

Bubble Cup 2019

Microsoft Development Center Serbia

Problem set & Analysis from

the Finals and Qualification

rounds

Belgrade, 2019

2 MDCS – Bubble Cup 2019

Scientific committee:

Aleksa Milisavljević

Aleksandar Damjanović

Bojan Vučković

Janko Šušteršič

Kosta Bizetić

Kosta Grujčić

Miloš Šuković

Nebojša Savić

Nikola Smiljković

Nikola Nedeljković

Predrag Ilkić

Slavko Ivanović

Qualification analysts:

Aleksa Miljković Nikola Pešić

Ivan Stošić Pavle Janevski

Katarzyna Kowalska Pavle Martinović

Konrad Majewski Petar Vasiljević

Krzysztof Maziarz Tadija Šebez

Magdalina Jelić Uroš Berić

Marko Šišović Uroš Maleš

Michal Zawalski Veljko Radić

Mihailo Milošević

Miloš Purić

Mladen Puzić

Nikola Jovanović

Cover:

Sava Čajetinac

Typesetting:

Marijana Prpa

Anja Pantović

Volume editor:

Dragan Tomić

MDCS – Bubble Cup 2019 3

Contents

Preface .. 5

About Bubble Cup ... 6

Problem A: Harvester ... 13

Problem B: Periodic integer number ... 16

Problem C: Workout plan... 19

Problem D: The Light Square .. 22

Problem E: BubbleReactor ... 26

Problem F: Function Composition .. 30

Problem G: Jumping Transformers ... 33

Problem H: Guarding warehouses .. 37

Problem I: Xor Spanning Tree... 42

Problem J: Product tuples ... 45

Problem K: Alpha planetary system ... 48

Round 1: Ada and Tic-Tac-Toe... 55

Round 1: Building Subways ... 59

Round 1: Input .. 62

Round 1: First to meet the spaceship .. 66

Round 1: Mysteriousness of a Logical Expression .. 70

Round 1: N..K..Divide ... 74

Round 1: Rational Numbers .. 77

Round 1: Toby and the Frog ... 80

Round 1: Walk home together ... 82

Round 1: [Challenge] Guess The Number With Lies v5 .. 86

Round 2: Ada and Scarecrow.. 91

Round 2: Ada and Prime... 96

Round 2: Just a Palindrome ... 98

Round 2: Tjandra 19th birthday present (HARD) .. 101

Round 2: Game Simulator .. 108

Round 2: Union Laser .. 117

Round 2: The Zebra Crossing ... 122

4 MDCS – Bubble Cup 2019

Round 2: Connect the Points .. 125

Round 2: Forest .. 128

Round 2: [Challenge] JawBreaker Game ... 132

MDCS – Bubble Cup 2019 5

Preface

Dear Bubble Cup finalists,

I would like to thank you for taking part in the twelfth edition of Bubble Cup in Belgrade, Serbia.

This year there are two divisions: The Premier League – the division opened for high school and

university teams which meet the eligibility requirements of Bubble Cup; and Rising Stars – the

division opened only for eligible Serbian high school teams. By creating the Rising Stars

division, we want to encourage Serbian high schools to compete in Bubble Cup and motivate

young programming talents in Serbia as well.

Bubble Cup 12 has gathered more than 80 competitors in 28 teams (The Premier League consists

of 16 teams and Rising Stars consists of 12 teams). The Finalists come from Belarus, Bulgaria,

Poland, Ukraine and Serbia. The Rising Stars finalists, composed of high school teams from

Serbia, come from Belgrade, Niš, Novi Sad and Sombor.

For twelve years, Microsoft Development Center has been hosting Bubble Cup, a competition

designed for high school and university students, as a form of a complete preparation for some

of the most significant and prestigious coding tournaments – such as the ACM competition. In

addition to that, the importance of the participation in the Bubble Cup competition in preparing

young talents for professional development is also reflected in the fact that many of more than

300 employees of Microsoft Development Center were once Bubble Cup finalists.

We are glad to have you all as a part of our Bubble Cup team for a better future of discovering

new coding models and creating new friendships.

Sincerely,

Dragan Tomic

MDCS PARTNER Engineer manager/Director

6 MDCS – Bubble Cup 2019

About Bubble Cup

Bubble Cup is a coding contest started by Microsoft Development Center Serbia in 2008 with

a purpose of creating a local competition similar to the ACM Collegiate Contest, but soon that

idea was overgrown and the vision was expanded to attract talented programmers from the

entire region and promote the values of communication, companionship and teamwork.

This edition of Bubble Cup is special because the format of the competition has changed this

year. Now we have two divisions:

1. Premier League – Division opened to high school and university teams that satisfy

eligibility rules

2. Rising Stars – Division opened only to eligible Serbian high schools’ teams.

The best 16 teams from the Premier League division and the best 8 teams from the Rising Star

division will have chance to compete in the Finals. Additionally, 4 best teams from specialized

IT departments were invited to compete in Rising Stars division for total number of 12 teams

in Rising Stars division.

This year, all Bubble Cup finalists had a chance to visit Microsoft Development Center Serbia

and an opportunity to hear about the Center, PSI:ML machine learning seminar, MDCS

initiative, to try demos and to talk with engineers who shared their experience.

Microsoft Development Center Serbia (MDCS) was created with a mission to take an active

part in the conception of novel Microsoft technologies by hiring unique local talent from

Serbia and the region. Our teams contribute components to some of the Microsoft’s premier

and most innovative products such as SQL Server, Office & Bing. The whole effort started in

2005, and during the last 13 years a vast number of products came out as a result of a great

team work and effort.

Our development center is becoming widely recognized across Microsoft as a center of

excellence for the following domains: computational algebra engines, pattern recognition,

object classification, computational geometry and core database systems. The common theme

uniting all the efforts within the development center is applied mathematics. MDCS teams

maintain collaboration with engineers from various Microsoft development centers around the

world (Redmond, Israel, India, Ireland, Japan and China), and Microsoft researchers from

Redmond, Cambridge and Asia.

https://www.microsoft.com/sr-latn-rs/mdcs

MDCS – Bubble Cup 2019 7

Bubble Cup Finals

The Bubble Cup 12 Finals were held on September 14, 2019, at the VIG Plaza in Belgrade (New

Belgrade).

Dražen Šumić officially opened the competition by giving an inspiring speech dedicated to all

finalists, encouraging them to give their best and to make this competition even more

challenging and exciting for all participants!

The competition started at 10.00am and lasted until 3.00pm. In the evening, at Microsoft

Development Center Serbia, the award ceremony was held and was later followed by a lounge

party organized in honor of all participants.

During the finals the teams in Premier League and Rising Stars divisions solved slightly

different problem sets which had overlapping problems. The problem distribution between

leagues is represented by the table below:

 A B C D E F G H I J L K

Premier

League

Rising

Stars

The rules of the contest were the same for both divisions, which remained in the classical ACM

ICPC five-hour format. Prizes were given to the top 3 Premier League teams, as well as the top

3 Rising Stars teams. Also, this year special awards were given:

• Bubble Racer for the team who got the fastest solution;

• Bubble Stamina for the team most persistant in trying to resolve the problem-s

• Bubble Finals++ award for the individual with the largest number of the finals he/she

attended.

8 MDCS – Bubble Cup 2019

Bubble Cup Finals Results – Premier League

This year we had less problems than usual, however they were tough and less ordinary

compared to the previous Bubble Cup finals. It was one of the closest competitions in Bubble

Cup history. Heading to final 1-hour freeze time 3 teams:

1. Warsaw Akabats (Antoni Żewierżejew, Konrad Czapliński, Marek Sokolowski)

2. Los Estribos (Jan Tabaszewski, Maciej Hołubowicz, Mateusz Radecki)

3. Uncle Bogdan (Alexander Kernozhitsky, Fedar Karabeinikau, Yahor Dubovik)

had the same score with 7 solved problems with only penalty separating them apart. Until

the very last second it was open who will win this year’s finals. In the end Los Estribos

came on top as the only team to solve all the problems in a thriller finish.

Scoreboard

Team name Score Penalty

Los Estribos 9 1405

Warsaw Akabats 8 908

Uncle Bogdan 8 1196

Ultimate Fried Cookies 6 955

I want in house dva 5 605

Budućnost PMF-a 5 640

MaxFun 4 355

KhNURE_NRG 4 565

Danonki 4 576

Jagiellonian Hedgehogs 🦔🦔🦔 4 591

Yang and Fibs 3 233

fufel 3 339

Cogito ergo sudo 3 365

KNU_Is_Not_Unix 3 443

Suckcessful team 3 465

AIM for gold 2 161

MDCS – Bubble Cup 2019 9

Bubble Cup Finals Results – Rising Stars

The competition for the first three places and prizes in the Rising Stars division was just as

exciting. All 3 places where open for grabs to a lot of different teams, and one correctly solved

problem could make a big difference. When the competition ended the Infinity (Nikola Pešić,

Miroslav Grubić, Tadija Šebez) team came out as a winner with Gii Klub (Pavle Martinović,

Lazar Kostić, Mladen Puzić) and Inspekcija (Igor Pavlović, Marko Grujčić, Uroš Maleš)

coming 2nd and 3rd respectively.

Scoreboard

Team name Score Penalty
Infinity 5 462

Gii Klub 5 674

Inspekcija 4 376

Шми клуб 4 575

SouthSerbia DžB 4 603

Gassivity 4 631

_dujm 3 299

Gimnazija Sombor 3 573

To je dinamicko... 2 89

TryCatch and Exceptions 2 122

Beskonacna_petlja 2 153

ЂЕВРЕК 1 160

10 MDCS – Bubble Cup 2019

MDCS – Bubble Cup 2019 11

Finals problems

12 MDCS – Bubble Cup 2019

MDCS – Bubble Cup 2019 13

Problem A: Harvester

Rising Stars only

Author:

Nikola Smiljković

Implementation and analysis:

Nikola Smiljković

Janko Šušteršič

Statement:

It is Bubble Cup finals season and farmer Johnny Bubbles must harvest his bubbles. The

bubbles are in a rectangular bubblefield formed of 𝑁 × 𝑀 square parcels divided into 𝑁 rows

and 𝑀 columns. The parcel in 𝑖𝑡ℎ row and 𝑗𝑡ℎ column yields 𝐴𝑖𝑗 bubbles.

Johnny Bubbles has available a very special self-driving bubble harvester that, once manually

positioned at the beginning of a row or column, automatically harvests all the bubbles in that

row or column. Once the harvester reaches the end of the row or column it stops and it must

be repositioned. The harvester can pass through any parcel any number of times, but it can

collect bubbles from the parcel only once.

Johnny is a very busy farmer, so he is available to manually position the harvester at most four

times per day. Johnny is also impatient, so he wants to harvest as many bubbles as possible

on the first day.

Please help Johnny calculate what is the maximum number of bubbles he can collect on the

first day.

Input:

The first line contains two integers 𝑁 and 𝑀 — the bubblefield size.

Each of the next 𝑁 lines contains 𝑀 integers. The 𝑗𝑡ℎ element in the 𝑖𝑡ℎ line is 𝐴𝑖𝑗 — the yield

of the parcel located in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column.

Output:

The output contains one integer number – the maximum number of the bubbles Johnny can

harvest on the first day.

Constraints:

• 1 ≤ 𝑁, 𝑀 ≤ 𝑁 ∙ 𝑀 ≤ 105

• 0 ≤ 𝐴𝑖𝑗 ≤ 109

14 MDCS – Bubble Cup 2019

Example input 1:

2 2

1 2

3 4

Example output 1:

10

Explanation 1:

Farmer Johnny can harvest all the bubbles by positioning the harvester on the first and the

second row.

Example input 2:

5 5

0 9 2 7 0

9 0 3 0 5

0 8 0 3 1

6 7 4 3 9

3 6 4 1 0

Example output 2:

80

Explanation 2:

One way Johnny can harvest the maximum number of bubbles is to position the harvester in

the second row, the fourth row, the second column and the fourth column.

Time and memory limit: 0.5s / 256 MB

MDCS – Bubble Cup 2019 15

Solution and analysis:

Let 𝑟𝑠𝑖 be the sum of yields in the 𝑖𝑡ℎ row, and 𝑐𝑠𝑖 be the sum of yields in the 𝑗𝑡ℎ column.

First, we can notice that if there are less than five columns or rows in the field, we can just sum

up all the elements of the matrix 𝐴, e.g. sum up all the elements in 𝑟𝑠 or sum up all the elements

in 𝑐𝑠. Otherwise, since all of the numbers in 𝐴 are non-negative, we’ll always want to select

exactly four rows or columns of 𝐴. There are five options to consider when selecting a total of

four rows or columns: four columns, one row and three columns, two rows and two columns,

three rows and one column, or four rows.

It is obvious that to achieve the maximum sum by selecting four columns, we must sum up

four largest elements of the 𝑐𝑠 array. Similarly, to achieve the maximum sum by selecting four

rows we must sum up four largest elements of the 𝑟𝑠 array. The time complexity for both

operations is 𝑂(𝑁 + 𝑀).

Let’s assume we want to select one row and three columns, and that we have selected the 𝑖𝑡ℎ

row. To maximize the sum, we have to select three columns with the largest value 𝑐𝑠𝑗 – 𝐴𝑖𝑗.

Then for each row we can find three columns that add up to the largest sum and pick the

maximum. Similarly, we can find the maximum sum by selecting three rows and one column

by applying this process on the transpose matrix of 𝐴. The time complexity for both operations

is 𝑂(𝑁 + 𝑀).

When selecting two rows and two columns we can assume 𝑁 ≤ 𝑀. If that is not the case, we

can consider a transpose of the matrix 𝐴. For each pair of rows (𝑖1, 𝑖2) we find two columns

with the largest value 𝑐𝑠𝑗 – 𝐴𝑖1𝑗 – 𝐴𝑖2𝑗 , and pick the maximum sum of selected rows and

columns. The time complexity for this operation is 𝑂(𝑁 ∙ 𝑀 ∙ 𝑚𝑖𝑛(𝑁, 𝑀)).

We can consider all five cases and pick the case with the maximum solution, giving the overall

time complexity of 𝑂(𝑁 ∙ 𝑀 ∙ 𝑚𝑖𝑛(𝑁, 𝑀)).

16 MDCS – Bubble Cup 2019

Problem B: Periodic integer number

Rising Stars only

Author:

Aleksandar Damjanović

Implementation and analysis:

Aleksandar Damjanović

Nebojša Savić

Statement:

Alice became interested in periods of integer numbers. We say that a positive 𝑋 integer

number is periodic with length 𝐿 if there exists a positive integer number 𝑃 with 𝐿 digits such

that 𝑋 can be written as 𝑃𝑃𝑃𝑃 … 𝑃. For example:

𝑋 = 123123123 is a periodic number with length 𝐿 = 3 and 𝐿 = 9

𝑋 = 42424242 is a periodic number with length 𝐿 = 2, 𝐿 = 4 and 𝐿 = 8

𝑋 = 12345 is a periodic number with length 𝐿 = 5

For the given positive period length 𝐿 and positive integer number 𝐴, Alice wants to find the

smallest integer number 𝑋 strictly greater than 𝐴 that is periodic with length 𝐿.

Input:

The first line contains one positive integer number 𝐿 representing the length of the period.

The second line contains one positive integer number 𝐴.

Output:

One positive integer number representing the smallest positive number that is periodic with

length 𝐿 and is greater than 𝐴.

Constraints:

• 1 ≤ 𝐿 ≤ 105

• 1 ≤ 𝐴 ≤ 10100 000

Example input 1:

3

123456

Example output 1:

124124

MDCS – Bubble Cup 2019 17

Example input 2:

3

12345

Example output 2:

100100

Explanation

In the first example 124124 is the smallest number greater than 123456 that can be written

with period 𝐿 = 3 (𝑃 = 124).

In the second example 100100 is the smallest number greater than 12345 with period 𝐿 =
 3 (𝑃 = 100)

Time and memory limit: 0.5s / 256 MB

18 MDCS – Bubble Cup 2019

Solution and analysis:

Let 𝑁 be the number of digits of the given number 𝐴. Solution to this problem can be divided

into 6 different cases that need to be covered:

1) 𝑳 > 𝑵

In this case where 𝐿 is greater than 𝑁 we don’t have enough digits in 𝐴 for given

period so we have to append digits to satisfy minimal length 𝐿. The solution is to

generate smallest number with 𝐿 digits. (E.g. for 𝐿 = 3 solution is 100)

2) 𝑵 % 𝑳 ≠ 𝟎

For this situation where we have that 𝑁 is not divisible by 𝐿, the number 𝐴 cannot be

partitioned into smaller numbers of length 𝐿 (We cannot represent 𝐴 as 𝐴 =

 𝑋𝑌𝑍 … where all the parts have same the length of 𝐿). Solution for this case is similar

to previous one, we first have to append digits to 𝐴 so that 𝑁 becomes divisible by 𝐿.

Now that we can partition 𝐴 into
𝑁

𝐿
 equal parts of length 𝐿 we just take smallest

numbers with length 𝐿 for each part. (E.g. for 𝑁 = 4 and 𝐿 = 3 we first append

2 digits so that we get 𝑁 = 6 which is divisible by 𝐿 and then we take smallest

number of length 𝐿 which is 100 and append it
𝑁

𝐿
 times so the solution is 100100)

3) 𝑵 % 𝑳 = 𝟎

If 𝑁 is divisible by 𝐿 number 𝐴 can be represented as 𝐴 = 𝑋𝑌𝑍 … where 𝑋, 𝑌 and 𝑍

are parts of number 𝐴 with length 𝐿. So we can partition number 𝐴 into
𝑁

𝐿
 parts of

length 𝐿. Lets denote first part as 𝑋. We have 3 subcases to take into consideration:

1) All digits of 𝑨 are 9s :

In this case we don’t have larger number with equal number of digits so we

must append one more part of length 𝐿 to number. We do this to ensure that

number of digits stays divisible by 𝐿 . To make it smallest larger than 𝐴 for

each part we take smallest number with length 𝐿. (E.g. for 𝐴 = 999999 and

𝐿 = 3 solution is 100100100)

2) All parts are equal or first different part from 𝑿 is larger than 𝑿:

We iterate through all parts starting from second (from left to right) and

compare it with 𝑋 (first part). If all parts are equal with 𝑋 or first different part

is larger than 𝑋 solution is to increase 𝑋 by 1. By doing this we reset all parts

to the right from 𝑋 (parts which digits have smaller weight) to 0 so we can

adjust them to 𝑋 + 1 also. Final solution is 𝑋 + 1 repeated
𝑁

𝐿
 times.

3) First different part from 𝑿 is smaller than 𝑿:

Lets denote that first smaller part with 𝑌. Now if we increase 𝑌 to be equal

with 𝑋 we reset all parts that are right from 𝑌 to 0. By doing this we can just

adjust all parts to be equal to 𝑋 and that’s final solution to this case.

MDCS – Bubble Cup 2019 19

Problem C: Workout plan

Premier League and Rising Stars

Author:

Aleksandar Damjanović

Implementation and analysis:

Aleksandar Damjanović

Predrag Ilkić

Statement:

Alan decided to get in shape for the summer, so he created a precise workout plan to follow.

His plan is to go to a different gym every day during the next 𝑁 days and lift 𝑋[𝑖] grams on

day 𝑖. In order to improve his workout performance at the gym, he can buy exactly one pre-

workout drink at the gym he is currently in and it will improve his performance by 𝐴 grams

permanently and immediately. In different gyms these pre-workout drinks can cost different

amounts 𝐶[𝑖] because of the taste and the gym’s location but its permanent workout gains

are the same.

Before the first day of starting his workout plan, Alan knows he can lift a maximum of 𝐾 grams.

Help Alan spend a minimum total amount of money in order to reach his workout plan. If there

is no way for him to complete his workout plan successfully output −1.

Input:

The first one contains two integer numbers, integers 𝑁 and 𝐾 – representing the number of

days in the workout plan and how many grams he can lift before starting his workout plan

respectively.

The second line contains 𝑁 integer numbers 𝑋[𝑖] separated by a single space representing how

many grams Alan wants to lift on day 𝑖.

The third line contains one integer number 𝐴 representing permanent performance gains from

a single drink.

The last line contains 𝑁 integer numbers 𝐶[𝑖], representing the cost of the performance

booster drink at the gym he visits on day 𝑖.

Output:

One integer number representing the minimal amount of money spent to finish his workout

plan. If he cannot finish his workout plan, output −𝟏.

20 MDCS – Bubble Cup 2019

Constraints:

• 1 ≤ 𝑁 ≤ 105

• 1 ≤ 𝐾 ≤ 105

• 1 ≤ 𝑋[𝑖] ≤ 109

• 1 ≤ 𝐶[𝑖] ≤ 109

• 1 ≤ 𝐴 ≤ 109

Example input 1:

5 10000

10000 30000 30000 40000 20000

20000

5 2 8 3 6

Example output 1:

5

Explanation 1:

After buying drinks on days 2 and 4 Alan can finish his workout plan.

Example input 2:

5 10000

10000 40000 30000 30000 20000

10000

5 2 8 3 6

Example output 2 :

-1

Explanation 2:

Alan cannot lift 40000 grams on day 2.

