number that we have before the 

block is 𝑋. Then divide 𝑋 into two parts 𝐿𝑃 and 𝑅𝑃. 𝑅𝑃 will be the last 𝐾 digits of 𝑋 and 𝐿𝑃 

will be equal to (𝑋 − 𝑅𝑃). 

Look at 𝑅𝑃. The length of it won't be greater than 𝐾 ∗ 2, so, we can simply maintain 𝑅𝑃 and 

add it to the answer in 𝑂(|𝑅𝑃|). 

Now look what is going on with 𝐿𝑃. If we process the new instruction, then if it isn't '-' then 

𝐿𝑃 is changing to 𝐿𝑃 ∗ 10, if it’s otherwise, we should delete one digit from the end of 𝐿𝑃. If 

we notice that this digit is always zero, then we can do the following. Delete all zeros from 

the end of 𝐿𝑃, so the new number is 𝑍𝑖𝑝𝐿𝑃, then add to the answer 𝑍𝑖𝑝𝐿𝑃 ∗ (10𝑐𝑛𝑡1 +

10𝑐𝑛𝑡2 + ⋯ + 10𝑐𝑛𝑡𝐾), where 𝑐𝑛𝑡𝑖 is the number of zeros at the end of 𝐿𝑃 after 𝑖 instructions. 

As 𝑐𝑛𝑡𝑖 is always positive, all this can be done with 𝐹𝐹𝑇 in 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁)). 

It works in 𝑂(𝑁/𝐾 ∗ (𝑁 ∗ 𝑙𝑜𝑔(𝑁) +  𝑁)  +  𝑁 ∗ 𝐾). But it's a little bit slow. 

Optimization: 

Store 𝑅𝑃 and answer in blocks by 𝐵 = 15 digits. And now it works in 𝑂(𝑁 𝐾⁄ ∗

(𝑁 ∗ log 𝑁 + 𝑁 𝐵⁄ ) + 𝑁 ∗ 𝐾 𝐵⁄ . Take 𝐾 = 10000, add some magic and get 𝐴𝐶. 

 

Problem source: DMOJ 

Solution by: 

Name: Mark Korneychik  

 

 