Time and memory limit: 0.5s / 256 MB

MDCS – Bubble Cup 2019 21

Solution and analysis:

On day 𝑖 Alan will be able to accomplish his goal if 𝑋𝑖 ≤ 𝐾𝑐𝑢𝑟 + 𝐴 ∗ 𝑑, where 𝐾𝑐𝑢𝑟 is the

current weight he can lift and 𝑑 is the number of additional pre-workout drinks he takes before

the 𝑖𝑡ℎ day. Based on this, we can formulate greedy algorithm to solve the problem.

The solution is to iterate for each day while maintaining binary min-heap storing pre-workout

drink prices. When current performance (𝐾𝑐𝑢𝑟) is not enough to accomplish the goal for a

given day, calculate the minimum number of drinks he needs to take (𝑑) in order to be able to

lift 𝑋𝑖. To minimize amount of money spent, we take 𝑑 smallest prices from the min-heap and

add them to the result. Now we need to update current performance (𝐾𝑐𝑢𝑟 = 𝐾𝑐𝑢𝑟 + 𝐴 ∗ 𝑑)

and continue to iterate. In case there are not enough items in the heap, output −1. Time

complexity for this is 𝑂(𝑛 ∗ log 𝑛).

22 MDCS – Bubble Cup 2019

Problem D: The Light Square

Premier League and Rising Stars

Author:

Kosta Grujčić

Implementation and analysis:

Kosta Grujčić

Aleksandar Damjanović

Statement:

For her birthday Alice received an interesting gift from her friends – The Light Square. The Light

Square game is played on an 𝑁 𝑥 𝑁 lightbulbs square board with a magical lightbulb bar of

size 𝑁 𝑥 1 that has magical properties. At the start of the game some lights on the square

board and magical bar are turned on. The goal of the game is to transform the starting light

square board pattern into some other pattern using the magical bar without rotating the

square board. The magical bar works as follows:

1. It can be placed on any row or column

2. The orientation of the magical lightbulb bar must be left to right or top to bottom for

it to keep its magical properties

3. The entire bar needs to be fully placed on a board

4. The lights of the magical bar never change

5. If the lightbulb light on the magical bar is the same as the light of the square it is

placed on it will switch the light on the square board off, otherwise it will switch the

light on

6. The magical bar can be used an infinite number of times

Alice has a hard time transforming her square board into the pattern Bob gave her. Can you

help her transform the board or let her know it is impossible? If there are multiple solutions

print any.

Input:

The first line contains one positive integer number 𝑁 representing the size of the square board.

The next 𝑁 lines are strings of size 𝑁 consisting of 1’s and 0’s representing the initial state of

the square board starting from the top row. If the character in a string is 1 it means the light

is turned on, otherwise it is off.

The next 𝑁 lines are strings of size 𝑁 consisting of 1’s and 0’s representing the desired state

of the square board starting from the top row that was given to Alice by Bob.

The last line is one string of size 𝑁 consisting of 1’s and 0’s representing the pattern of the

magical bar in a left to right order.

MDCS – Bubble Cup 2019 23

Output:

Transform the instructions for Alice in order to transform the square board into the pattern

Bob gave her. The first line of the output contains an integer number 0 ≤ 𝑀 ≤ 105

representing the number of times Alice will need to apply the magical bar.

The next 𝑀 lines are of the form “col 𝑿” or “row 𝑿”, where 𝑿 is 0-based index of the matrix,

meaning the magical bar should be applied to either row 𝑿 or column 𝑿.

If there is no solution, print only -1. In case of multiple solutions print any correct one.

Constraints:

• 1 ≤ 𝑁 ≤ 2 ⋅ 103

Example input 1:

2

10

00

00

00

10

Example output 1:

1

row 0

Explanation 1:

You can apply magical bar on the first row or column. Valid orientations for magical bar to

keep its magical properties are:

1 0 and 1

 0

Example input 2:

2

11

11

00

01

11

Example output 2:

-1

Explanation 2:

For the second example it is not possible to transform the board into the pattern Bob wants.

Time and memory limit: 2.0s / 256 MB

24 MDCS – Bubble Cup 2019

Solution and analysis:

Considering that bulbs can be in one of two states and how magical bar operations, which we

are allowed to apply, work, we can deduce that such operations are nothing else but bitwise

𝑋𝑂𝑅 on rows or columns with the given number 𝑋.

The first obvious observation is that only parity matters, so we'll apply operations not more

than once per row and column.

Let's take an arbitrary entry in the first matrix and its' corresponding entry in the second – 𝑎𝑖,𝑗

and 𝑏𝑖,𝑗 . In order to make them equal, we only have to check 𝑖-th and 𝑗-th digits in the number

𝑥, since only these two digits can affect the value in 𝑎𝑖,𝑗 . There are several cases to consider:

1. 𝑎𝑖,𝑗 = 𝑏𝑖,𝑗

a. 𝑥𝑖 = 1 and 𝑥𝑗=1

b. 𝑥𝑖 = 1 and 𝑥𝑗 = 0

c. 𝑥𝑖 = 0 and 𝑥𝑗 = 1

d. 𝑥𝑖 = 0 and 𝑥𝑗 = 0

2. 𝑎𝑖,𝑗 ≠ 𝑏𝑖,𝑗

a. …

Now we'll simplify the first case when 𝑎𝑖,𝑗 = 𝑏𝑖,𝑗. Two corresponding entries are equal, so

there's nothing to change. However, if 𝑥𝑖 = 0 then 𝑋𝑂𝑅 won't change anything. Other cases

are similar – if both 𝑥𝑖 and 𝑥𝑗 are equal to 1, we can choose to 𝑋𝑂𝑅 both 𝑖-th row and 𝑗-th

column or to not 𝑋𝑂𝑅 any of them. If we write the first case in a logic expression we'll get

something like this:

[(𝑟𝑖 ⋀ 𝑐𝑗) ⋁ (¬𝑟𝑖 ⋀ ¬𝑐𝑗)] ⋀ [(𝑟𝑖 ⋀ ¬𝑐𝑗) ⋁ (¬𝑟𝑖 ⋀ ¬𝑐𝑗)] ⋀ [(¬𝑟𝑖 ⋀ ¬𝑐𝑗) ⋁ (¬𝑟𝑖 ⋀ 𝑐𝑗)]

where 𝑟𝑖 and 𝑐𝑗 are logical variables assigned for 𝑖-th row and 𝑗-th respectively. If 𝑟𝑖 is true,

then we will 𝑋𝑂𝑅 𝑖-th row with 𝑥. Similar for 𝑐𝑗 . One should note that disjunctions above are

in fact exclusive.

We can further transform such an expression using well-known indetities in order to achieve

full conjunctive normal form. In the following case we'll end up with:

(¬𝑟𝑖 ⋁ 𝑐𝑗) ⋀ (𝑟𝑖 ⋁ ¬𝑐𝑗) ⋀ ¬𝑐𝑗 ⋀ ¬𝑟𝑖 .

Such form can be used to solve the problem as a two satisfability problem, that is known to

be solvable in linear time.

For every disjunction of the form (𝑝 ∨ 𝑞) we'll add two directed edges (¬𝑝, 𝑞) and (¬𝑞, 𝑝). That

will result in 2 ⋅ 𝑁 nodes for both rows and columns. If 𝑝 and ¬𝑝 happen to be in the same

strongly connected component, then there is no solution. Otherwise, we can find topological

sort in the condensation graph of our initial graph and based on the order of strongly

MDCS – Bubble Cup 2019 25

connected components assign values to each of the logical variables – if 𝑝 is before ¬𝑝 then

𝑝 should be true.

Overal time complexity is 𝑂(𝑁2) as well as space complexity.

26 MDCS – Bubble Cup 2019

Problem E: BubbleReactor

Premier League and Rising Stars

Author:

Kosta Bizetić

Implementation and analysis:

Kosta Bizetić

Miloš Šuković

Statement:

You are in charge of the BubbleReactor. It consists of 𝑁 BubbleCores connected with 𝑁

lines of electrical wiring. Each electrical wiring connects two distinct BubbleCores. There are no

BubbleCores connected with more than one line of electrical wiring.

Your task is to start the BubbleReactor by starting each BubbleCore. In order for a BubbleCore

to be started it needs to be receiving power from a directly connected BubbleCore which is

already started. However, you can kick-start one BubbleCore manually without needing power.

It is guaranteed that all BubbleCores can be started.

Before the BubbleCore boot up procedure its potential is calculated as the number of

BubbleCores it can power on (the number of inactive BubbleCores which are connected to it

directly or with any number of inactive BubbleCores in between, itself included)

Start the BubbleReactor so that the sum of all BubbleCores' potentials is maximum.

Input:

The first line contains one integer 𝑁, the number of BubbleCores.

The following 𝑁 lines contain two integers 𝑈, 𝑉 denoting that there exists electrical wiring

between BubbleCores 𝑈 and 𝑉.

Output:

Single integer, the maximum sum of all BubbleCores' potentials.

Constraints:

• 1 ≤ 𝑁 ≤ 15000

• 1 ≤ 𝑈 ≠ 𝑉 ≤ 𝑁

MDCS – Bubble Cup 2019 27

Example input:

10

0 1

0 3

0 4

0 9

1 2

2 3

2 7

4 5

4 6

7 8

Example output:

51

Explanation:

If we start by kickstarting BubbleCore 8 and then turning on cores 7, 2, 1, 3, 0, 9, 4, 5, 6 in that

order we get potentials 10 + 9 + 8 + 7 + 6 + 5 + 1 + 3 + 1 + 1 = 51

Time and memory limit: 1.5s / 256 MB

28 MDCS – Bubble Cup 2019

Solution and analysis:

From the formulation, we can conclude that the BubbleReactor is a modification of the tree.

It's a tree with additional edge (it's connected to the graph with exactly one cycle).

We can find the cycle using DFS. Let's focus on the cycle.

Let's look at trees 𝑇1, 𝑇2 , . . . 𝑇𝑘 and try solving a problem on a single tree. For one tree, the sum

of node potentials is uniquely determined by selection of the starting node. When we pick a

node, it will break the tree to K components - one for each edge from the node core. In each

component, we know which node we have to pick next, when we decide to pick from that

component. We can choose from which component to pick first, but that will not impact the

sum of potentials - we will just add the same potentials in different order.

Now, how can we find the node which will generate the maximal sum of potentials? We can

calculate the sum of potentials when starting from a randomly chosen node. We can do that

using DFS, by tracking the number of nodes in every subtree created by removing the edge

and potential generated in each subtree which we calculated during the process of powering

the whole tree.

After we've calculated the sum of potentials for the fixed starting node, we can calculate the

sum of potentials when starting from any adjacent node.

We want to track two values for each edge/node (𝑒, 𝑣):

𝑛𝑜𝑑𝑒_𝑐𝑛𝑡 – The number of nodes in the subtree created by removing the edge. We are

interested in the subtree which contains the node 𝑣.

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑖𝑛_𝑠𝑢𝑏𝑡𝑒𝑒 – Te potential which will be generated by that same subtree if we entered

𝑣 through the edge 𝑒.

MDCS – Bubble Cup 2019 29

If we calculated the sum of potentials for 𝑣0, and we want to calculate for 𝑣1 (the edge which

we are focusing on is 𝑣0 → 𝑣1).

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑖𝑛_𝑠𝑢𝑏𝑡𝑒𝑒(𝑣1 → 𝑣0) =

= 𝑠𝑢𝑚_𝑜𝑓_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠(𝑣0) − 𝑁 − 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑖𝑛_𝑠𝑢𝑏𝑡𝑒𝑒(𝑣0 → 𝑣1) + 𝑛𝑜𝑑𝑒_𝑐𝑛𝑡(𝑣1 → 𝑣0)

𝑠𝑢𝑚_𝑜𝑓_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠(𝑣1) = 𝑁 + ∑ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑖𝑛_𝑠𝑢𝑏𝑡𝑒𝑒(𝑣1 → 𝑣)

𝑣∶𝑎𝑑𝑗(𝑣1)

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑖𝑛_𝑠𝑢𝑏𝑡𝑒𝑒(𝑣1−> 𝑣) should be calculated before or during the evaluation of

𝑠𝑢𝑚_𝑜𝑓_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠(𝑣0).

Let's go back to the cycle. For node 𝑐 on the cycle, we have two options: we will enter it from

another node on cycle or from the tree which coresponds to that node (tree which is "hanging

from the cycle" and 𝑐 is root of the tree). Our goal is to calculate overall maximal sum of

potentials in case we started from subtree 𝑇𝑖 with root 𝑐𝑖 .

Let's say that we started from subtree 𝑇 with root 𝑐. While powering the graph, at one point,

we are in 𝑐. We should go through the cycle, but we have to choose in which order we want

to consume the values on the cycle, since the order can impact the overall potential. We can

calculate the optimal way for traversing the cycle from all nodes in the cycle in 𝑁2 using DP.

For node 𝑐1, we must see in which order we want to traverse 𝑐2 , 𝑐3 . . 𝑐𝑘 , which will be 𝑑𝑝[𝑐2, 𝑐𝑘].

𝑑𝑝[𝑐𝑖 , 𝑐𝑖] = 𝑛𝑜𝑑𝑒_𝑐𝑛𝑡(𝑇𝑖)

𝑑𝑝[𝑐𝑖 , 𝑐𝑗] = 𝑚𝑎𝑥 (∑ 𝑛𝑜𝑑𝑒_𝑐𝑛𝑡(𝑇𝑙) +

𝑗

𝑙=𝑖

𝑑𝑝[𝑛𝑒𝑥𝑡(𝑐𝑖), 𝑐𝑗], ∑ 𝑛𝑜𝑑𝑒_𝑐𝑛𝑡(𝑇𝑙) +

𝑗

𝑙=𝑖

𝑑𝑝[𝑐𝑖 , 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠(𝑐𝑗)])

We can easily calculate the potential 𝑃𝑖 which we will get from the coresponding tree after

entering from the cycle. So, we know the overall potential which we will get after entering 𝑐

with the potential in subtree 𝑃 is: 𝑑𝑝[𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠(𝑐), 𝑛𝑒𝑥𝑡(𝑐)] − 𝑃 + ∑ 𝑃𝑖
𝑘
𝑖=1 .

By adding 𝑁 + 𝑃 to that value, we get the overall sum of potentials in case we started graph

powering from the 𝑐. Now we can calculate the sum of potentials for every node in subtree T

using the algorithm for the tree, and find the maximum.

30 MDCS – Bubble Cup 2019

Problem F: Function Composition

Premier League and Rising Stars

Author:

Aleksandar Damjanović

Implementation and analysis:

Aleksa Milisavljević

Kosta Grujčić

Statement:

We are not going to bother you with another generic story when Alice finds about an array or

when Alice and Bob play some game. This time you’ll get a simple, plain text.

First, let us define several things. We define function 𝐹 on the array A such that 𝐹(𝑖, 1) = 𝐴[𝑖]

and 𝐹(𝑖, 𝑚) = 𝐴[𝐹(𝑖, 𝑚 − 1)], 𝑚 > 1. In other words, function 𝐹(𝑖, 𝑚) represents composition

𝐴[… 𝐴[𝑖]] applied 𝑚 times.

You are given an array of length 𝑁 with non-negative integers. You are expected to give an

answer on 𝑄 queries. Each query consists of two numbers – 𝑚 and 𝑦. For each query determine

how many 𝑥 exist such that 𝐹(𝑥, 𝑚) = 𝑦.

Input:

The first line contains one integer 𝑁 – the size of the array 𝐴.

The next line contains 𝑁 non-negative integers – the array 𝐴 itself.

The next line contains one integer 𝑄 – the number of queries.

Each of the next 𝑄 lines contain two integers 𝑚 and 𝑦 (in this order).

Output:

Output exactly 𝑄 lines with a single integer in each that represent the solution. Output the

solutions in the order the queries were asked in.

Constraints:

• 1 ≤ 𝑁 ≤ 2 ⋅ 105

• 1 ≤ 𝐴𝑖 ≤ 𝑁

• 1 ≤ 𝑄 ≤ 105

• 1 ≤ 𝑚𝑖 ≤ 1018

• 1 ≤ 𝑦𝑖 ≤ 𝑁

MDCS – Bubble Cup 2019 31

Example input:

10

2 3 1 5 6 4 2 10 7 7

5

10 1

5 7

10 6

1 1

10 8

Example output:

3

0

1

1

0

Explanation:

For first query we can notice that 𝐹(3, 10) = 1, 𝐹(9, 10) = 1 and 𝐹(10, 10) = 1. For second

query no 𝑥 satisfies condition 𝐹(𝑥, 5) = 7. For third query 𝐹(5, 10) = 6 holds. For fourth query

𝐹(3, 1) = 1. For fifth query no 𝑥 satisfies condition 𝐹(𝑥, 10) = 8.

Time and memory limit: 1.0s / 256 MB

32 MDCS – Bubble Cup 2019

Solution and analysis:

We should first notice that this problem can be modeled as a graph theory problem. We define

a graph in which there exists a directed edge from 𝑥 to 𝑦 iff 𝑦 = 𝐴[𝑥]. Now we can make a few

observations about this graph:

1. Every connected component can be observed independentely,

2. Each node has exactly one outgoing edge,

3. Queries now ask for the number of 𝑥 such that their 𝑚𝑡ℎ ancestor is 𝑦,

4. This graph has exactly one cycle per connected component.

When answering to given queries we have two cases:

1. 𝒚 is the node which doesn't belong to any cycle. In this case we actually have to find

the number of descendants of 𝑦 on depth 𝑚 from 𝑦. We'll do this offline in the DFS

traversal of the forest we get when we remove the edges that belong to the cycle. At

each point we remember how many nodes exist on certain depth. When we first enter

node the 𝑦, we remember how many nodes we have discovered so far on the depth 𝑚

from the 𝑦. When we finish processing the 𝑦, we can find out how many additional

nodes we have discovered on the corresponding depth, based on the previously saved

data.

2. 𝒚 is the node on the cycle. This case is a bit trickier. We'll define an arbitrary node

𝑧 on the cycle as the first node. Let the distance from the 𝑦 to the 𝑧 be 𝑡 and the length

of the cycle be 𝑙. If we had a query with the distance 𝑚 on 𝑦, we could now analyze the

query for 𝑚 + 𝑡 on the node 𝑧. We can easily answer the modified query by observing

a tree we get when we remove the outgoing edge from the 𝑧. We get the tree in which

a node on the depth 𝑑 is an answer to the query iff 𝑑 ≥ 𝑚 + 𝑡 ∧ 𝑑 ≡ 𝑚 + 𝑡 (𝑚𝑜𝑑 𝑙).

All nodes which could be the answer for the modified query, but not for the original

one are nodes which are on the distance 𝑚 + 𝑡 from 𝑧, but the path from them to the

𝑧 doesn't pass through the 𝑦. This can be answered in a similar manner as in the first

case.

MDCS – Bubble Cup 2019 33

Problem G: Jumping Transformers

Premier League and Rising Stars

Author:

Nikola Nedeljković

Implementation and analysis:

Nikola Nedeljković

Slavko Ivanović

Statement:

You, the mighty Blackout, are standing in the upper-left (0, 0) corner of 𝑁𝑥𝑀 matrix. You must

move either right or down each second.

There are 𝐾 transformers jumping around the matrix in the following way. Each transformer

starts jumping from position (𝑥, 𝑦), at time 𝑡, and jumps to the next position each second. The

x-axes grows downwards, and y-axes grows to the right. The order of jumping positions is

defined as {(𝑥, 𝑦), (𝑥 + 𝑑, 𝑦 − 𝑑), (𝑥 + 𝑑, 𝑦), (𝑥, 𝑦 + 𝑑)}, and is periodic.

You want to arrive to the bottom-right corner (𝑁 − 1, 𝑀 − 1), while slaying transformers and

losing the least possible amount of energy. When you meet the transformer (or more of them)

in the matrix field, you must kill them all, and you lose the sum of the energy amounts required

to kill each transformer.

After the transformer is killed, he of course stops jumping, falls into the abyss and leaves the

matrix world. Output the minimum possible amount of energy wasted.

Input:

In the first line, integers 𝑁, 𝑀, representing the size of the matrix, and 𝐾, the number of jumping

transformers.

In the next 𝐾 lines, for each transformer, the numbers 𝑥, 𝑦, 𝑑, 𝑡, and 𝑒, represent the starting

coordinates of the transformer, the jumping positions distance in the pattern described above,

the time when the transformer starts jumping, and the energy required to kill it.

Output:

Print a single integer, the minimum possible amount of energy wasted, for Blackout to arrive

at the bottom-right corner.

34 MDCS – Bubble Cup 2019

Constraints:

• 1 ≤ 𝑁, 𝑀 ≤ 500

• 0 ≤ 𝐾 ≤ 5 ∙ 105

• 0 ≤ 𝑡 ≤ 𝑁 + 𝑀 − 2

• 0 ≤ 𝑒 ≤ 109

• 𝑑 ≥ 1

• It is guaranteed that all 4 of the jumping points of the transformers are within the

matrix coordinates

Example input:

3 3 5

0 1 1 0 7

1 1 1 0 10

1 1 1 1 2

1 1 1 2 2

0 1 1 2 3

Example output:

9

Explanation:

If Blackout takes the path from (0, 0) to (2, 0), and then from (2, 0) to (2, 2) he will need to kill

the first and third transformer for a total energy cost of 9. There exists no path with less energy

value.

Time and memory limit: 4.0s / 128 MB

MDCS – Bubble Cup 2019 35

Solution and analysis:

Every transformer is defined with (𝑥, 𝑦, 𝑡, 𝑑, 𝑒), where 𝑡 is starting time, 𝑑 – the characteristic

length for jump lengths (the length between {𝑃0, 𝑃2}, {𝑃1, 𝑃2}, {𝑃0, 𝑃3} on the picture below)

and 𝑒 the cost of destroying a transformer.

If we define 𝑄 as 𝑄 = 𝑥 + 𝑦, it represents the position/length/time that you travelled on the

matrix when you are in point (x, y). Now we can define the requirement for the meeting

between Blackout and the transformer (meetup point) on every of the transformer’s positions

(𝑃0, 𝑃1, 𝑃2, 𝑃3). It is:

𝑃0: 𝑄 = 𝑇 𝑚𝑜𝑑 4, 𝑄 >= 𝑇

𝑃1: 𝑄 = 𝑇 + 1 𝑚𝑜𝑑 4, 𝑄 >= 𝑇 + 1

𝑃2: 𝑄 + 𝑑 = 𝑇 + 2 𝑚𝑜𝑑 4, 𝑄 + 𝑑 >= 𝑇 + 2

𝑃3: 𝑄 + 𝑑 = 𝑇 + 3 𝑚𝑜𝑑 4, 𝑄 + 𝑑 >= 𝑇 + 3

Now we could populate the matrix with all of the meetup points with all the transformers with

their cost of destroying and find the best road on that matrix. But it is important to note that

Blackout could meet with the transformer zero, once or “two times” (the second meetup

actually is imaginary since Blackout destroyed the transformer on the first one). So, the cost of

the second meetup point of the same transformer is zero. It is important to notice that both

meetup points for all situations to have two meetups with the same transformer, have one

coordinate constant. These are such situations: 𝑃1 and 𝑃2; 𝑃0 and 𝑃2; 𝑃0 and 𝑃3.

All of the above allows us to find the best route and the minimum cost solution using dynamic

programing. To represent this minimum cost we have matrix 𝑑𝑝[𝑥][𝑦][𝑘][𝑑𝑖𝑟], where 𝑥, 𝑦

represents the position in the matrix, 𝑘 – represents the column/row on which Blackout gets

into the current row/column and dir represents the direction from which Blackout entered the

current position (𝑥, 𝑦), from 0-up or from 1-left.

36 MDCS – Bubble Cup 2019

The recursion for such defined 𝑑𝑝 is:

𝑑𝑝[𝑖][𝑗][𝑘][0]

= 𝑑𝑝[𝑖 − 1][𝑗][𝑘 − 1][0]

+ 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑖𝑛𝑔 𝑎𝑙𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 (𝑖, 𝑗) 𝑚𝑒𝑒𝑡𝑢𝑝 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑

 𝑖𝑛 𝑠𝑜𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑘 𝑠𝑡𝑒𝑝𝑠 𝑢𝑝 (𝑜𝑟 𝑙𝑒𝑓𝑡).

So the final solution is 𝑚𝑖𝑛(𝑑𝑝[𝑁 − 1][𝑀 − 1][0][0], 𝑑𝑝[𝑁 − 1][𝑀 − 1][0][1]) .

Time complexity 𝑂(𝑛3). Memory complexity: 𝑂(𝑛2) with dp memory optimizations.

MDCS – Bubble Cup 2019 37

Problem H: Guarding warehouses

Premier League and Rising Stars

Author:

Nikola Smiljković

Implementation and analysis:

Slavko Ivanović

Nikola Smiljković

Statement:

Bob Bubblestrong just got a new job as a security guard. Bob is now responsible for the safety

of a collection of warehouses, each containing the most valuable Bubble Cup assets - the high-

quality bubbles. His task is to detect thieves inside the warehouses and call the police.

Looking from the sky, each warehouse has the shape of a convex polygon. The walls of no

two warehouses intersect, and of course, none of the warehouses are built inside of another

warehouse.

Little did the Bubble Cup bosses know how lazy Bob is and that he enjoys watching soap

operas (he heard they are full of bubbles) from the coziness of his office. Instead of going from

one warehouse to another to check if the warehouses are secured, the plan Bob has is to

monitor all the warehouses from the comfort of his office using the special X-ray goggles. The

goggles have an infinite range, so a thief in any of the warehouses could easily be spotted.

However, the goggles promptly broke and the X-rays are now strong only enough to let Bob

see through a single wall. Now, Bob would really appreciate if you could help him find out

what the total area inside of the warehouses monitored by the broken goggles is, so that he

could know how much of the warehouses area he needs to monitor in person.

Input:

The first line contains one integer 𝑁 – the number of warehouses.

The next 𝑁 lines describe the warehouses.

The first number of the line is integer 𝑐𝑖 – the number corners in the 𝑖𝑡ℎ warehouse, followed

by 𝑐𝑖 pairs of integers. The 𝑗𝑡ℎ pair is (𝑥𝑗, 𝑦𝑗) – the coordinates of the 𝑗𝑡ℎ corner. The corners

are listed in the clockwise order.

Bob’s office is positioned at the point with the coordinates (0, 0). The office is not positioned

inside any of the warehouses.

Output:

Print a single line containing a single decimal number accurate to at least four decimal places

– the total area of the warehouses Bob can monitor using the broken X-ray goggles.

38 MDCS – Bubble Cup 2019

Constraints:

• 1 ≤ 𝑁 ≤ 104

• 3 ≤ 𝑐𝑖 ≤ 104

• ∑ 𝑐𝑖
𝑁
𝑖=1 ≤ 5 ∙ 104

• |𝑥𝑗|, |𝑦𝑗| ≤ 3 ∙ 104

Example input:

5

4 1 1 1 3 3 3 3 1

4 4 3 6 2 6 0 4 0

6 -5 3 -4 4 -3 4 -2 3 -3 2 -4 2

3 0 -1 1 -3 -1 -3

4 1 -4 1 -6 -1 -6 -1 -4

Example output:

13.333333333333

Explanation:

Areas monitored by the X-ray goggles are colored green and the areas not monitored by the

goggles are colored red.

The warehouses 𝐴𝐵𝐶𝐷, 𝐼𝐽𝐾 and 𝐿𝑀𝑁𝑂𝑃𝑄 are completely monitored using the googles.

The warehouse 𝐸𝐹𝐺𝐻 is partially monitored using the goggles: part 𝐸𝐹𝑊 is not monitored

because to monitor each point inside it, the X-rays must go through two walls of warehouse

𝐴𝐵𝐶𝐷.

MDCS – Bubble Cup 2019 39

The warehouse 𝑅𝑈𝑇𝑆 is not monitored from Bob's office, because there are two walls of the

warehouse 𝐼𝐽𝐾 between Bob’s office and each point in 𝑅𝑈𝑇𝑆.

The total area monitored by the goggles is 𝑃 = 𝑃𝐴𝐵𝐶𝐷 + 𝑃𝐹𝐺𝐻𝑊 + 𝑃𝐼𝐽𝐾 + 𝑃𝐿𝑀𝑁𝑂𝑃𝑄 = 4 +

 3.333333333333 + 2 + 4 = 13.333333333333.

Time and memory limit: 1.0s / 256 MB

40 MDCS – Bubble Cup 2019

Solution and analysis:

The main idea for solving the problem is doing angular sweep line. Simply, Bob Bubblestrong

will have to go through all the points of all polygons ordered by an angle that point makes

with the 𝑂𝑥 axis and update several data structures to calculate the observable area.

The ordered set of polygons that are intersected with the current position of the sweep line

(the red line in the pictures below) should be maintained at every step. The first polygon in the

set should be the one nearest to Bob (which is stationed in point 𝑂). It is easy to prove that

two polygons cannot change the relative order in the set based on the sweep line position.

For comparison between two polygons for the current sweep line position for example we

could use the distance between 𝑂 and the intersection point (points 𝐵 and 𝐽 in the picture

below) between the sweep line (the red line on the picture) and the line made by polygon’s

points which made the smallest and the largest angle with the 𝑂𝑥 axis.

We move the sweep line from one point to another in increasing angle it makes with the 𝑂𝑥

axis. When the sweep line visits each of the points, we update last visited points for that

polygon. Total area of visible polygons should be updated only if:

a) the sweep line visits the vertex of the nearest polygon – we should add the area of the

triangle the current point makes with the last two visited points of the same polygon,

one on the visible part of the convex hull and one of the invisible part of the convex

hull,

b) the current point is the first visited point of a new nearest polygon – we should add

the area of the triangle or quadrilateral on the next visible polygon (the points 𝐴 or 𝐵

on the second image below).

There are several possible situations demonstrated in the pictures below. The green areas are

added to sum up the observable warehouses areas after noted sweep line steps.

Based on all of the above, the overall complexity is 𝑂(𝑛 log 𝑛).

MDCS – Bubble Cup 2019 41

42 MDCS – Bubble Cup 2019

Problem I: Xor Spanning Tree

Premier League and Rising Stars

Author:

Aleksa Milisavljević

Implementation and analysis:

Aleksa Milisavljević

Janko Šušteršič

Statement:

In a galaxy far, far away is the ancient interplanetary republic of Bubbleland, consisting of 𝑁

planets. Between them, there are 𝑀 bidirectional wormholes, each connecting a pair of planets.

Bubbleland is a very centralized republic, with a capital planet Whiteplanet, from which any

another planet can be reached using these wormholes. It is also guaranteed that no wormhole

connects the planet to itself and that no two different wormholes connect the same pair of

planets.

We call a path that begins at one planet, visits other planets and each of them at most once

and returns to the starting point a tour. Interplanetary Safety Regulations guarantee that each

planet belongs to at most one tour and that there are at most 42 tours.

After many eons of usage, wormholes need to be repaired and each wormhole has the cost

𝑊𝑖 which needs to be payed for reparation. Unfortunately, the Senate of Bubbleland is short

on budget. Therefore, they have decided only to fix as many wormholes as they need in order

to have all the planets reachable from the capital and to pay as little money as they have to

for this repair. However, the way in which the Senate calculates the cost is different. The cost

of the set of reparations is binary xor of costs of each individual reparation, that is if reparations

to be made have costs 𝐴1 , 𝐴2, … , 𝐴𝑘 , the cost of the entire set is 𝐴1 ⊕ 𝐴2 ⊕ … ⊕ 𝐴𝑘 .

Now the Senate would like to know how much money do they have to pay and also the number

of different ways to achieve cost modulo 1000000007.

Input:

The first line of input contains two numbers 𝑁, the number of planets and 𝑀, the number of

wormholes.

The following 𝑀 lines contain three numbers 𝑈𝑖 , 𝑉𝑖 and 𝑊𝑖, meaning that there exists a

wormhole connecting the planets 𝑈𝑖 and 𝑉𝑖, with the repair cost of 𝑊𝑖.

Output:

Output two numbers, the cost of entire reparation and the number of different valid

reparations with that cost modulo 1000000007.

MDCS – Bubble Cup 2019 43

Constraints:

• 1 ≤ 𝑁 ≤ 100 000

• 1 ≤ 𝑀 ≤ 100 041

• 1 ≤ 𝑈𝒊 ≠ 𝑉𝑖 ≤ 𝑁

• 0 ≤ 𝑊𝑖 ≤ 100 000

Example input:

6 6

4 1 5

5 2 1

6 3 2

1 2 6

1 3 3

2 3 4

Example output:

1 1

Explanation:

We can repair wormholes 1, 2, 3, 5 and 6, paying 5 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ 4 = 1, one can check that

this is the cheapest repair in which all of the planets are connected and the only valid repair

with that cost.

Time and memory limit: 2.0s / 128 MB

44 MDCS – Bubble Cup 2019

Solution and analysis:

We should first notice that there exists an upper bound of any solution cost as it is computed

as binary xor of constrained numbers. Let us declare this minimum upper bound as 𝐴, (𝐴 =

217). The goal of this task is to compute minimal total cost of repairs as well as the number of

different ways to achieve this price modulo 𝑚 = 1000000007. This problem can be viewed as

finding such edges of a connected graph which we can remove to create a minimum spanning

tree so that the binary xor of weights of remaining edges gives minimal possible number. We

can calculate binary xor of remaining edges as xor of weights of all edges and the ones we are

removing.

We can store number of ways to remove such edges for every possible cost in an array. Length

of this array will be 𝐴. Given that the graph has maximum of 𝑘 = 42 cycles and that no node

belongs to more than one cycle, we can find all cycles simply by using Depth First Search, for

example. For each cycle we know we have to exclude exactly one edge so we can iterate over

edges and count the appearance of every weight. Lets assume we have arrays of numbers of

appearances of weights calculated for two different cycles. If we look at those arrays as

polynomial coefficients of polynomials 𝑃 and 𝑄 respectively, we need to calculate such product

of polynomials so that for every 𝑎𝑘𝑥𝑘 from 𝑃 and 𝑏𝑟𝑥𝑟 from 𝑄 we add 𝑎𝑘𝑏𝑟𝑥𝑘⊕𝑟 to the resulting

polynomial 𝑃 ∙ 𝑄. We can easily calculate 𝑃 ∙ 𝑄 in 𝑂(𝐴2) complexity, but we can do this quicker

using Fast Walsh-Hadamard transform (FWHT) which transforms coefficient representation

of polynomial into point-value representation with the property that above mentioned

multiplication of polynomials maps to point-wise multiplication of transformed arrays. We can

calculate FWHT of an array in 𝑂(𝐴 ∙ 𝑙𝑜𝑔𝐴) time and point-wise multiplication in 𝑂(𝐴), where 𝐴

is length of the arrays.

After going through all of the cycles and multiplying transforms of their respective arrays, we

need to compute inverse WHT of the resulting array. Inverse Walsh-Hadamard transform is

calculated in the same manner as the regular one, but divided by the length of the array. We

can compute division modulo some prime number 𝑝 using Fermat's little theorem which states

that 𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). Hence we multiply FWHT with 𝐴𝑚−2 calculated using fast modular

exponentiation to aquire inverse transform. Therefore, time complexity of this part of the

problem is 𝑂(𝑘 ∙ 𝐴 ∙ 𝑙𝑜𝑔𝐴).

In this way, we can calculate the number of different ways to achieve any price. But in order to

know the smallest price that can be achieved, we need another array in which we only

remember 1if price can be achieved or 0 if it can't. We recalculate this array for each cycle. We

need additional array because of the case in which the number of possible ways to achieve

some price is divisible by 𝑚. Similarly, time complexity of this part of the problem is

𝑂(𝑘 ∙ 𝐴 ∙ 𝑙𝑜𝑔𝐴) and therefore total time complexity is 𝑂(𝑘 ∙ 𝐴 ∙ 𝑙𝑜𝑔𝐴).

MDCS – Bubble Cup 2019 45

Problem J: Product tuples

Premier League only

Author:

Nikola Nedeljković

Implementation and analysis:

Aleksa Milisavljević

Nikola Nedeljković

Statement:

While roaming the mystic areas of Stonefalls, in order to drop a legendary loot, an adventurer

was given a quest as follows. He was given an array 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑁} of length 𝑁, and a

number 𝐾.

Define array 𝐵 as 𝐵(𝑞, 𝐴) = {𝑞 − 𝑎1, 𝑞 − 𝑎2, . . . , 𝑞 − 𝑎𝑁}. Define function 𝐹 as 𝐹(𝐵, 𝐾) being the

sum of products of all 𝐾-tuples of elements in array 𝐵. For example, if the array 𝐵 is [2,3,4,5],

and with 𝐾 = 3, the sum of the products of all 3-tuples is 2 ∗ 3 ∗ 4 + 2 ∗ 3 ∗ 5 + 3 ∗ 4 ∗ 5 + 2 ∗

4 ∗ 5 = 𝐹(𝐵, 3).

He was then given a number 𝑄, the number of queries of two types:

• Type 1: Given 𝑞, 𝑖, and 𝑑 calculate 𝐹(𝐵(𝑞, 𝐴), 𝐾) where we make a change to the initial

array as 𝐴[𝑖] = 𝑑.

• Type 2: Given 𝑞, 𝐿, 𝑅, and 𝑑 calculate 𝐹(𝐵(𝑞, 𝐴), 𝐾) where we make a change to the

initial array as 𝐴[𝑖] = 𝐴[𝑖] + 𝑑 for all i in range [𝐿, 𝑅] inclusive.

All changes are temporarily made to the initial array, and don’t propagate to the following

queries.

Help the adventurer calculate the answer to the quest, and finally get that loot!

Input:

In the first two lines, the numbers 𝑁 and 𝐾, the length of the initial array 𝐴, and tuple size,

followed by 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑁 , elements of array 𝐴, in the next line. Then follows the number 𝑄,

the number of queries. In the next 𝑄 lines come queries of the form:

• 1 𝑞 𝑖 𝑑, for type 1

• 2 𝑞 𝐿 𝑅 𝑑, for type 2,

as explained above

46 MDCS – Bubble Cup 2019

Output:

Print 𝑄 lines, the answers to the queries, modulo 998244353.

Constraints:

• 1 ≤ 𝑁 ≤ 2 ∙ 104

• 1 ≤ 𝐾 ≤ 𝑁

• 1 ≤ 𝐿 ≤ 𝑅 ≤ 𝑁

• 1 ≤ 𝑄 ≤ 10

• 1 ≤ 𝑖 ≤ 𝑁

• 0 ≤ 𝐴𝑖 , 𝑞, 𝑑 ≤ 109

Example input:

5

2

1 2 3 4 5

3

1 6 1 1

1 6 5 2

2 6 2 3 1

Example output:

85

127

63

Explanation:

In the first query array 𝐴 = [1, 2, 3, 4, 5], 𝐵 = [5, 4, 3, 2, 1], the sum of products of 2-tuples =

85.

In the second query array 𝐴 = [1, 2, 3, 4, 2], 𝐵 = [5, 4, 3, 2, 4], the sum of products of 2-tuples

= 127

In the third query array 𝐴 = [1, 3, 4, 4, 5], 𝐵 = [5, 3, 2, 2, 1], the sum of products of 2-tuples =

63

Time and memory limit: 9.0s / 128 MB

MDCS – Bubble Cup 2019 47

Solution and analysis:

Let us first solve following two tasks:

1. Given an array 𝑎 of 𝑁 elements find sum of products of all 𝐾-tuples for each 𝐾 with

following queries: What would be the result if we would change 𝑎𝑖 to 𝑑?

Let us construct segment tree above the given array. Let's consider node above interval

[𝐿, 𝑅]. In it we will for each 𝐾 from 0 to 𝑅 − 𝐿 + 1 remember sum of products of all 𝐾-

tuples of elements in interval [𝐿, 𝑅] in an array 𝑠, where we define 𝑠0 = 1. Then we

calculate values for some non-leaf node. If array 𝑙 is the array with results for left child

of current node and array 𝑟 is array with results for right child of current node, we can

notice that equation 𝑠𝑖 = ∑ 𝑙𝑗𝑟𝑖−𝑗
𝑖
𝑗=0 holds, therefore we can apply fast polynomial

multiplication to calculate result for current node faster. Now for each query we need

only to recalculate 𝑂(log 𝑁) nodes. Time complexity is 𝑂(𝑁 log 𝑁) per query.

2. Given an array 𝑎 of 𝑁 elements find sum of products of all 𝐾-tuples for each 𝐾 with

following queries: What would be the result if we increased all elements for 𝑑?

Now we can calculate an array which contains all the results for original array in the

same manner we did it in first task. Let's name that array 𝑡. We can notice that following

equation holds: 𝑠𝑖 = ∑ (𝑁−𝑗
𝑖−𝑗

) 𝑡𝑗𝑑𝑖−𝑗𝑖
𝑗=0 , where 𝑠 is the name of array which contains

results for array if all elements would be increased for 𝑑. We can also apply fast

polynomial multiplication for this case. We multiply these two polynomials: (𝑁 − 𝑗)! 𝑡𝑗

and
𝑑𝑗

(𝑖−𝑗)!
. Time complexity is 𝑂(𝑁 log 𝑁) per query. This is actually slightly modified

version of a known Schönhage multiplication algorithm for polynomials.

Using these two ideas we can solve original task. We will consider negative values of array

elements instead of original, and after that we will construct segment tree above the modified

array as we did in the first task. When we get query of first type, we'll change an array element

as we did in first task and after that use modification we used for increasing all elements for 𝑑

in the second task. When we get query of second type, we'll use constructed segment to split

array in intervals, for which condition that they either entirely belong to query interval [𝐿, 𝑅]

or they are entirely out of it holds, rather than changing elements and building segment tree

once more. After that we will greedly multiply intervals of same type (intervals are of the same

type if they are either both inside query interval or both outside of it) ascending by size. Then,

we will have two arrays, in one result for interval [𝐿, 𝑅] in another result for rest of the array.

We can now apply reasoning from the second task to decrease all elements of first array by 𝑡.

Then we can again apply fast multiplication to get results for entire array and yet once more

apply modification of Schönhage algorithm to increase all elements for 𝑑.

48 MDCS – Bubble Cup 2019

Problem K: Alpha planetary system

Premier League only

Author:

Bojan Vučković

Implementation and analysis:

Bojan Vučković

Kosta Bizetić

Statement:

Three planets 𝑋, 𝑌 and 𝑍 within the Alpha planetary system are inhabited with an advanced

civilization. The spaceports of these planets are connected by interplanetary space shuttles.

The flight scheduler should decide between 1, 2 and 3 return flights for every existing space

shuttle connection. Since the residents of Alpha are strong opponents of the symmetry, there

is a strict rule that any two of the spaceports connected by a shuttle must have a different

number of flights.

For every pair of connected spaceports, your goal is to propose a number 1, 2 or 3 for each

shuttle flight, so that for every two connected spaceports the overall number of flights differs.

You may assume that:

• every planet has at least one spaceport

• there exist only shuttle flights between spaceports of different planets

• for every two spaceports there is a series of shuttle flights enabling traveling between

them

• spaceports are not connected by more than one shuttle

Input:

The first row of the input is the integer number 𝑁, representing overall number of spaceports.

The second row is the integer number 𝑀 representing number of shuttle flight connections.

Third row contains 𝑁 characters from the set {𝑋, 𝑌, 𝑍}. Letter on 𝐼𝑡ℎ position indicates on which

planet is situated spaceport 𝐼. For example, “XYYXZZ” indicates that the spaceports 0 and 3 are

located at planet 𝑋, spaceports 1 and 2 are located at 𝑌, and spaceports 4 and 5 are at 𝑍.

Starting from the fourth row, every row contains two integer numbers separated by a

whitespace. These numbers are natural number smaller than 𝑁 and indicate the numbers of

the spaceports that are connected. For example, “12 15” indicates that there is a shuttle flight

between spaceports 12 and 15.

MDCS – Bubble Cup 2019 49

Output:

The same representation of shuttle flights in separate rows as in the input, but also containing

a third number from the set {1, 2, 3} standing for the number of shuttle flights between these

spaceports.

Constraints:

• 3 ≤ 𝑁 ≤ 100 000

• 2 ≤ 𝐶 ≤ 100 000

Example input:

10

15

XXXXYYYZZZ

0 4

0 5

0 6

4 1

4 8

1 7

1 9

7 2

7 5

5 3

6 2

6 9

8 2

8 3

9 3

Example output:

0 4 2

0 5 2

0 6 2

4 1 1

4 8 1

1 7 2

1 9 3

7 2 2

7 5 1

5 3 1

6 2 1

6 9 1

8 2 3

8 3 1

9 3 1

Time and memory limit: 2.0s / 128 MB

50 MDCS – Bubble Cup 2019

Solution and analysis:

Let 𝐺 = (𝑉, 𝐸) denote the graph with vertices (spaceports) 𝑉 partitioned into three subsets

𝑋, 𝑌 and 𝑍, and with 𝐸 denoting the edges (shuttle flight connections) between vertices.

Denote by the edge weight the number of return flights between vertices (spaceports). Proper

coloring of graph is assigning integer values to graph vertices so that any two adjacent vertices

obtain different color (value).

Here is a description of the construction of an algorithm leading to a solution of the problem.

1. Form an arbitrary spanning of tree 𝑇 of graph 𝐺 (for example using BFS).

2. Check if the graph 𝐺 contains an odd cycle:

Properly color the vertices of 𝑇 with colors from {1, 2}. Depending on whether there

exists an edge in 𝐸 connecting two vertices of 𝑇 with the same color, we have two

cases:

a. For every 𝑢𝑣 ∈ 𝐸 vertices 𝑢 and 𝑣 are assigned different colors in 𝑇.

b. There exists 𝑢𝑣 ∈ 𝐸 such that the color of 𝑢 equals the color of 𝑣 in 𝑇. That means

that the path from 𝑢 to 𝑣 has an even length and together with 𝑢𝑣 it forms an

odd length cycle 𝐶 in graph 𝐺.

3. Depending on 2, we assign weights to the edges of 𝐸 to satisfy the conditions of the

problem:

a. Assign weight 3 to every edge in 𝐸. Let 𝜎(𝑢) denote the sum of weights of the

edges incident to 𝑢 modulo 3. Take arbitrary vertex 𝑣 that is colored 1 in 𝑇 and

calculate the distance to 𝑣 for every vertex of 𝑉 in tree 𝑇. Let’s say that the

maximal distance is 𝑘. We implement an algorithm from the following pseudo-

code:

for 𝑛: = 𝑘 down to 1:

for every vertex 𝑢 whose distance to 𝑣 in 𝑇 is 𝑛, and whose
first vertex on the path 𝑢𝑣 is 𝑤, we choose a weight from

{1, 2, 3} for 𝑢𝑤 is such a way that 𝜎(𝑢) equals the color of 𝑢

in 𝑇.

if (𝜎(𝑣) ≠ 2) or (𝑣 has only one adjacent vertex in

graph 𝐺):

return assigned weights

 else:

 Let 𝑢 and 𝑤 denote vertices with

𝑢𝑣 ∈ 𝐸 and 𝑤𝑣 ∈ 𝐸.

 Add 1 modulo 3 to weights of 𝑢𝑣 and 𝑤𝑣

(but use 3 instead of 0 for weight).

MDCS – Bubble Cup 2019 51

 return assigned weights

b. Assign weight 3 to every edge in 𝐸. Let 𝜎(𝑢) denote the sum of weights of edges

incident to 𝑢 modulo 3.

Assign to every vertex of 𝑇 color 0 if it belongs to set 𝑋, color 1 if it belongs to set

𝑌, and color 2 if it belongs to set 𝑍.

Take an arbitrary vertex 𝑣 on the odd cycle 𝐶 that is obtained in 2a. Next, for every

vertex of 𝑉 calculate its distance to 𝑣 in tree 𝑇. Let’s say that the maximal distance

is 𝑘. We implement an algorithm similar to the first one:

for 𝑛: = 𝑘 down to 1:

for every vertex 𝑢 whose distance to 𝑣 in 𝑇 is 𝑛, and whose

first vertex on the path 𝑢𝑣 is 𝑤, choose a weight from
{1, 2, 3} for 𝑢𝑤 is such a way that 𝜎(𝑢) equals the color of 𝑢

modulo 3 in 𝑇.

 if (𝜎(𝑣) equals the color of 𝑣 in T):

return assigned weights

 else:

Let 𝑚 be the value from the set {1, 2} such that 𝜎(𝑣) + 𝑚

equals the color of 𝑣 modulo 3 in 𝑇. Denote vertices of

cycle 𝐶 with 𝑢0, 𝑢1, …, 𝑢2𝑛 , 𝑢2𝑛+1 where 𝑣 = 𝑢0 = 𝑢2𝑛+1.

for weight of each edge 𝑣2𝑖𝑣2𝑖+1 ∈ 𝐶:

Add 2𝑚 modulo 3 (use values from {1, 2, 3} for weights)

for weight of each edge 𝑣2𝑖+1𝑣2𝑖+2 ∈ 𝐶:

Add 𝑚 modulo 3 (use values from {1, 2, 3} for weights)

return assigned weights

Any of the steps described above can be done in at most 𝑂(|𝐸|) steps, thus the complexity of

the solution equals 𝑂(|𝐸|).

52 MDCS – Bubble Cup 2019

MDCS – Bubble Cup 2019 53

Qualification problems

54 MDCS – Bubble Cup 2019

MDCS – Bubble Cup 2019 55

Round 1: Ada and Tic-Tac-Toe

Statement:

Ada the Ladybug was playing 3D Tic-Tac-Toe against her good friend Velvet Mite Vinit. They

were playing on a 3 × 3 × 3 field. Sadly, Vinit had to go home earlier so the game was left

unfinished. Ada wants to know who would win the match (if they both played optimally). You

also know that Ada started.

Input:

The first line contains a single integer 1 ≤ 𝑇 ≤ 1000, the number of test-cases.

Each test-case will contain 9 lines with three character each, representing the field ('.' for an

empty place, 'x' for a move of Ada and 'o' for a move of Vinit). You are assured that the game

is unfinished and valid.

First three lines represent the top field, the next three lines represent the middle field and the

last three lines represent the bottom field.

There will be a blank line before each test-case.

Output:

For each test-case, print the name of the winner (Ada or Vinit).

Example input:
7

..o

o.x

xox

x.x

...

x.o

...

o.o

.x.

.x.

...

..o

o.x

x..

..o

..x

...

...

o..

...

o.x

.x.

...

.x.

56 MDCS – Bubble Cup 2019

o.o

.xx

oox

..x

..x

.o.

..x

..x

xo.

o..

..o

...

...

..x

..x

.o.

..x

o..

...

...

x.o

...

..x

..o

...

...

xo.

ox.

...

.ox

o..

x..

...

oxx

..o

.ox

..o

.x.

.x.

Example output:
Vinit

Vinit

Ada

Vinit

Ada

Vinit

Vinit

Example input:
1

xox

x.o

oox

o.o

x.x

MDCS – Bubble Cup 2019 57

xxo

x.o

oxo

ox.

Example output:
Ada

Time and memory limit: 1s / 64 MB

58 MDCS – Bubble Cup 2019

Solution:

The solution is based on minimax algorithm. We will call a state winning if the player that is to

make a move has the winning strategy or call it losing otherwise. The state is winning if and

only if there is at least one move that leads to a losing state or to an end state. When you are

to decide whether a state is winning or losing first check if there is a move that leads to an end

state and then consider other moves. For many states the player that has the cell in the middle

has the winning strategy. Because of that if the cell in the middle is empty first check if placing

a marker in it leads to a losing state and if that’s not the case then check other moves in any

order. In order not to solve the same state more than once we can store the results in a hash

table.

Problem source: SPOJ

Solution by:

Name: Tadija Šebez

MDCS – Bubble Cup 2019 59

Round 1: Building Subways

Statement:

The department of progress of a city of Orbita Interconnected Advanced (OIA) has decided to

address the complex construction of an underground rapid transit. The subway network, as it

is called, will link zonal centers of consolidation of the city, which today is connected with tram

lines, following the same route as these, which it will replace.

The problem is that initially budget that is account could be not enough to perform all the

work. Part of the tour will continue by tram. Then a set of sections will be chosen to become

subway so that the greatest distance traveled by tram from any center not modernized to the

subway network is minimal. A center is considered modernized when a section of subway has

one end in that center. The subway network must be done so that it links all modernized

centers.

You must write a program that, given a description of the 𝑁 − 1 current sections of trams that

connect all 𝑁 centers (so that it is possible to travel between any of the two) including its

length in kilometers 𝐿𝑖 , and the budget 𝐾 with which the department has expressed in the

same unit, calculate what will be the maximum distance mentioned above, leaving engineers

to determine the detailed list of sections to be built.

Input:

You receive:

• A line with numbers 𝑁 and 𝐾 (2 ≤ 𝑁 ≤ 200000, 𝐾 ≤ 1000000000)

• 𝑁 − 1 lines with 𝑋𝑖, 𝑌𝑖 , 𝐿𝑖 , centers connected by the section 𝑖 and its length. (1 ≤ 𝑋𝑖,

𝑌𝑖 ≤ 𝑁, 1 ≤ 𝐿𝑖 ≤ 10000000).

Output:

You must output a line with an integer number representing the maximum distance traveled

by tram to reach the underground.

Example input:
5 14

1 2 3

1 3 5

5 2 7

4 2 6

Example output:
6

Time and memory limit: 1s / 256 MB

60 MDCS – Bubble Cup 2019

Solution:

Let’s solve another problem first.

Is there a valid construction so that the maximum distance traveled is at most 𝐷, for some

fixed 𝐷.

For this we will need to precompute two values first. We will root a tree in any node. After that

we will use DFS to precompute the depth of the nodes. Now we will run another DFS to

calculate the deepest node in a subtree of the node. We will do this for each node. It can be

done by simply picking the maximum of 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 + 𝑙𝑒𝑛𝑔𝑡ℎ. Also, we need BFS to calculate the

maximum distance for each node to some other that isn’t in its subtree. It is done in the same

way, more or less.

Now let’s just try all posibilities to be the root of our construction.

We will use DFS. But only if the distance from the chosen node to the farthest that isn’t in its

subtree is less than 𝐷.

We should keep two values. One will be the global variable, which will show us how much

budget we can spend. Another one will be forwarded in DFS function, showing us what depth

we have to cut in that subtree, so that the construction will be valid for value 𝐷, also let’s call

this value 𝑧.

So let’s say we are in some node 𝑣. We will run DFS to its child if the deepest node in subtree

of child is on a bigger depth than 𝑧. In case we go to that child, we will substract the length of

edge from the budget. Also we will forward 𝑧 − 𝑙𝑒𝑛𝑔𝑡ℎ of edge to DFS function of that child.

We will check this for every child. If we can cut all with this budget there exists a valid solution.

So because we are using DFS only, time complexity of this checking is 𝑂(𝑛). And because there

are 𝑂(𝑛) nodes to choose as a root it is 𝑂(𝑛2).

But let’s make one important observation. Let’s say we are trying to root some node 𝑣. If there

is some node in subtree of 𝑣, a node for which we know for a fact that can’t be the root, then

𝑣 also can’t be the root, because the price for rooting 𝑣 is at least that much.

So if we iterate from deepest nodes, to those with less depth, we won’t check anything more

times than needed. So we will be doing DFS in order of depths. Therefore, we get complexity

𝑂(𝑛).

Instead of trying for every possible value of 𝐷, we can binary search for it. Because we are not

looking for the exact value of 𝐷, but we want to make it at most 𝐷.

Finally we get 𝑂(𝑛 ∗ log2(1018)).

MDCS – Bubble Cup 2019 61

Problem source: COJ

Solution by:

Name: Aleksa Miljković

62 MDCS – Bubble Cup 2019

Round 1: Input

Statement:

In a recent programming contest, one of the problems was about tiling floors with rectangular

tiles. The input specification reads like this:

The input contains several floors. The first line of the input gives the number of floors. Each

floor is described in several lines. The first line contains two positive integers: the length and

width of the floor, in millimeters. A floor is at most 40000 𝑚𝑚 long or wide. The next line

contains a single number: the number 𝑡 of tiles (1 ≤ 𝑡 ≤ 100).

The following 𝑡 lines each contain the description of a tile. A tile is given as four integers:
𝑥l 𝑦l 𝑥h 𝑦h

where (𝑥l 𝑦l) are the coordinates of the lower left corner of the tile, and (𝑥h 𝑦h) are the

coordinates of the upper rightmost corner of the tile. A tile always has a positive area. The

order of the coordinates of the floor and those of the tile coincide, of course. You may assume

that the tiles are mutually disjoint, and cover the floor, the whole floor, and nothing but the

floor.

The last line of this specification raised some problems. Not for the contestants, but for the

judges. Some of the test cases consist of many tiles. How can we be sure that our input file

meets this condition? What we need is a checking program that verifies this condition.

Problem

Given an input file in the above format, find out for each floor whether the tiles

1. are disjoint,

2. do not lie outside the floor,

3. do cover the floor.

Input:

The input contains several floors. The first line of the input gives the number of floors. Each

floor is described in several lines. The first line contains two positive integers: the length and

width of the floor, in millimeters. A floor is at most 40000 𝑚𝑚 long or wide. The next line

contains a single number: the number 𝑡 of tiles (1 ≤ 𝑡 ≤ 100).

The following 𝑡 lines each contain the description of a tile. A tile is given as four integers:

𝑥l 𝑦l 𝑥h 𝑦h

where (𝑥l 𝑦l) are the coordinates of the lower left corner of the tile, and (𝑥h 𝑦h) are the

coordinates of the upper rightmost corner of the tile. A tile always has a positive area. The

order of the coordinates of the floor and those of the tile coincide, of course.

MDCS – Bubble Cup 2019 63

Output:

For each floor the output contains a single line, containing one of the following words:

• NONDISJOINT if overlapping tiles occur;

• NONCONTAINED if no overlapping tiles occur, but some tiles go outside the floor;

• NONCOVERING if no overlapping tiles occur, and no tiles go outside the floor, but

some parts of the floor are not covered;

• OK if none of these are true.

Example input:
4

4 3

2

0 0 2 2

1 1 5 5

4 3

2

0 0 2 2

-2 2 5 5

4 3

2

0 0 2 2

2 0 4 2

4 3

3

0 0 2 2

2 0 4 2

0 2 4 3

Example output:
NONDISJOINT

NONCONTAINED

NONCOVERING

OK

Time and memory limit: 1s / 64 MB

64 MDCS – Bubble Cup 2019

Solution:

The problem does not require any higher knowledge, but just a little bit of reasoning.

We have to determine at most 3 things (if one is true, then we don’t need to determine the

next one):

1. Are there any two rectangles which overlap with one another;

2. Is there is any rectangle which has a part (or more) out of the bounds of the floor;

3. Do all rectangles cover the entire floor (without overlapping and parts outside the

bounds).

For 𝑁 number of rectangles, there is (
𝑁
2

) pairs of rectangles. Because the number of rectangles

is at most 100, we are able to go through every pair of rectangles there is under the given time

limit. Note the fact that every side of the rectangle is parallel to either abscissa or ordinate. It

makes the determination of overlapping not that difficult. Two rectangles (𝑎, 𝑏) with their

respective given coordinates (𝑥𝑙𝑎 𝑦𝑙𝑎 𝑥ℎ𝑎 𝑦ℎ𝑎) and (𝑥𝑙𝑏 𝑦𝑙𝑏 𝑥ℎ𝑏 𝑦ℎ𝑏) DO NOT overlap if at least

one of the following conditions is satisfied:

1. 𝑥𝑙𝑎 ≥ 𝑥ℎ𝑏;

2. 𝑥ℎ𝑎 ≤ 𝑥𝑙𝑏;

3. 𝑦𝑙𝑎 ≥ 𝑦ℎ𝑏;

4. 𝑦ℎ𝑎 ≤ 𝑦𝑙𝑏.

(touching of two rectangles is not considered overlapping)

If neither of the previous conditions were satisfied for at least one pair of rectangles, then

overlapping occurs. The answer is “NONDISJOINT”.

If overlapping does not occur, we have to move on. We can easily check if a rectangle goes

outside the floor simply by going through every rectangle once and asking one simple

question. Coordinates of the lower left corner of the floor are (0, 0) and of the upper right

corner of the floor are (𝐿, 𝑊). 𝑳 is the length, while 𝑊 is the width of the floor. Thus, if one of

the following conditions is true for a rectangle with its given coordinates (𝑥𝑙 𝑦𝑙 𝑥ℎ 𝑦ℎ), the

rectangle IS NOT on the floor with its whole surface. The conditions are as follows:

1. 𝑥𝑙 < 0;

2. 𝑦𝑙 < 0;

3. 𝑥𝑟 > 𝐿;

4. 𝑦𝑟 > 𝑊.

If at least one of the previous conditions is true, then there are some parts outside the floor.

The answer is “NONCONTAINED”.

MDCS – Bubble Cup 2019 65

And lastly, if there is no overlapping and no parts outside the floor, we have to determine if all

rectangles cover the whole floor’s surface. We will do that by calculating a sum of surfaces of

every rectangle. The surface of the floor is equal to 𝐿 × 𝑊. If the sum of surfaces of rectangles

is less than the floor’s surface, the floor is not entirely covered. The answer is

“NONCOVERING”. Otherwise, if the sum is equal to the floor’s surface, the answer is “OK”.

And that is it, the problem is solved.

Problem source: COJ

Solution by:

Name: Uroš Berić

66 MDCS – Bubble Cup 2019

Round 1: First to meet the spaceship

Statement:

A spaceship has been sighted heading towards Earth. For the entire time that humanity has

been monitoring it, it has not altered its course, it only changed speed for unknown reasons.

As such, all the possible places on Earth where the spaceship might end up landing form a

straight line; depending on how much it changes speed, it will land at different times, meaning

a different point on this line due to Earth's rotation.

𝑁 people want to be the first to meet the aliens - they picked a point 𝑥𝑖 on this line and wait

at that point in their vehicle with speed 𝑣𝑖. Now they are all anxiously waiting for the

spaceship's arrival. NASA has given a list of 𝑄 most likely locations where the spaceship might

end up landing - and everyone wants to know who would get to be the first to meet the aliens

if the spaceship landed at each of the given points. They turned to you for help!

Input:

The first line contains two integers 1 ≤ 𝑁, 𝑄 ≤ 300000 - the number of people wishing to

meet the aliens and the number of possible points where the spaceship might land.

The following 𝑁 lines contain two integers 0 ≤ 𝑥𝑖 < 109 and 0 < 𝑣𝑖 ≤ 109 - the point on the

line where the 𝑖𝑡ℎ person is waiting and the speed of his vehicle. Additionally, 𝑥𝑖 = 𝑥𝑗 ⟶ 𝑣𝑖 ≠

𝑣𝑗.

The last line contains 𝑄 distinct integers 0 ≤ 𝑞𝑖 < 109 - the points on the line where the

spaceship might end up landing. You may assume the spaceship will not land at any point

containing a person waiting in a vehicle.

Output:

For each query 𝑞𝑖 output the number of people who will arrive at the spaceship first if it lands

at that point. A person at 𝑥𝑗 with speed 𝑣𝑗 will arrive at 𝑞𝑖 in time
|𝑥𝑗 − 𝑞𝑖|

𝑣𝑗
. The people who will

arrive at the spaceship first are those 𝑗 for whom the fraction is minimal out of all people. Then,

in the same line, output the 1-based indices of these people as they were given in the input,

sorted in ascending order.

Example input:
4 7

10 5

30 1

20 4

100 1

5 31 22 15 85 60 61

Example output:
1 1

MDCS – Bubble Cup 2019 67

1 2

1 3

1 1

2 1 4

2 1 3

1 1

Time and memory limit: 3s / 64 MB

68 MDCS – Bubble Cup 2019

Solution:

The first thing to note is that we can process the queries in an offline manner. This means that

we will first input all of them and then solve in them in some order we deem most appropriate

to find a quick solution. The main idea in this problem is that we solve each query as two

different queries, in a different offline manner each, and combine these answers to find the

answer to each query.

For every query, we will find which people are closest to it from the right and from the left

independently. Combining these answers will trivially let us answer the full problem.

Here we will describe how to find what

person is closest to it from the left. The other

case is obviously completely analogous. We

will sort the people and the queries into one

single array sorting them according to their

𝑋 value. Now we are interested in how we

want to process the incoming information of

two types: “New person” or “Answer query”.

The trick here is to visualize a number line.

We imagine each person as a linear function of time over distance, meaning the 𝑦-coordinate

of some line is the time required for him to get to this point. Now we are interested in finding

the minimum of our currently added lines. This is, of course, reminiscent of finding a convex

hull. We want to find the lowest currently on the set of added lines in a certain point on a

number line.

To do this, we maintain a stack of lines. Now,

obviously, if some line is no longer optimal

at some point, it will never be the optimal

line again, so we can remove it from our

stack. Also, our newest line will be optimal

for some time, and then be overtaken by an

older line that is steeper. This means our

stack will be always increasing in the

steepness of its lines. Noting this, we can solve by maintaining the stack, sorting them by

“overtaking points”. This means that when adding our new line, and if the top 3 lines from the

stack are 𝑙1, 𝑙2, 𝑙3, and 𝑙2 overtakes 𝑙1 at 𝑥 = 𝑑1, and 𝑙3 overtakes 𝑙2 at 𝑥 = 𝑑2, then we pop 𝑙2

from the stack if 𝑑2 < 𝑑1. We do this because if 𝑙3 overtakes 𝑙2 before 𝑙2 overtakes 𝑙1, this

means that 𝑙2 has already lost its turn as the dominant line when it overtakes 𝑙1, and we don’t

need it in the stack any more. When answering one of the queries, we simply pop the lines

that are overtaken by the next one in the stack up to this point as they will never be optimal

again, and answer with the according line at the top of the stack. Some extra care is needed

MDCS – Bubble Cup 2019 69

when the query is exactly an overtaking point, but this can be effectively resolved with a bit of

care where we put < and where we put ≤.

Also, a thing to note is that, as queries are always in different points, the max cardinality of the

answer sets we need to memorize for the “closest right” part of the algorithm is 𝑂(𝑁 + 𝑄), as

every query that isn’t in an overtaking point requires us to memorize only one answer, while

the answers in the overtaking points are at most 2𝑁, as every person overtakes and is

overtaken exactly once.

Now merging the answers is easy. If the optimal answer from the left and the right is equal,

then the answer to this query is the union of the two answer sets, if not we just choose the

larger one.

This algorithm gives us something that is essentially a 𝑂(𝑁 + 𝑄) solution, but a logarithmic

factor is added with the sorting at the beginning, meaning that this solution has 𝑂((𝑁 +

𝑄) log(𝑁 + 𝑄)) time complexity, and 𝑂(𝑁 + 𝑄) memory complexity.

Problem source: SPOJ

Solution by:

Name: Pavle Martinović

70 MDCS – Bubble Cup 2019

Round 1: Mysteriousness of a Logical Expression

Statement:

Cho decided that it is time to find the love of his life. After conducting intensive online research,

he found out that to stand a chance, he has to be intelligent, handsome, kind, charismatic,

confident, funny, responsible, reliable, straightforward, mysterious, a gentleman.....

Cho was puzzled. He thought he already had all of these characteristics. After taking a

definitely legitimate online personality test, he realized he lacked just one of them - he was

not mysterious enough.

He decided he will only say statements with as many interpretations as possible; that way it

will always be unclear what he actually means, and that should grant him an aura of

unpredictability and mysteriousness.

Cho prepared some pickup lines, and now he wants to know how mysterious they sound - that

is, in how many ways they can be interpreted to still make sense.

Input:

Each pickup line can be represented by a logical expression. A valid logical expression 𝑒𝑥𝑝 can

be

• 𝑒𝑥𝑝 = 𝑋

• 𝑒𝑥𝑝 = 𝑂𝑅(𝑒𝑥𝑝, 𝑒𝑥𝑝)

• 𝑒𝑥𝑝 = 𝐴𝑁𝐷(𝑒𝑥𝑝, 𝑒𝑥𝑝)

• 𝑒𝑥𝑝 = 𝑁𝑂𝑇(𝑒𝑥𝑝)

where 𝑋 is a boolean variable, and 𝑂𝑅, 𝐴𝑁𝐷, 𝑁𝑂𝑇 are basic boolean operations.

The first line contains an integer 1 ≤ 𝑇 ≤ 6, the number of expressions.

Each of the 𝑇 subsequent lines contains one valid expression as described above (i.e. it is

correctly parenthesized, with no additional spaces).

|𝑒𝑥𝑝| ≤ 700000 and the sum of |𝑒𝑥𝑝| in an input file ≤ 1850000

Output:

For each expression, find the number of ways that True/False values can be (independently)

assigned to the variables 𝑋 in the expression so that the whole expression evaluates to True.

Since this value could be huge, output it modulo 109 + 7.

Example input:
2

AND(X,OR(X,X))

NOT(OR(X,X))

https://en.wikipedia.org/wiki/Boolean_algebra#Basic_operations

MDCS – Bubble Cup 2019 71

Example output:
3

1

Time and memory limit: 1s / 64 MB

72 MDCS – Bubble Cup 2019

Solution:

Let’s call all expressions of the first type basic (just a boolean variable), and let’s call all the

others complex expressions.

Let the function 𝑡𝑟𝑢𝑒(𝑙, 𝑟) be the number of ways true/false values can be (independently)

assigned to the variables 𝑋 in the expression, which begins at position 𝑙 and ends at position

𝑟, so that the expression evaluates to true. Similarly with 𝑓𝑎𝑙𝑠𝑒(𝑙, 𝑟).

The solution of the whole problem will be: 𝑡𝑟𝑢𝑒(0, |𝑒𝑥𝑝| − 1).

Notice that if we know the value of 𝑡𝑟𝑢𝑒(𝑙, 𝑟) and the number of characters 𝑋 between 𝑙 and 𝑟

we can easily get 𝑓𝑎𝑙𝑠𝑒(𝑙, 𝑟) by the following formula:

 𝑓𝑎𝑙𝑠𝑒(𝑙, 𝑟) = 2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑋 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙 𝑎𝑛𝑑 𝑟) − 𝑡𝑟𝑢𝑒(𝑙, 𝑟).

Precomputation:

We can use stack to find out for every complex expression where it begins and where it ends

(bracket parsing). When the program iterates to the next ’(’ character, it’s position is pushed

to the stack. When the program finds ’)’ character, it pops one integer from the stack - the

position of the begining of the expression which ends at the current possition.

In order to find out the number of variables 𝑋 between any two characters we can use partial

sums. Also, we need to maintain an array 𝑝2 of powers of two modulo 109 + 7.

Now, when we precalculated partial sums, and found a pair for each bracket we can solve a

problem using recursion.

Recursion description:

Function 𝑡𝑟𝑢𝑒(𝑖𝑛𝑡 𝑙, 𝑖𝑛𝑡 𝑟) returns 1 if the expression is basic, otherwise it finds the ’,’ character

and positions 𝑙1, 𝑟1, 𝑙2 and 𝑟2 - begining and end of 𝑒𝑥𝑝1 and 𝑒𝑥𝑝2.

If the current expression is:

1. 𝑁𝑂𝑇(𝑒𝑥𝑝) function returns: 𝑓𝑎𝑙𝑠𝑒(𝑙 + 4, 𝑟 − 1)

2. 𝐴𝑁𝐷(𝑒𝑥𝑝1, 𝑒𝑥𝑝2) function returns: (𝑡𝑟𝑢𝑒(𝑙1, 𝑟1) ∗ 𝑡𝑟𝑢𝑒(𝑙2, 𝑟2)) % (109 + 7)

3. 𝑂𝑅(𝑒𝑥𝑝1, 𝑒𝑥𝑝2) function returns: (𝑡𝑟𝑢𝑒(𝑙1, 𝑟1) ∗ 𝑡𝑟𝑢𝑒(𝑙2, 𝑟2) + 𝑡𝑟𝑢𝑒(𝑙1, 𝑟1) ∗

 𝑓𝑎𝑙𝑠𝑒(𝑙2, 𝑟2) + 𝑓𝑎𝑙𝑠𝑒(𝑙1, 𝑟1) ∗ 𝑡𝑟𝑢𝑒(𝑙2, 𝑟2)) % (109 + 7)

Complexity analysis:

We can do precomputation in linear time, and the function itself requires 𝑂(|𝑒𝑥𝑝|) time so the

total complexity is 𝑂(∑ |𝑒𝑥𝑝|).

Problem source: SPOJ

MDCS – Bubble Cup 2019 73

Solution by:

Name: Magdalina Jelić

74 MDCS – Bubble Cup 2019

Round 1: N..K..Divide

Statement:

Mona and her brother Alaa are very smart kids, they love math a lot and they are passionate

about inventing new games.

So after they came back from school they invented a new game called "N..K..Divide".

First of all, let's define a function 𝐷(𝑚), such that 𝐷(𝑚) is the number of distinct primes in the

prime factorization of 𝑚.

For Example 𝐷(9) = 1 and 𝐷(12) = 2.

The rules of the game are simple:

• The game consists of rounds.

• In each round there are two integer numbers 𝑁 and 𝐾.

• Each round consists of multiple turns.

• Each player alternately takes a turn (starting with the player who won the last round /

by Mona in the first round).

• In each turn the player chooses some positive integer 𝑀, where 2 ≤ 𝑀 ≤ 𝑁 such

that 𝑁 is divisible by 𝑀 and 𝐷(𝑚) ≤ 𝐾, then divides 𝑁 by the chosen 𝑀.

• The first player who cannot make any valid move loses.

• The player who wins more rounds is declared as the winner of the game (if it’s a tie,

then Mona is considered the winner).

So the kids asked their father to run the game for them.

For each of the 𝑅 rounds their father gives them two integer numbers 𝑁, 𝐾 and wants to know

who will be the winner of this round if they both play optimally (to win the current round).

Input:

The first line consists of a single integer 1 ≤ 𝑅 ≤ 10 the number of rounds the kids are going

to play.

Each of the next 𝑅 lines contains two space-separated integers 𝑁, 𝐾 where 2 ≤ 𝑁 ≤ 1014,

1 ≤ 𝐾 ≤ 10.

Output:

Print 𝑅 + 2 lines.

For the first 𝑅 lines, the 𝑖th line of them should contain the name of the winner of 𝑖th round if

both players play optimally "Mona" or "Alaa" (without quotation marks).

The line number 𝑅 + 1 is an empty line.

MDCS – Bubble Cup 2019 75

In the last one print the name of the winner, print "Mona" if Mona is the winner of the game

otherwise print "Alaa" (without quotation marks).

Example input:
5

3 4

6 2

6 1

9 1

18 2

Example output:
Mona

Mona

Alaa

Alaa

Alaa

Alaa

Time and memory limit: 1s / 64 MB

76 MDCS – Bubble Cup 2019

Solution:

Let’s analyze a single round. Suppose that Mona plays first and let the numbers be 𝑁 and 𝐾.

We will try to translate this problem to some variation of the famous game Nim, since our

game is impartial and therefore we know that it is equivalent to Nim, as stated by Sprague

Grundy theorem.

Let’s factor our number 𝑁. Each prime divisor of 𝑁 will represent a heap and the number of

objects in this heap (size of heap) will be exponent of prime divisor in factorization of 𝑁.

Notice that now our game translates to the following:

We have 𝐷(𝑁) heaps and in each move the player is allowed to take objects from at most 𝐾

heaps (as opposed to original Nim, where the player is allowed to take objects from exactly

one heap).

Fortunately, the solution for this is just a slight extension for the solution of a regular Nim

(where we take 𝑋𝑂𝑅-sum of sizes all piles and if it is positive the first player wins, otherwise, if

it equals to 0, then the second player wins).

In this extension, as well as in the solution for the regular Nim, we consider the binary

representation of sizes of heaps, only now we don’t consider 𝑋𝑂𝑅-sum of sizes (which is

actually sum modulo 2) but we consider the sum of each binary digit modulo 𝐾 + 1.

So, the conclusion is that we write binary expansion of each size of heap, and then digit by

digit we sum the modulo 𝐾 + 1 and if the number we got is positive then Mona wins, otherwise

Alaa wins (This is called Moore’s variation of Nim).

Now that we know who wins in each round, we just remember the number of wins for each

player and in the end we output the final winner.

Problem source: SPOJ

Solution by:

Name: Uroš Maleš

MDCS – Bubble Cup 2019 77

Round 1: Rational Numbers

Statement:

In mathematics, a rational number is any number that can be expressed as the quotient or

fraction
𝑝

𝑞
 of two integers, with the denominator 𝑞 not equal to zero. Since 𝑞 may be equal

to 1, every integer is a rational number. Furthermore a set 𝑆 is called countable if there exists

an injective function 𝑓 from 𝑆 to the natural numbers 𝑁∗ = {1, 2, 3, . . . }.

The set of all real numbers is not countable, but the set of all rational numbers is infinite and

countable. In order to prove that let's put all rational numbers in a table with the following

rules: in the first row are placed all integer numbers ordered by their absolute value, and placed

after each natural number (including zero) are its oposite:

0, 1, −1, 2, −2, . . . , 𝑛, −𝑛, . . .,

In the second row all irreducible fractions whose denominator is 2 are placed, ordered by their

absolute value and again after each positive number its oposite follows:

1

2
, −

1

2
,

3

2
, −

3

2
,

5

2
, −

5

2
, . ..

In general, in the 𝑛th row all irreducible fractions with the denominator 𝑛 are placed, ordered

by their absolute value and after each positive number its oposite follows. The rational number

table that has been obtained possess an infinite number of rows and columns:

Clearly every rational number is placed in the table. Let's enumerate the elements of the table

according to the following schematic (arrows indicate the direction of the increasing

numeration):

78 MDCS – Bubble Cup 2019

As a result, every rational number receives a unique natural number. Can you tell which rational

number occupies the 𝑖th position in the table?

Input:

There is a single integer 𝑇 in the first line of input (1 ≤ 𝑇 ≤ 100). It stands for the number

of test cases to follow. Each test case consists of a single line, which contains an integer number

𝑖 (1 ≤ 𝑖 ≤ 108).

Output:

For each test case print a single line with the 𝑖th rational number 𝑟𝑖. For 𝑟𝑖 being an integer

number print 𝑟𝑖 in the usual single integer representation, otherwise (𝑟𝑖 is not an integer

number) 𝑟𝑖 must be printed in the format
𝑝

𝑞
 as an irreducible fraction (Greatest Common Divisor

of 𝑝 and 𝑞 is 1 and 𝑞 > 0). Check the example output for clarification.

Example input:
4

1

2

3

9

Example output:
0

1

1/2

-1/3

Time and memory limit: 1s / 64 MB

MDCS – Bubble Cup 2019 79

Solution:

First, let’s find the position of the fraction in the table, in other words, let’s find the row (which

is also the denominator of the fraction) and the column of the cell in which our fraction is. In

the 1𝑠𝑡 diagonal there is 1 fraction, in the 2𝑛𝑑 there are 2 fractions … in 𝑘𝑡ℎ fraction there are

𝑘 diagonals. So, in first 𝑘 diagonals there are
k(k+1)

2
 fractions. Therefore, we can find in which

diagonal our fraction is by finding the biggest number 𝑘 such that
k(k+1)

2
< 𝑝 where 𝑝 is the

number from input. Then, the number of the diagonal that we are looking for is 𝐷 = 𝑘 + 1.

Once we have the number of the diagonal we can also find the number of the row in which

our fraction is positioned and let’s call it 𝑅. 𝑅 is easily calculated by formula: 𝑅 = 𝑝 −
k∗(k+1)

2
.

Now, we can also find the number of the column in which our fraction is and let’s call it 𝐶. 𝐶 it

can be easily calculated too. Note that 𝑟 + 𝑐 = 𝐷 + 1 holds for every cell of the diagonal, so

𝐶 = 𝐷 + 1 − 𝑅.

Once we have the column of the cell, we can find the numerator of the fraction. We can do

that by finding (
𝐶

2
)

𝑡ℎ

 coprime number to 𝑅 if 𝐶 is even (if 𝐶 is even, we have to put a negative

sign too) or (
𝐶+1

2
)

𝑡ℎ

 coprime number to 𝑅 if 𝐶 is odd. We can do that by simply iterating over

numbers from 1 to ∞ and incrementing the counter when the greatest common divisor of the

iterator and 𝑅 is 1.

There are some corner cases when the number from input is 1 (we should output ‘0’) and

when the denominator is 1 (we should output the numerator only and put a negative sign if 𝐶

is odd because everything in the first row is shifted by 1 position because of ‘0’).

Problem source: COJ

Solution by:

Name: Petar Vasiljević

80 MDCS – Bubble Cup 2019

Round 1: Toby and the Frog

Statement:

Toby the dog is on the cell 0 of a numbered road, TJ the frog is on the cell number 𝑋 of the

same road. Toby wants to catch the frog, but he is not smart enough to count the distance

from his current position to 𝑋, so he performs the following algorithm:

• Let pos be Toby's current position.

• Jump an integer distance 𝑑, where 𝑑 is uniformly distributed over

[1, 𝑚𝑖𝑛 (𝑋 − 𝑝𝑜𝑠, 10)].

• If the new position is the frog's position, catch it and send it as tribute to the queen.

• In other case start the algorithm again.

Note that the length of Toby's jump cannot be infinite, in fact, it must be less than or equal to

10. Besides this, he will never jump over the frog, in other words, he will never reach a position

greater than 𝑋. TJ the frog does not want to be caught, due to this, TJ wants to compute the

expected number of jumps that Toby needs in order to reach cell number 𝑋.

Help TJ to compute this value.

Input:

The input starts with an integer 1 < 𝑇 ≤ 100 indicating the number of test cases.

Each test case contains one integer 10 ≤ 𝑋 ≤ 5000 denoting the frog's cell.

Output:

For each test case print in one line the expected number of jumps that Toby needs to reach

cell number 𝑋.

Answers with absolute error less than 10−6 will be considered correct.

Example input:
2

10

20

Example output:
2.9289682540

4.8740191199

Time and memory limit: 1s / 64 MB

MDCS – Bubble Cup 2019 81

Solution:

First of all, computing a mathematical solution for this task is the easier part of this task. Let

us define 𝑋𝑖 as the probability of Toby reaching the frog in 𝑖 moves. After that, the solution for

this task is:

𝑟𝑒𝑠𝑢𝑙𝑡 = ∑ 𝑖 ∗ 𝑋𝑖

𝑥

𝑖=1

where 𝑥 is the position of the frog.

Calculating the probability for every scenario would result in a lot of time consumption and

probably wouldn’t pass in the given time limit. Now the same thinking as for calculating the

𝑛𝑡ℎ Fibonacci number leads us to a dynamic programing solution.

Let 𝑑𝑝[𝑖] = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖 . Now 𝑑𝑝[0] = 1.0 because Toby will always

be able to get to that position. Now the recurrence formula would look like this:

𝑑𝑝[𝑖] = ∑
𝑑𝑝[𝑖 − 𝑗]

min (10, 𝑥 − (𝑖 − 𝑗))

max (0,𝑖−10)

𝑗=1

So now we got the 𝑑𝑝[] matrix ready and since we need to calculate the expected number of

jumps it will be equal to the sum of all the probabilities in the 𝑑𝑝[] matrix (except for 𝑑𝑝[0]

because that is not a jump probability). This is because the probability of getting to some

position is equal to the probability of getting one more jump to that position.

When it comes to memory and time limits, they are much lower than the task wanted them to

be, because time complexity is 𝑂(𝑇 ∗ 10 ∗ 𝑥) and memory complexity is 𝑇(𝑥).

Problem source: COJ

Solution by:

Name: Mihailo Milošević

82 MDCS – Bubble Cup 2019

Round 1: Walk home together

Statement:

A group of 𝑓 friends gets together to have a coding problem-solving party at their university

computer lab every weekend. Unfortunately, it closes at 22:00, at which point they have no

other option but to walk home. The city they live in can be described as 𝑛 junctions connected

by 𝑚 bidirectional roads. Since these friends have been interrupted from coding their

solutions, each one of them wants to get home as fast as possible to finish his and submit it.

At the same time, they each have a few problems that they want to discuss with the others, so

they will pick such a path that the entire group can walk together for as long as possible. On

top of that, so that this walk would feel fresh every time, they would like to take a different

path each weekend, for as long as possible.

The group of friends were able to figure out both the length of the longest path they could all

efficiently walk together, as well as how many such distinct paths there are - do you think you

can do it, too?

Input:

The first line contains an integer 𝑇 - the number of test cases. 𝑇 test cases follow, each in the

given format. Test cases are separated by a blank line.

The first line of a case contains four integers 𝑛 𝑚 𝑐 𝑓 - the number of junctions, the number of

two-way roads connecting the junctions, the junction at which the computer lab is located,

and the number of friends. Junctions are numbered from 1 to 𝑛.

The second line contains 𝑓 distinct integers 𝐹1 , . . . , 𝐹𝑓 − 𝐹𝑖 is the junction where friend

number 𝑖 lives. None of them are equal to 𝑐.

The following 𝑚 lines contain three integers 𝑥 𝑦 𝑧, denoting a two-way road connecting the

junctions 𝑥 and 𝑦, of length 𝑧. Each unordered pair 𝑥, 𝑦 will be present at most once.

You can assume that the city is connected.

Output:

Output two integers 𝐿 and 𝑊.

A 'path' is a sequence of junctions 𝑎1 . . . 𝑎𝑘 where for all 1 ≤ 𝑖 < 𝑘 the junctions 𝑎𝑖 and 𝑎𝑖+1

are connected by a road.

𝐿 is the length of the longest path, such that for all 1 ≤ 𝑖 ≤ 𝑓 if after walking this path friend

number 𝑖 can get home the soonest at some time 𝐿 + 𝑡𝑖 , there exists no path

from 𝑐 to 𝐹𝑖 shorter than 𝐿 + 𝑡𝑖 . In other words, none of the friends could have gotten home

sooner even if they had chosen a different path which did not include the one of length 𝐿.

MDCS – Bubble Cup 2019 83

𝑊 is the number of such paths, modulo 109 + 7.

Two paths are considered distinct if either

• they contain a different number of junctions, or

• they contain the same number of junctions (let’s call that 𝑘), where one path is

described by 𝑎1 . . . 𝑎𝑘 and the other by 𝑏1 . . . 𝑏𝑘 , and there exists some

1 ≤ 𝑖 ≤ 𝑘 such that 𝑎𝑖 ≠ 𝑏𝑖.

Constraints:

• 1 ≤ 𝑓 < 𝑛 ≤ 5000

• 𝑛 − 1 ≤ 𝑚 ≤ 𝑚𝑖𝑛 (106 ,
𝑛∗(𝑛−1)

2
)

• 1 ≤ 𝑐 ≤ 𝑛

• 1 ≤ 𝐹𝑖 ≤ 𝑛

• 1 ≤ 𝑥 < 𝑦 ≤ 𝑛

• 1 ≤ 𝑧 ≤ 4 ∗ 105

• 1 ≤ 𝑇 ≤ 500

Additionally, if 𝑇 > 1, 𝑛 ≤ 50.

The largest input file is under 16MB.

Example input:
3

9 12 2 3

9 8 1

2 5 3

2 3 7

2 4 5

3 6 4

6 7 2

5 7 20

4 7 8

4 8 50

7 9 10

7 8 30

1 8 15

1 9 15

9 12 2 3

9 8 1

2 5 3

2 3 7

2 4 5

3 6 4

6 7 2

5 7 20

4 7 8

4 8 10

7 9 10

7 8 30

1 8 15

1 9 15

84 MDCS – Bubble Cup 2019

9 12 2 3

9 8 1

2 5 3

2 3 7

2 4 5

3 6 4

6 7 2

5 7 20

4 7 8

4 8 10

7 9 10

7 8 30

1 8 4

1 9 4

Example output:
13 2

5 1

15 1

Explanation:

In the first case, the paths are 2, 3, 6, 7 and 2, 4, 7. Friends number 1 and 2 can then go straight

home, and friend number 3 can go home either through junction 8 or 9. For each friend, this

is an optimal path.

In the second case, friend number 1 can get home the fastest the same ways as before, friend

number 2 can get home the fastest by going down 2, 4, 8 and friend number 3 by going down

2, 4, 8, 1. Hence the longest path which all friends are willing to take is 2, 4 of length 5, and no

other such path exists.

In the third case, the first friend can get home the fastest by paths 2, 3, 6, 7, 9 or 2, 4, 7, 9 or

2, 4, 8, 1, 9; the second friend's only fastest path is 2, 4, 8, and the third friend is only willing to

take the path 2, 4, 8, 1. Hence the longest path they are all willing to take has length 15 and it

is 2, 4, 8.

Time and memory limit: 4s / 64 MB

MDCS – Bubble Cup 2019 85

Solution:

Firstly, we make a DAG using Dijkstra’s algorithm which will contain all vertices and edges

needed for any path of shortest length to any node. This graph will be useful because in this

problem we are looking for a path which we can extend with a few extra edges to be the

shortest path to any “home” node, which itself is the shortest path too. To construct this graph

we simply add every edge connecting node 𝐴 to node 𝐵 (order matters, we are making a DAG)

such that 𝑑𝑖𝑠𝑡(𝐴) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒𝑑𝑔𝑒) = 𝑑𝑖𝑠𝑡(𝐵), where 𝑑𝑖𝑠𝑡() represents the length of the

shortest path from the source node to a node we obtained using Dijkstra’s algorithm. It is easy

to prove that every path of the shortest length from the source node to each other node can

be made using edges from this graph, using contradiction. Also, every path in this graph is the

shortest path which is apparent since we used Dijkstra distances. Now that we have this graph

we will sort it topologically, or since we already have the data from Dijkstra’s algorithm, we

can simply sort it using the order in which we “confirmed” the nodes while running Dijkstra

(these two methods yield the same sorting). We would also get the same ordering if we sorted

by the shortest distance from the source. Now we will move from the back of the array to the

front (from the node the furthest away from the source to the closest one) and look for the

node the furthest from the source and from which we can get to each of the “home” nodes

using only edges in the graph we constructed. Since this sorting is also a topological sorting,

all nodes to which we can get to when starting from node 𝐴 are closer to the end of the array

than node 𝐴. For each node we will have a bitmask representing to which of the “home” nodes

we can get to. So, while moving from the back of the array we will update bitmasks of all of

the parental nodes (i.e. nodes from which we can get to that node using only one edge) by

using bitwise 𝐴𝑁𝐷. The first node we get to (remember we started from the end) such that the

bitmask contains 1 in all positions will be one of (there could be multiple such nodes) the

furthest nodes from the source from which we can get to each “home” node. Now we just

check if any of the other nodes of the same 𝑑𝑖𝑠𝑡() have a good bitmask. We now have the 𝐿

value of the output (𝑑𝑖𝑠𝑡() to one of these nodes), we still need to calculate 𝑊, which in a DAG

can be done using simple combinatorics (the only thing we need to keep in mind is that we

could have multiple nodes to which we are calculating the number of ways to, and just add

them at the end). Let’s discuss the time complexity of this solution. The time complexity of

Dijkstra’s algorithm is 𝑂(𝑚 ∗ log 𝑛) which is good enough. Construction of the DAG and sorting

of nodes are also fine. The only part where we need to be careful is traversing of the array

while updating bitmasks. The bitmask could have up to 𝑛 bits and we do a bitwise 𝐴𝑁𝐷 for

each edge in the DAG which we could have up to 𝑚. So in order to achieve a good time

complexity we need to use a C++ bitset (or a smart custom bitmask using an array of integers)

which would reduce the time complexity of this part down to 𝑂(
𝑛∗𝑚

32
) which is good enough.

Problem source: SPOJ

Solution by:

Name: Marko Šišović

86 MDCS – Bubble Cup 2019

Round 1: [Challenge] Guess The Number With Lies v5

Statement:

 The Judge has chosen an integer 𝑥 in the range [1, 𝑛]. Your task is to find 𝑥, using at

most 𝑚 queries as described below. But be careful because there are 2 important things:

1. The Judge can lie. The Judge is allowed to lie 𝑤 times in a single game and only in

reply for query.

2. You must prepare all queries at once and send all of them to the Judge before you get

any reply.

Query:

A single query should contain a string 𝑠1𝑠2𝑠3. . . 𝑠𝑛, where 𝑠𝑖 is '0' or '1'. The reply for the query

is "YES", if 𝑠𝑥 = '1', or "NO" otherwise.

For example, when 𝑛 = 8, 𝑥 = 5 and the query is "00101011", the Judge will reply "YES" (if

telling the truth) or "NO" (if lying), because the 5𝑡ℎ character in the query is '1'.

Real task and scoring:

The real task is not to find the number 𝑥 chosen by the Judge, but only to prepare queries,

which allow you to guess the 𝑥 value for every possible Judge's reply. The Judge won't give

you a reply for your queries.

If the Judge will find such a reply for your queries, that there will be more than one 𝑥 value

possible, you will fail the test case (see example for detail explanation). Otherwise you succeed.

If you succeed, your score is 𝑞2, where 𝑞 is the number of queries, that you use. If you fail, you

get a penalty score equal to 4 ∗ 𝑚2. The total score is ⌊
𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑔𝑎𝑚𝑒𝑠

100
 ⌋. The

smaller score is the better score.

Input:

The first line of input contains one integer 𝑇 - the number of test cases. Then 𝑇 test cases

follow.

Each test case contains one line with three single-space separated integers 𝑛, 𝑤 and 𝑚,

where 𝑛 is the size of the game, 𝑤 is the maximal number of lies and 𝑚 is the maximal number

of queries, that You can use.

Output:

For each test case print a line with one integer 𝑞 - the number of queries that you want to ask.

Then print 𝑞 lines with your queries. Each query should be string of length 𝑛, with all characters

'0' or '1'.

Constraints:

• 1 ≤ 𝑇 ≤ 27

MDCS – Bubble Cup 2019 87

• 2 ≤ 𝑤 ≤ 24

• 2 ≤ 𝑛 ≤ 212

• (2 ∗ 𝑤 + 1) ∗ ⌈log2 𝑛⌉ ≤ 𝑚

• 0 ≤ 𝑞 ≤ 𝑚

Example input:
4

2 2 6

2 3 8

2 16 34

5 2 18

Example output:
6

01

01

01

01

01

01

6

01

01

01

01

01

01

0

15

00011

00011

00011

00011

00011

01010

01010

01010

01010

01010

00100

00101

00110

01100

01111

Explanation:

Notation: reply "YYN..." means, that the Judge replied "YES" for the first and the second query,

"NO" for the third query, and so on...

In the 1st test case there are only two numbers. The Judge can reply "YYYYYY", "NNNNNN"

(without a lie), "YYYYYN", "YYYYNY", "YYYNYY", "YYNYYY", "YNYYYY", "NYYYYY", "NNNNNY",

"NNNNYN", "NNNYNN", "NNYNNN", "NYNNNN", "YNNNNN", (with one lie) or "NNNNYY",

"NNNYNY", "NNNYYN", "NNYNNY", "NNYNYN", "NNYYNN", "NYNNNY", "NYNNYN",

"NYNYNN", "NYYNNN", "YNNNNY", "YNNNYN", "YNNYNN", "YNYNNN", "YYNNNN",

"NNYYYY", "NYNYYY", "NYYNYY", "NYYYNY", "NYYYYN", "YNNYYY", "YNYNYY", "YNYYNY",

88 MDCS – Bubble Cup 2019

"YNYYYN", "YYNNYY", "YYNYNY", "YYNYYN", "YYYNNY", "YYYNYN", "YYYYNN" (with 2 lies).

The other replies ("NNNYYY", "NNYNYY", "NNYYNY", "NNYYYN", "NYNNYY", "NYNYNY",

"NYNYYN", "NYYNNY", "NYYNYN", "NYYYNN", "YNNNYY", "YNNYNY", "YNNYYN", "YNYNNY",

"YNYNYN", "YNYYNN", "YYNNNY", "YYNNYN", "YYNYNN", "YYYNNN") are not ok, because for

every one of them and for every possible 𝑥 value, the Judge lies more than two times. For each

good reply, there is only one integer from range [1, 2], that matches this reply ("match" means

match all except at most two of the queries). The score is 62 = 36. Notice, that You can use

the same query more than once.

In the 2𝑛𝑑 test case the player tried to give the solution, but the solution was wrong. The Judge

can reply for example "YYYNNN" and then for both possible values of 𝑥 the judge lied 3 times.

The player needs more queries in this case. The score is the penalty score 4 ∗ 82 = 256.

In the 3𝑟𝑑 test case the player decided to skip. The player got the penalty score 4 ∗ 342 =

 4624.

In the 4𝑡ℎ test case the nubmer of queries given by the player is smaller than the maximal

possible number. For every possible Judge's reply there is only one possible value of 𝑥, so the

test succeeded. The score is 152 = 225.

The total score is ⌊
36 + 256 + 4624 + 225

100
⌋ = 51.

Time and memory limit: 1s / 64 MB

MDCS – Bubble Cup 2019 89

Solution:

In “Guess The Number With Lies v5”, we imagine a scenario when the judge has chosen a

number in {1, … , 𝑛}, and we have to guess it, taking into account the fact that the judge can lie

some number of times.

The questions we’re allowed to ask consist of selecting any subset of {1, … , 𝑛}; in response, we

learn if our subset contains the secret number. The judge can lie at most 𝑤 times, and we have

to design a small set of queries, which allows us to guess the secret number no matter what it

is and which questions the judge decides to lie to. Note that we have to select the queries

beforehand, so we cannot depend on the answers to the initial queries when choosing the

subsequent ones.

To slightly transform the problem, consider encoding a strategy as a binary matrix 𝑀 of size

𝑞 × 𝑛. Each of the 𝑞 rows will correspond to a single query, containing 𝑛 bits denoting which

of the numbers from {1, … , 𝑛} are present in the query.

Notice that if the secret number is 𝑘, then the true answers to our queries correspond to the

𝑘𝑡ℎ column of 𝑀. As the judge can lie at most 𝑤 times, it can respond with a different sequence

of answers – more precisely, any sequence inside a Hamming ball of radius 𝑤 around the 𝑘𝑡ℎ

column. If two different columns of 𝑀 have Hamming distance at most 2𝑤, then it’s easy to

see that there exists a binary sequence 𝑏 with distance at most 𝑤 to both columns. If the judge

responds to our queries according to the sequence 𝑏, we see that we won’t find out the exact

value of the secret number; hence the strategy encoded by 𝑀 is incorrect. Conversely, if any

two columns of 𝑀 have Hamming distance at least 2𝑤 + 1, any sequence of answers can match

at most one choice of the hidden number, so 𝑀 gives a valid strategy.

The analysis above gives us a different look at the problem: we need to find a matrix 𝑀 of size

𝑞 × 𝑛, such that every two columns of 𝑀 have Hamming distance at least 2𝑤 + 1, and 𝑞 is as

small as possible.

We can start with 𝑀 being empty, and add rows one by one, as long as there are columns at

distance less than 2𝑤 + 1.

The easiest solution is to iterate for 𝑖 from 0 to 𝑐𝑒𝑖𝑙(log 𝑛), and for each such 𝑖, create a row

with ones for numbers that have the 𝑖𝑡ℎ bit set and zeros for the other ones. It’s easy to see

that if we duplicate each such row 2𝑤 + 1 times, we get a valid matrix 𝑀. This gives us a

solution with 𝑞 = (2𝑤 + 1) ∗ 𝑐𝑒𝑖𝑙(log 𝑛). Note the constraint on 𝑚, which means that for our

simple solution we’re already asking at most 𝑚 queries, and we don’t even need to read the

value of 𝑚 from the input. If we want to explore a more general class of solutions, it becomes

non-trivial to know whether we should continue adding rows to 𝑀 or not. However, if we keep

all pairwise distances between columns, and update them after each row is added, it’s easy to

know when to stop.

90 MDCS – Bubble Cup 2019

One possible class of sequences which we can consider as rows for 𝑀 is the following. Take

any number 𝑥 ≤ 2(𝑐𝑒𝑖𝑙(log 𝑛)), and consider an assignment from {1, … , 𝑛} to {0, 1} defined as:

𝑓(𝑖) = 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑂𝑛𝑒𝑠(𝑖 𝐴𝑁𝐷 𝑥) 𝑚𝑜𝑑 2

Note that the class of sequences above also contains the sequences we used as rows in our

initial solution. On the other hand, this class is not very big as it has only 𝑂(𝑛) sequences.

In our next solution, we will extend 𝑀, each time by greedily picking an optimal row that can

be constructed according to the process above. We can score a candidate row in many

different ways; for example, we can consider the minimum Hamming distance between a pair

of columns at the moment, take all such “worst” pairs of columns, and count for how many of

them we’re increasing the distance by adding the candidate row.

The above idea gives a much better solution, but it’s pretty slow. The next idea is to calculate

the solutions locally and hardcode them in the code sent to the judge system.

To fit within the code length limit, we need to resolve a few issues. First, it’s not possible to

hardcode the solutions themselves, as each question corresponds to sequence of 𝑛 bits.

Fortunately, our questions come from a narrow family of sequences which can be described

with just one number 𝑥 less than 2𝑛. Thus, the solution to a particular input (𝑛, 𝑤) takes not

that much space, but there are many possible values of 𝑛. Now, we can notice that an answer

for some 𝑛 gives also an answer for all smaller 𝑛. If we precompute the answers for 𝑛 being

the powers of two (and all possible values of 𝑤), then given some arbitrary 𝑛 we can round it

up to the closest possible power of 𝑛. Finally, even after these reductions, the resulting code

can exceed the length limit. In that case, we can further compress the solutions before

hardcoding them, while adding an additional code that decompresses them at runtime.

This solution gives already pretty good results. In order to squeeze a few more points out of

it, we can notice that the precomputation time is not bounded by the judge’s time limit. If we

randomly perturb our greedy construction process so it’s not deterministic, we can try many

different random seeds (or different variants of the algorithm itself, e.g. with a different greedy

selection rule) and hardcode the best one we find. Checking these different seeds/variants is

trivially parallelizable, so we can scale it to multiple threads, and even multiple machines.

Obviously, using more compute power quickly starts to yield diminishing returns, but it allows

to obtain a few more points into the final score. This solution now places within the top 3

places on the BubbleCup leaderboard.

Problem source: SPOJ

Solution by:

Name: Krzysztof Maziarz

MDCS – Bubble Cup 2019 91

Round 2: Ada and Scarecrow

Statement:

As you might already know, Ada the Ladybug is a farmer. She has multiple farmhouses and

some fields which always connect two adjacent farmhouses. She plans to buy some scarecrows

to scare crows!

A scarecrow placed on a farmhouse scares all crows from all adjacent fields. A crow on a field

can be disastrous, so Ada has to arrange the scarecrows in such a way that they cover all of

the fields. As scarecrows are pretty expensive, she wants to minimize the number of them. Can

you count it for her?

Note: Even thought it might look like that from description, the formed "graph" doesn't have

to be planar! Also, multi-fields and self-field are not allowed.

Input:

The first line contains an integer 1 ≤ 𝑇 ≤ 100.

Each of the next 𝑇 test-cases begins with two integers 1 ≤ 𝑁, 𝑀 ≤ 150, the number of

farmhouses and the number of fields.

Each of next 𝑀 lines contains two numbers 0 ≤ 𝐴𝑖, 𝐴𝑗 < 𝑁, the farmhouses, which are

connected by a field.

Output:

For each test-case output the minimal number of scarecrows Ada has to buy, to cover all fields.

Example input:
6

3 3

1 2

1 0

2 0

4 3

1 2

1 3

1 0

5 6

0 2

0 3

1 3

1 2

1 4

2 4

5 8

0 1

0 3

0 4

1 2

1 4

3 4

92 MDCS – Bubble Cup 2019

3 2

2 4

4 2

0 1

2 3

6 9

0 4

4 3

1 2

2 0

2 3

5 3

4 1

4 2

5 0

Example output:
2

1

3

3

2

3

Example input:
2

17 7

12 9

11 8

9 16

11 2

5 14

7 6

8 14

16 23

10 13

11 3

7 14

14 3

9 11

7 8

0 9

8 14

10 8

0 4

6 15

6 12

2 5

10 2

7 11

13 12

15 13

5 3

15 0

6 2

12 9

5 1

1 4

Example output:
4

MDCS – Bubble Cup 2019 93

9

Time and memory limit: 1s / 64 MB

94 MDCS – Bubble Cup 2019

Solution:

This problem is a well-known NP-complete graph theory problem – Minimum Vertex Cover. A

good strategy to solve such problems is to use a Branch and Bound approach along with a

good heuristic.

A state is defined as a mapping of the set of nodes of the graph to the set {0, 1, 𝑋}, 0 denoting

that a node is not taken into the vertex cover, 1 denoting that it is taken into the vertex cover,

and 𝑋 denoting that this node may or may not be included into the vertex cover. A state 𝑠 is

valid if no edge of the graph has both its endpoints marked with 0. A state is final if it does

not map any node to 𝑋.

Let’s start with a pure brute-force recursive solution and then improve it by eliminating

unnecessary recursive calls. We will use a recursive function whose parameter is a valid state.

If the state is final, we count the number of ones and store that number. Otherwise, we find

any node 𝑝 such that 𝑠(𝑝) = 𝑋 and then recursively call the function twice, once for a state

such that this node has been mapped to 0 instead and once where it has been mapped to 1.

Here, we can make the first improvement. When we replace 𝑠(𝑝) with 0, we can also

immediately change 𝑠(𝑞) to 1 for all neighbors 𝑞 of 𝑝. If we do this each time we assign 0 to

an undecided node, it’s not hard to see that we will always end up with a valid state.

If the number of nodes mapped to 1 already exceeds the minimum solution found so far, we

can return immediately. We will improve this by finding a lower bound on the number of

undecided nodes we need to map to 1 in order to complete a vertex cover. Let 𝑀 be a

matching of the graph considering only the edges whose both endpoints are mapped to 𝑋.

Then, it’s not hard to see that we need to map at least |𝑀| more nodes to 1. Thus, we want to

find a large matching of that graph – the bigger, the better. Unfortunately, finding the exact

size of the maximum matching is too slow. Instead, we can find any matching using a greedy

algorithm. This approach results in lower overall running time.

The order of recursion matters. When we pick a node on which to recurse, we will pick the one

having the most neighbors not mapped to 1. Also, first we will recurse setting 𝑠(𝑝) = 1 and

then setting 𝑠(𝑝) = 0.

Another improvement is to process the state by greedily assigning values to certain nodes

which are currently mapped to 𝑋 in such a way that we don’t worsen the solution. If a node

has no neighbors mapped to 𝑋, we can freely map that node to 0. Otherwise, if it has exactly

one neighbor mapped to 𝑋, then, for this edge, at least one of the nodes has to be set to 1,

so let’s set this node to 0 and its neighbor to 1.

Finally, the following trick seems to slightly improve running time. After reading the graph

from input, we can permute the labels of nodes and permute their adjacency lists. Then, we

MDCS – Bubble Cup 2019 95

will randomly pick a node as a root, run BFS from it, and reorder the nodes in based on their

distance from the root, again permuting their adjacency lists.

Problem source: SPOJ

Solution by:

Name: Ivan Stošić

96 MDCS – Bubble Cup 2019

Round 2: Ada and Prime

Statement:

As you might already know, Ada the Ladybug is a farmer. She grows many vegetables and

trees and she wants to distinguish between them. For this purpose she bought funny signs,

which contain a few digits. The digits on the sign could be arbitrarily permuted (yet not

added/removed). Ada likes prime numbers so she wants the signs to be prime (and obviously

distinct). Can you find the number of signs with prime number which could be obtained?

NOTE: The number can't have leading zero!

Input:

The first line of input will contain 1 ≤ 𝑇 ≤ 10000, the number of test-cases.

The next 𝑇 lines will contain 1 ≤ 𝐷 ≤ 9, the number of digits on a sign, followed by 𝐷 digits

0 ≤ 𝑑𝑖 ≤ 9.

Output:

For each test-case, output the number of distinct primes which could be generated on a given

sign.

Example input:
5

1 9

3 1 2 3

5 1 2 0 8 9

7 1 0 6 5 7 8 2

5 1 2 7 3 1

Example output:
0

0

11

283

15

Time and memory limit: 4s / 64 MB

MDCS – Bubble Cup 2019 97

Solution:

Let’s present an offline solution. First, we precompute the answer for every possible input set

and save that in an array 𝑎𝑛𝑠, such that 𝑎𝑛𝑠[𝑡𝑜_𝑘𝑒𝑦(𝑖𝑛𝑝𝑢𝑡)] (initialized to 0) represents the

number of possible primes that can be generated using the digits from the input set. The

𝑡𝑜_𝑘𝑒𝑦 function is used to map the input digits to an integer number that can be used as an

index for the 𝑎𝑛𝑠 array. Since the input digits are treated as a set, the solution remains the

same when they are permuted, and 𝑡𝑜_𝑘𝑒𝑦 should map all those permutations to the same

integer key. One possible choice is to map every set of digits {𝑑1, 𝑑2, … , 𝑑𝑛} to 10𝑑1 + 10𝑑2 +

⋯ 10𝑑𝑛.

The most naive way to precompute the solutions for all inputs is to iterate through all the

numbers in [1, 109] (this is enough since 𝐷 ≤ 9) and for every number check if it’s a prime. For

every prime found we treat its digits as a set and do 𝑠𝑜𝑙[𝑡𝑜_𝑘𝑒𝑦(𝑝𝑟𝑖𝑚𝑒)]++. By applying 𝑡𝑜_𝑘𝑒𝑦

to both primes and input sets we avoid needless computation and duplication of results.

However, this solution is too slow. The main optimization we have to introduce is to use the

Sieve of Eratosthenes to find all primes in [1, 109] instead of doing it manually. On top of that,

we have to use the segmented variant with clever usage of bitmasks to save on time even

further. The sieve and the segmented variant are well known and their description can be easily

found in many places, so we will omit it in this editorial. One of those places, that also hosts a

heavily optimized C++ implementation of segmented bit sieve is

https://github.com/kimwalisch/primesieve/wiki/Segmented-sieve-of-Eratosthenes. Working

with bitmasks can be tricky when we need to extract actual values of primes and map them to

keys, but apart from that, the segmented bit sieve fits our use case perfectly.

This, along with the special handling of some edge cases, is good enough to pass on SPOJ.

For the BubbleCup judge, one final optimization was needed: Instead of sieving all primes in

[1, 109] we use [1, 10𝑚𝑎𝑥𝐷] where 𝑚𝑎𝑥𝐷 is the largest value of 𝐷 in the current test case.

Problem source: SPOJ

Solution by:

Name: Nikola Jovanović

https://github.com/kimwalisch/primesieve/wiki/Segmented-sieve-of-Eratosthenes

98 MDCS – Bubble Cup 2019

Round 2: Just a Palindrome

Statement

A palindrome is a symmetrical string, that is, a string read identically from left to right as well

as from right to left.

Chiaki has a string 𝑠 and she can perform the following operation at most once:

• choose two integers 𝑖 and 𝑗 (1 ≤ 𝑖, 𝑗 ≤ |𝑠|),

• swap 𝑠𝑖 and 𝑠𝑗 .

Chiaki would like to know the longest palindromic substring of string after the operation.

Input

There are multiple test cases. The first line of input contains an integer 𝑇, indicating the number

of test cases. For each test case the first line contains a non-empty string 𝑠 (1 ≤ |𝑠| ≤ 106)

consisting of lowercase and uppercase letters.

It is guaranteed that the sum of all |𝑠| does not exceed 106.

Output

For each test case, output an integer denoting the answer.

Example input
10

a

xxxx

ssfs

aaabbacaa

missimxx

ababababgg

dfsfsdgdg

asdsasdswe

chiaki

teretwer

Example output
1

4

3

8

6

9

6

9

3

6

Time and memory limit: 1s / 256 MB

MDCS – Bubble Cup 2019 99

Solution

Let the given string be 𝑆 and its length be 𝑛. We refer to the substring 𝑆𝑙𝑆𝑙+1 … 𝑆𝑟 as 𝑆𝑙,𝑟 for

1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛. To represent the reversed string 𝐴 we use the notation 𝐴𝑅 .

Let’s traverse 𝑆 from left to right and find the longest palindrome centered at each position.

We will first consider the palindromes of even length.

For a fixed index 𝑖 (1 ≤ 𝑖 < 𝑛), we assume that the center of the palindrome is situated

between positions 𝑖 and 𝑖 + 1. We can use binary search to find the minimum number 𝑘 such

that 𝑆𝑖−𝑘+1,𝑖 ≠ 𝑆𝑖+1,𝑖+𝑘
𝑅 or 𝑖 − 𝑘 + 1 < 1 or 𝑖 + 𝑘 > 𝑛. If the mentioned indexes are out of

bounds, we can just update our answer with 2(𝑘 − 1) and continue. Otherwise, there has

happened a mismatch, (that is, 𝑆𝑖−𝑘+1 ≠ 𝑆𝑖+𝑘) which we can fix using one swap if the character

𝑆𝑖−𝑘+1 appears in range [1, 𝑖 − 𝑘] ∪ [𝑖 + 𝑘, 𝑛] or if 𝑆𝑖+𝑘 appears in range [1, 𝑖 − 𝑘 + 1] ∪

(𝑖 + 𝑘, 𝑛].

Suppose we somehow managed to fix the first mismatch. In that case, we might be able to

extend our palindrome further beyond it. Thus, we binary search the next mismatch, i.e., the

minimum number 𝑙 greater than 𝑘 such that 𝑆𝑖−𝑙+1,𝑖−𝑘 ≠ 𝑆𝑖+𝑘+1,𝑖+𝑙
𝑅 or 𝑖 − 𝑙 + 1 < 1 or 𝑖 + 𝑙 > 𝑛.

If there is no second mismatch, we can just update our answer with 2(𝑙 − 1). Otherwise, we

have found the second mismatch: 𝑆𝑖−𝑙+1 ≠ 𝑆𝑖+𝑙. We can fix both of them using one swap if and

only if the logical statement 𝐴 is true:

 𝐴 ≡ (𝑆𝑖−𝑙+1 = 𝑆𝑖−𝑘+1 ⋀ 𝑆𝑖+𝑘 = 𝑆𝑖+𝑙) ⋁(𝑆𝑖−𝑙+1 = 𝑆𝑖+𝑘 ⋀ 𝑆𝑖−𝑘+1 = 𝑆𝑖+𝑙)

If the first operand of disjunction is true, we can perform a swap on 𝑆𝑖−𝑙+1 and 𝑆𝑖+𝑘 . If the

second operand is true, we can perform a swap on 𝑆𝑖−𝑙+1 and 𝑆𝑖−𝑘+1.

If we were able to fix both of the mismatches using one swap, then we should try and lengthen

our palindrome even more with yet another binary search. Finally, we update our answer with

2(𝑚 − 1), where 𝑚 is the minimum number greater than 𝑙 such that 𝑆𝑖−𝑚+1,𝑖−𝑙 ≠ 𝑆𝑖+𝑙+1,𝑖+𝑚
𝑅 or

𝑖 − 𝑚 + 1 < 1 or 𝑖 + 𝑚 > 𝑛 (𝑆𝑖−𝑚+1 ≠ 𝑆𝑖+𝑚 is the third mismatch).

When dealing with the palindromes of odd length, we assume that their center is exactly the

fixed index 𝑖 (1 ≤ 𝑖 ≤ 𝑛) and use the largely unchanged approach for even length palindromes.

The only difference is that an additional way to fix the first mismatch is to swap 𝑆𝑖−𝑘 with 𝑆𝑖 if

𝑆𝑖+𝑘 = 𝑆𝑖 or swap 𝑆𝑖+𝑘 with 𝑆𝑖 if 𝑆𝑖−𝑘 = 𝑆𝑖 (the indexes are adapted to suit the odd length

palindromes).

The implementation can be carried out efficiently using rolling hash (𝑝 is a chosen constant

and 𝑡1, … , 𝑡𝑘 are characters):

 𝐻 = 𝑡1𝑝𝑘−1 + 𝑡2𝑝𝑘−2 + 𝑡3𝑝𝑘−3 + ⋯ + 𝑡𝑘𝑝0

100 MDCS – Bubble Cup 2019

Having precomputed 𝐻𝑖 and 𝐻𝑖
𝑅 (the value of hash of 𝑆1,𝑖 and 𝑆𝑖,𝑛

𝑅 respectively) we can obtain

the value of hash of a certain substring of 𝑆 and therefore check substrings for equality in

constant time:

 𝐻𝑙,𝑟 = 𝐻𝑟 − 𝐻𝑙−1 × 𝑝𝑟−𝑙+1

𝐻𝑙,𝑟
𝑅 = 𝐻𝑙

𝑅 − 𝐻𝑟+1
𝑅 × 𝑝𝑟−𝑙+1

We also need to be able to check if a certain character 𝑓 appears in a given range [𝑙, 𝑟], which

can be accomplished by precomputing 𝐶𝑖,𝑗 , the number of times character 𝑗 appears in 𝑆1,𝑖.

On the whole, we get a solution that works in 𝑂(𝑛 × log 𝑛), with a constant factor depending

on the tidiness of one’s implementation.

Problem source: SPOJ

Solution by:

Name: Miloš Purić

MDCS – Bubble Cup 2019 101

Round 2: Tjandra 19th birthday present (HARD)

Statement:

This game/puzzle is about matches, given 𝑁 matches, your task is to arrange the matches (not

necessarily all) such that the number of rectangles (any size) is maximum.

Input:

The input begins with the number 𝑇 of test cases in a single line.

In each of the next 𝑇 lines there is one integer 𝑁.

Output:

For each test case, on a single line, print the required answer (maximum number of rectangles).

Constraints:

• 1 < 𝑇 ≤ 100

• 1 < 𝑁 ≤ 1018

The 𝑇 numbers 𝑁 are uniform-randomly chosen in the range.

Example input:
6

3

4

8

12

15

987654321123456789

Example output:
0

1

3

9

12

60966316127114768913148159571503206

Explanation:

First test case:

No rectangle can be formed with only 3 matches.

Second test case:

Only one rectangle can be formed with 4 matches.

Third test case:

There are max 3 rectangles.

102 MDCS – Bubble Cup 2019

(2 size 1 × 1, 1 size 2× 1) can be formed with a number of matches ≤ 8, here is one of the

matches formations:

Fourth test case:

There are max 9 rectangles.

(4 size 1 × 1, 2 size 2 × 1, 2 size 1 × 2, 1 size 2 × 2) can be formed with a number of matches

≤ 12, here is one of the formations:

Fifth test case:

there are max 12 rectangles.

(5 size 1 × 1, 3 size 2× 1, 1 size 3× 1, 2 size 1 × 2 , 1 size 2 × 2) can be formed with a number

of matches ≤ 15, here is one of the formations:

MDCS – Bubble Cup 2019 103

Sixth test case:

You have to figure out by yourself how to compute that in the required time.

Time and memory limit: 0.5s / 64 MB

104 MDCS – Bubble Cup 2019

Solution:

The key observation is that for any number of matches, the optimal solution has a form of

grid-aligned rectangle, possibly with some additional unit cells on one side. This lemma is

rather intuitive and its proof is technical. Therefore, now I will show how to solve the problem

assuming the lemma and then I will prove the lemma itself. Henceforth I will call such structures

extended rectangles. Note that this observation suffices to solve the problem for small values

of 𝑛, since there is only 𝑂(√𝑛) possible extended rectangles.

Consider any extended rectangle. Denote its dimensions by 𝑎, 𝑏 and the number of additional

cells as 𝑐. Without loss of generality we can assume 𝑎 ≤ 𝑏, since it is always better to put

additional cells along the shorter side. Then clearly the number of simple rectangles in it is

equal to

(
𝑎 + 1

2
) (

𝑏 + 1

2
) + (

𝑐 + 1

2
) (𝑏 + 1)

Since we have only 𝑛 matches, we know that

𝑛 ≥ 𝑎(𝑏 + 1) + 𝑏(𝑎 + 1)

which comes from the number of matches in the central rectangle. This gives us

𝑛 − 𝑏

2𝑏 + 1
≥ 𝑎

And therefore

𝑎 = ⌊
𝑛 − 𝑏

2𝑏 + 1
⌋

Also, the remaining matches give us

𝑐 = ⌊
𝑛 − 1 − 𝑎(𝑏 + 1) − 𝑏(𝑎 + 1)

2
⌋

MDCS – Bubble Cup 2019 105

in case there are any, otherwise 𝑐 = 0. Now let’s observe that the following inequality holds:

(
𝑎 + 1

2
) (

𝑏 + 1

2
) + (

𝑐 + 1

2
) (𝑏 + 1) =

 (
⌊

𝑛 − 𝑏
2𝑏 + 1

⌋ + 1

2
) (

𝑏 + 1

2
) + (

⌊
𝑛 − 1 − 𝑎(𝑏 + 1) − 𝑏(𝑎 + 1)

2
⌋ + 1

2
) (𝑏 + 1) ≤

(
⌊

𝑛 − 𝑏
2𝑏 + 1

⌋ + 1

2
) (

𝑏 + 1

2
) + (

𝑛 − 1 − 𝑎(𝑏 + 1) − 𝑏(𝑎 + 1)
2

+ 1

2
) (𝑏 + 1) ≤

(

𝑛 − 𝑏
2𝑏 + 1

+ 1

2
) (

𝑏 + 1

2
) =

𝑏(𝑏 + 1)(𝑛 − 𝑏)(𝑛 + 𝑏 + 1)

4(2𝑏 + 1)2

It can be obtained with simple algebraic transformations, for clarity I will omit those. This way

we have an upper bound on the optimal result. Note that whenever 2𝑏 + 1 divides 𝑛 − 𝑏, which

means that 𝑐 = 0, the sides are equal, so this bound is tight. This function also flattens quickly

as 𝑏 approaches its maximal value √2𝑛.

Now I will argue that in order to find the optimal value of 𝑏, it is sufficient to consider only

those for which 𝑐 is either close to 0 or to 𝑎. Consider any 𝑏 for which the value of 𝑐 is neither

close to 0 nor to 𝑎. If we decrease 𝑛 by a small value, there should be another 𝑏’ which for this

lower value 𝑛’ satisfies 2𝑏’ + 1 divides 𝑛’ − 𝑏’ and thus its score hits the bound, so it is not

smaller than for 𝑏. The same way we can increase 𝑛 and look for another 𝑏’. This reasoning can

be easily formalized. Precise meaning of close and will be explained later. Note that we can

expect an even distribution of 𝑐 values, since in this problem input is chosen randomly.

Finally, we came to a conclusion that allows us to build an algorithm – since peak score values

appear for such 𝑏 that the remainder of
𝑛−𝑏

2𝑏+1
 is small, it suffices to iterate over such 𝑏 and take

the highest score. Clearly

2𝑏 + 1|𝑛 − 𝑏 ⇒ 2𝑏 + 1|2𝑛 − 2𝑏 ⇒ 2𝑏 + 1|2𝑛 + 1

and thus, we should iterate over the divisors of numbers close to 2𝑛 + 1 and one of the

obtained values for 𝑏 should give the optimal result.

The algorithm is as follows. We iterate over numbers between 2𝑛 + 1 − 𝑘, 2𝑛 + 1 + 𝑘 for a

certain value of 𝑘. Given this number, 𝑚, we factorize it with any algorithm, such as Pollard's

rho. Then we iterate over odd divisors of 𝑚 and assuming it is equal to 2𝑏 + 1, we calculate

the score using the formula shown before. From all the values obtained this way, we choose

the highest one.

106 MDCS – Bubble Cup 2019

The choice of range for remainders, 𝑘, is rather hard to be determined in a formal way. This

value should be chosen experimentally. Since the inputs are random, we should expect it to

be rather low. Indeed, for this particular test set 𝑘 = 16 is sufficient.

Now I will prove the key lemma. Firstly, we shall observe that all matches should be aligned as

edges of a single grid – if there is more than one aligned component there can be no rectangle

that contains a pair of matches from different aligned components and thus if we embed both

structures in one large grid, the score cannot decrease.

Assume we have any grid-aligned set of matches. In order to prove the lemma, it suffices to

show that there exists an extended rectangle that consists of non-greater number of matches

in which we can find at least that many rectangles as in the starting set.

Let’s transform the matches in the following way: for every column of matches (subset with

fixed 𝑥-coordinate of the center) we shift it to remove the empty spaces inside and place the

lowermost match on arbitrary fixed axis. Formally, match with endpoints (𝑥, 𝑦) − (𝑥 + 𝑑𝑥, 𝑦 +

𝑑𝑦) where 0 ≤ 𝑑𝑥, 𝑑𝑦 ≤ 1 moves to (𝑥, 𝑁) − (𝑥 + 𝑑𝑥, 𝑁 + 𝑑𝑦) where 𝑁 denotes the number

of matches placed lower in this column.

I will show that this operation does not decrease the number of rectangles. Fix two different

columns 𝑎, 𝑏 of vertical matches. All the rectangles with sides in these columns are determined

by the two remaining sides, which are horizontal paths linking the columns. Denote the

number of such paths by 𝑘. Clearly the number of considered rectangles cannot be greater

than
𝑘(𝑘−1)

2
. Let 𝑥, 𝑦 be the numbers of matches in columns 𝑎, 𝑏 respectively. All the considered

rectangles are also determined by intervals of consecutive matches in columns 𝑎, 𝑏, which are

not greater than
𝑥(𝑥+1)

2
 and

𝑦(𝑦+1)

2
. If we align all the columns, for these two we obtain a fully

connected structure of height 𝑚𝑖𝑛(𝑥, 𝑦, 𝑘 − 1). And it gives at least that many rectangles as

minimum of
𝑘(𝑘−1)

2
,

𝑥(𝑥+1)

2
 and

𝑦(𝑦+1)

2
. If we aggregate the result for every pair of columns,

we get that the overall count of rectangles does not decrease.

After performing such shift vertically and similar horizontally we get a corner of a grid. Clearly

if the solution contains a match with an endpoint that is not an endpoint of any other match,

it can be removed without affecting the score, since it cannot be a part of any rectangle. After

applying this operation exhaustively, we are left with a structure that consists of edges from a

subset of unit cells of the grid, forming a corner. Let’s denote the heights of consecutive

columns of unit squares as 𝑎1, 𝑎2, … , 𝑎𝑘. We know that 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑘 .The number of

rectangles in this set is

1 ∗
𝑎1(𝑎1 + 1)

2
+ 2 ∗

𝑎2(𝑎2 + 1)

2
+ ⋯ + 𝑘 ∗

𝑎𝑘(𝑎𝑘 + 1)

2

MDCS – Bubble Cup 2019 107

It can be proved by means of mathematical analysis that such function is optimized by a

constant sequence (possibly except for the last element). And this is indeed the extended

rectangle. Note that as long as we do not increase the first element and do not increase

sequence length, keeping a fixed sum of the sequence is equivalent to using a fixed number

of matches. This completes the solution.

Problem source: SPOJ

Solution by:

Name: Michał Zawalski

108 MDCS – Bubble Cup 2019

Round 2: Game Simulator

Statement:

"Tractor" is a very popular poker game in China. There are four players in the game. Suppose

their names are Alice, Bob, Charles and David, in clockwise order. A judge is needed for this

game. The players are divided into two teams, Alice and Charles are in team 1, and the other

two are in team 2. The prop they use to play the game are two decks of pokers, including 108

cards in total. A simplified rule of the game is described below.

The whole game contains a number of rounds. In each round, one team is called "Declarers"

(CT); the other team is called "Defenders" (FT). Each team has a current rank (CR). The goal

of the player is to increase his own team's CR as much as possible.

A certain round has a Main Suit (Heart - H, Spade - S, Club - C, Diamond - D, or None - no

main suit in this round) and its CR. The CR in this round is the CR of the CT, and the Main Suit

will be given. The Main Suit and CR will be used to determine the order of the cards.

Cards ranked 5, 10, King value 5, 10, 10 pts (points) respectively, all other cards value 0 pts. In

one round, we only consider the FT's pts. The rules of getting pts for FT will be discussed later.

If the FT gets less than 80 pts in one round, they will hold the FT in the next round. This situation

is called "make". Otherwise, they become CT in the next round and the original CT become

FT instead. This situation is called "down".

If the FT gets 0 pts, the CR of the current CT will be increased by 3, for example, if the CR of

the CT is 9, it will become Queen (12). Otherwise, if the FT gets less than 40 pts, the CR of the

CT will be increased by 2. Otherwise, if the FT gets less than 80 pts, the CR of the CT will be

increased by 1. Otherwise, if the FT gets not less than 80 + 𝑘 ∗ 40 pts and less than 120 +

 𝑘 ∗ 40 pts, the CR of the current FT will be increased by 𝑘. For example, if the FT gets 255 pts

in a round, the CR of the current FT will be increased by 4; and if the FT gets 80 pts, both teams'

CR remain unchanged. If a team's CR becomes beyond Ace, this team is considered the

WINNER of the whole game.

During a round, one of the players in CT is called the dealer. If "make", the pard (teammate)

of the dealer becomes the next round’s dealer. Otherwise ("down"), the player on the dealer's

right-hand side becomes the dealer of the next round. For example, if the dealer of the current

round is Alice and her team (CT) is "down", the dealer of the next round should be Bob (on

Alice's right-hand side).

At the start of a round, each of the players except the dealer gets exactly 25 cards; the dealer

gets all the remaining 33 cards. After that, the dealer chooses 8 of his cards and gives them to

the judge, and these cards are called "hidden cards".

MDCS – Bubble Cup 2019 109

Now each player has exactly 25 cards. A round consists of several tricks. In the first trick, the

dealer plays one or more cards (called "lead"), then, in clockwise order, players play the same

number of cards as the first player one by one (called "follow"). The winner of the current trick

leads cards during the next trick, and so on. If the winner of the current trick is a member of

FT, then the FT gets the sum of the cards' pts played in this trick.

Now we start to describe how to determine the winner of a trick. After the main suit and the

CR of the current round are fixed, we can determine the "trumps" which are cards with the

main suit or CR (Current Rank), and the jokers. All other cards are "not-trumps".

We can have an order among all the cards according to the following rules:

1. "Trumps" are ordered higher than "not-trumps".

2. For the trumps, the order is listed below:

• Red Joker

• Black Joker

• card with main suit and CR (if exists)

• other card with CR

• other trumps ordered by their ranks (i.e., A, K, Q, J, T, 9, 8, 7, …, 3, 2)

3. For the "not-trumps", they are ordered by their ranks.

Assume in all the description below, in the current round, the CR of the CT is 7.

Suppose the main suit is H, the cards can be arranged in this order (as an example):

 𝑺𝟐 , 𝑪𝟐 , 𝑫𝟐

< 𝑺𝟑 , 𝑪𝟑 , 𝑫𝟑

< 𝑺𝟒 , 𝑪𝟒 , 𝑫𝟒

< 𝑺𝟓 , 𝑪𝟓 , 𝑫𝟓

< 𝑺𝟔 , 𝑪𝟔 , 𝑫𝟔

< 𝑺𝟖 , 𝑪𝟖 , 𝑫𝟖

< 𝑺𝟗 , 𝑪𝟗 , 𝑫𝟗

< 𝑺𝑻 , 𝑭𝑻 , 𝑪𝑻 (𝑻 − 𝟏𝟎)

< 𝑺𝑱 , 𝑪𝑱 , 𝑫𝑱 (𝑱 − 𝑱𝒂𝒄𝒌)

< 𝑺𝑸 , 𝑪𝑸 , 𝑫𝑸 (𝑸 − 𝑸𝒖𝒆𝒆𝒏)

< 𝑺𝑲 , 𝑪𝑲 , 𝑫𝑲 (𝑲 − 𝑲𝒊𝒏𝒈)

< 𝑺𝑨 , 𝑪𝑨 , 𝑫𝑨 (𝑨 − 𝑨𝒄𝒆)

< 𝐻2

110 MDCS – Bubble Cup 2019

< 𝐻3

< 𝐻4

< 𝐻5

< 𝐻6

< 𝐻8

< 𝐻9

< 𝐻𝑇

< 𝐻𝐽

< 𝐻𝑄

< 𝐻𝐾

< 𝐻𝐴

< 𝑆7 = 𝐶7 = 𝐷7

< 𝐻7

< 𝐵𝐽 (𝑡ℎ𝑒 𝐵𝑙𝑎𝑐𝑘 𝐽𝑜𝑘𝑒𝑟)

< 𝑅𝐽 (𝑡ℎ𝑒 𝑅𝑒𝑑 𝐽𝑜𝑘𝑒𝑟)

If "None" during this round, then the pokers can be arranged in this order:

 𝑯𝟐 , 𝑺𝟐 , 𝑪𝟐 , 𝑫𝟐

< 𝑯𝟑 , 𝑺𝟑 , 𝑪𝟑 , 𝑫𝟑

< 𝑯𝟒 , 𝑺𝟒 , 𝑪𝟒 , 𝑫𝟒

< 𝑯𝟓 , 𝑺𝟓 , 𝑪𝟓 , 𝑫𝟓

< 𝑯𝟔 , 𝑺𝟔 , 𝑪𝟔 , 𝑫𝟔

< 𝑯𝟖 , 𝑺𝟖 , 𝑪𝟖 , 𝑫𝟖

< 𝑯𝟗 , 𝑺𝟗 , 𝑪𝟗 , 𝑫𝟗

< 𝑯𝑻 , 𝑺𝑻 , 𝑭𝑻 , 𝑪𝑻

< 𝑯𝑱 , 𝑺𝑱 , 𝑪𝑱 , 𝑫𝑱

< 𝑯𝑸 , 𝑺𝑸 , 𝑪𝑸 , 𝑫𝑸

< 𝑯𝑲 , 𝑺𝑲 , 𝑪𝑲 , 𝑫𝑲

< 𝑯𝑨 , 𝑺𝑨 , 𝑪𝑨 , 𝑫𝑨

MDCS – Bubble Cup 2019 111

< 𝐻7 = 𝑆7 = 𝐶7 = 𝐷7

< 𝐵𝐽

< 𝑅𝐽

In these two tables, cards written in italic are "trumps", and cards written in boldface are "not-

trumps".

In each trick, the lead cards (played by the player leading this trick) must be either all "trumps",

or all "not-trumps" with the same suit.

The possible structures of the cards are listed below (assume the main suit is H and main rank

is 7 for the example):

• Single. A single card, such as D9.

• Pair. Two same cards, such as D9D9. But D7S7 is not a pair although their orders are

the same.

• Tractor. Two or more consecutive-ordered pairs, satisfying the condition that they are

all "trumps", or all "not-trumps" with the same suit, such as SJSJSQSQSKSKSASA,

H7H7S7S7HAHA or RJRJBJBJ. But, these are not tractors: S7S7C7C7 (their orders are

the same), C7C7C6C6 (they are not consecutive-ordered), DADAD2D2 (Ace is not

"one", so they are not consecutive-ordered), H2H2H4H4, or D2D2D3. Be careful: if

"None" in this round, H7H7S7S7HAHA is not a tractor (H7 and S7 are same-ordered

because of "None").

• Throw. The combination of the structures above, satisfying the condition that they are

all "trumps", or all "not-trumps" with the same suit. Each of the Single, Pair or Tractor

in a Throw is one of the Throw’s component. In the original tractor game, in some

situation, the throw will be rejected. But, to keep the rule simple, we assume in this

problem that all the throws are accepted. For example,

RJRJBJBJH7H7HQHQHJHJH9H9H6H6HAH2 contains six components: two tractors, two

pairs and two single cards (RJRJBJBJH7H7-HQHQHJHJ-H9H9-H6H6-HA-H2);

CACAC8C8CK contains three components: two pairs and one single card (CACA-C8C8-

CK).

A throw can be treated as a different list of components, for example,

H2H2H3H3H4H4H5H5H6H6 can also be treated as H2H2H3H3-H4H4H5H5H6H6, or H2H2-

H3H3H4H4H4H5H5-H6H6, and so on. For the lead cards, each time we choose the longest

component (choose the one with the highest order to break the tie) to construct a list of

components, this list is the structure of the lead cards, also the structure of the trick. So that

the structure of the trick is unique.

After the first player leads his or her cards, other players follow the cards one by one in

clockwise order, as mentioned above.

112 MDCS – Bubble Cup 2019

An important part of the game is to determine the winner of a trick:

If one’s follow cards contain both "trumps" and "not-trumps", or all "not-trumps" but with

different suits, this player can't be the winner of this trick.

Otherwise, if the lead cards are all "not-trumps" and one’s follow cards contain "not-trumps"

with a different suit from the lead cards, this follow player can’t be the winner of this trick.

Else, if one’s follow cards can't be constructed as the same structure of the lead cards, this

player can't be the winner of this trick either.

Otherwise, if the structure of this trick is not "throw", the one who played the highest-ordered

card wins this trick. If more than one player played the same highest-ordered card, the winner

of this trick will be the one who plays the highest-ordered card first.

Now let's consider the "throw" situation. We construct the follow cards into the structure of

the lead cards, so that the order of the highest-ordered card in all the longest components of

the "throw" is as high as possible (this card is called "honor card"). Note that tractor can be

treated as several pairs or shorter tractors, and pair can be treated as two single cards. The

winner of this trick is the one who plays the highest-ordered "honor card". Similarly, if more

than one player played the same highest-ordered "honor card" the winner of this trick will be

the one who plays the highest-ordered "honor card" first.

There are many hair-raising rules about lead and follow cards; fortunately, they're not related

to this problem, the only thing we care about is: when someone leads a "not-trump" "throw"

the only possible way to beat it is to "throw" the same structure of "trumps". And it’s impossible

to beat a leading "trump" "throw".

Special attention on the examples below. In these examples, Alice always leads the cards. And

assume in all the following examples, the CR is 7, and the main suit is H.

Alice Bob Charles David Winner Comments

SA S2 ST S5 Alice Alice plays the

highest-ranked

card SA.

SA S2 ST SA Alice Alice plays the first

SA.

SA S2 ST H2 David David plays the

first only "trump".

SA H2 C7 D7 Charles Charles plays

"trump" C7, while

David plays D7

MDCS – Bubble Cup 2019 113

with the same

order of C7.

C2C2 C3C4 C7D7 RJBJ Alice The structure of

this trick is "pair",

while all players

except Alice play

two single cards.

D3D3 DTDT SKSK H2H3 Bob Bob plays a pair

with an order

higher than

Alice's, while

Charles discards a

pair with the

wrong suit.

D3D3 DTDT SKSK H2H2 David David plays the

only "trump" pair.

D6D6D8D8 DJDJDKDK DTDTD2D3 HTHTBJBJ Alice Alice plays the

only tractor

(because the CR is

7).

H6H6H8H8 H7H7BJBJ C2C2C3C4 HKHKRJRJ Bob Bob's tractor is

higher-ordered

than Alice’s.

H6H6H8H8 H7H7D7D7 C2C2C3C4 HKHKRJRJ Bob Bob also plays a

tractor!

SASK STST C2H3 S7SK Alice Alice makes a

throw.

SASK HKH3 HAH2 S7SK Charles Both Bob and

Charles can beat

Alice.

SASK HAH2 HAH3 S7SK Bob Both Bob and

Charles can beat

Alice, but Bob's

HA comes first.

114 MDCS – Bubble Cup 2019

S2S2S3S3SA H3H3H4H4RJ D7D7H7H7H2 S7S7SQSJS6 Charles Both Bob and

Charles can beat

Alice.

There is a special rule about "hidden cards": if the winner of the last trick of a certain round is

a member of FT, then, in addition, the FT gets the sum of the hidden cards' pts, multiplied by

2𝑤(2 to the power of 𝒘). When the structure of the final trick is not "throw", then 𝒘 is the

number of lead cards of the last trick of this round. If the structure is "throw" instead, 𝒘 is the

length of the longest components, in the example RJRJBJBJH7H7HQHQHJHJH6H6HA, the 𝒘 is

6 because the length of RJRJBJBJH7H7 (the longest components of the "throw") is 6.

To make the problem easier, you are only to write a single-round tractor game simulator.

Input:

Multiple test cases, the number of them 𝑻 is given in the very first line. For each test case:

The first line contains the main suit of this round (H, S, C, D, O; O denotes "None" in this round),

the dealer of this round, the CR of team 1, the CR of team 2, separated by single spaces. Each

of the rest lines contains 4 strings: the lead cards and the cards played by the second, third

and last player. In one string, the cards can be given in any order. Each player will play exactly

25 cards in one round.

You may assume the input is always valid.

There is a blank line between consecutive test cases, and a blank line also appears

between 𝑻 and the first test case.

Output:

For each test case:

The first line contains the case number.

The second line contains the pts gotten by the FT in this round.

If a team wins the whole game after this round, output "Winner: Team X"(without

quotes, X should be either 1 or 2) in the second line. If no team wins, output the new CR of

team 1, the new CR of team 2 after this round, followed by the name of the dealer of the next

round, separated by single spaces.

See the example for further details.

Example input:
1

O Charles 2 2

S6S6S7S7 SASKSJST STS8S4S4 S3S5SJSQ

S9S9 H3D3 C3DT SAD3

DA DQ DK D4

SKS8S5S3 RJC2D2H2 C6C8CJD9 H3CKDTD5

MDCS – Bubble Cup 2019 115

H7H7 H6H4 HJHQ H9H9

DJDJ DKH5 D5D4 D6D6

D8D8 C4C3 HTH5 D9D7

C5C5 C6CT H8HQ C7C4

H8 C7 HA HA

H2 RJ BJ CK

DA BJ C8 HK

S2S2C2 CQCAD2 HTHJHK C9CQCA

Example output:
Case #1:

50

3 2 Alice

Time and memory limit: 1s / 64 MB

116 MDCS – Bubble Cup 2019

Solution:

The hardest parts of this problem are reading the statement and parsing the input. However,

there are two algorithmic sections we should focus on:

1) to determine the structure of the trick we can use a greedy algorithm: we will always

pick the longest tractor from the remaining cards to add to the structure of the trick. If

there are more tractors of that length, we pick the one with the highest valued card

2) to check whether follow cards can be constructed as the trick structure, we might be

tempted to use the same greedy algorithm, however this does not work. A

counterexample can be easily found. A solution that passes is to have a vector of the

lengths of tractors in the trick structure. Then for every permutation of that vector, we

greedily get the largest value tractor of that length we can.

Using those two algorithms, we simulate the game.

Problem source: SPOJ

Solution by:

Name: Mladen Puzić

MDCS – Bubble Cup 2019 117

Round 2: Union Laser

Statement:

Doctor 𝑌, a leading expert in the field of boxology, is investigating the properties of boxen

with his expensive super-precision laser. In particular, he plans to position the laser inside the

union of a bunch of boxen and see where the beam collides with itself.

Since Doctor 𝑌 blew all his cash on the laser, he can’t actually afford to purchase boxen to

conduct his experiment – instead, he will simulate it on his old computer, which uses an integer

grid system. He will give his computer an integer 𝑁, the number of boxen (1 ≤ 𝑁 ≤ 104), as

well as their descriptions. Each box is described by 4 integers, 𝑥1, 𝑦1, 𝑥2, and 𝑦2, and is an axis-

aligned rectangle with coordinates (𝑥1, 𝑦1) and (𝑥2 , 𝑦2) describing a pair of its opposite

corners. Boxen may overlap with one another. He will also input the location of the laser (𝐴, 𝐵),

such that it will be positioned strictly within at least one of the boxen. The laser points down

and right are at a 45° angle. All coordinates have absolute values of at most 3000.

As it turns out, boxen are made of a perfectly reflective material (a fact which Doctor 𝑌 will

discover upon completion of his experiment) – as such, whenever the laser beam hits the edge

of the union of the boxen, it bounces off. For example, if it hits a vertical edge from the left, it

bounces to the right, with the up-down direction preserved. If it hits a corner head-on, it will

reverse the direction, hence colliding with itself right at the corner. Normally, light travels quite

fast, but due to the mysterious properties of boxen, the speed of light when inside a box union

is only √2 units/second.

Doctor 𝑌 plans to use his computer to simulate the path of the laser and see when and where

it first collides with itself, but there’s one problem – he doesn't know how to program! Offering

non-cafeteria food, he lures a desperate Waterloo student into his lab, where he forces him

(or her?) to write the laser simulation program. That’s you.

Input:

Line 1: 1 integer, 𝑁

Line 2: 2 integers, 𝐴 and 𝐵

Next 𝑁 lines: 4 integers, 𝑥1, 𝑦1, 𝑥2, and 𝑦2, describing the coordinates of each box.

Output:

If the laser beam never collides with itself or the laser, simply output “Time limit exceeded”.

If the laser beam collides with the actual laser (at coordinates (𝐴, 𝐵)) before it collides with

another location through which the beam has already passed, the first line of output should

consist of a single number – the amount of time that passes before the laser beam collides

with the laser, in seconds. The second line should read “Broken equipment”.

118 MDCS – Bubble Cup 2019

Otherwise, the first line of output should consist of a single number – the amount of time that

passes before the laser beam first collides with itself, in seconds. The second line should

contain a pair of numbers – the 𝑥 and 𝑦 coordinates of where this takes place.

Each number should be rounded to 1 decimal place.

Example input:
7

0 4

-1 5 1 -1

0 -2 4 2

0 -4 1 2

2 -4 5 -1

5 2 7 4

3 -5 4 -4

0 -6 3 -4

Example output:
12.0

0.0 0.0

Explanation:

The grid looks like this:

The filled-in squares represent squares that are part of at least one box – together, they make

up the box union. Note that the union can have holes in it, and that it can be disjoint.

The blue lines denote the boundaries of the union – these are the lines that the laser can

bounce off of.

MDCS – Bubble Cup 2019 119

The yellow lines are the edges of boxen that do not contribute to the union – the laser can go

through these freely.

The red diamond is the position of the laser, and the red line is the path that the laser beam

follows. Note that when it bounces off the corner at (2, −2), since it didn’t hit it head-on, it is

the same as bouncing off of a horizontal edge.

Following the path of the laser beam, it can be seen that it collides with itself at (0, 0). Before

this, it has travelled 12√2 units, which takes exactly 12 seconds.

More examples:

If the laser were positioned at (0, 3), the output should be:

12.0

0.0 -1.0

If the laser were positioned at (0, 1), the output should be:

5.0

5.0 -4.0

If the laser were positioned at (0, 0), the output should be:

8.0

Broken equipment

Time and memory limit: 1s / 256 MB

120 MDCS – Bubble Cup 2019

Solution:

Since the maximum absolute value of a coordinate is 3000, it is apparent that we can just

simulate the process. However, before doing that we have to know which squares belong to

at least one box. We will use a 2D int array 𝑛𝑢𝑚[6005][6005] that in 𝑛𝑢𝑚[𝑥][𝑦] saves how

many boxes contain the square that has the point (𝑥, 𝑦) as the lower left corner. In order not

to have negative coordinates we will add 3005 to every coordinate in input. For each box with

the lower left and upper right corner at (𝑥1, 𝑦1) and (𝑥2, 𝑦2), we will do the following:

 𝑛𝑢𝑚[𝑥1][𝑦1] + +;

 𝑛𝑢𝑚[𝑥1][𝑦2] − −;

 𝑛𝑢𝑚[𝑥2][𝑦1] − −;

 𝑛𝑢𝑚[𝑥2][𝑦2] + +;

Now, it is not hard to notice that the required number of boxes for the square with the lower

left corner (𝑥, 𝑦) is just the sum of 𝑛𝑢𝑚[𝑖][𝑗] such that 0 ≤ 𝑖 ≤ 𝑥 and 0 ≤ 𝑗 ≤ 𝑦. We can easily

compute it using the following recurrent relation:

 𝑛𝑢𝑚[𝑥][𝑦]+= 𝑛𝑢𝑚[𝑥 − 1][𝑦] + 𝑛𝑢𝑚[𝑥][𝑦 − 1] − 𝑛𝑢𝑚[𝑥 − 1][𝑦 − 1]

Now, it only remains to simulate the process. Firstly, we can notice that the beam cannot collide

with itself after a non-integer number of seconds (just look at the parity of the sum of

coordinates at which the beam is located). So, it will always collide with itself at a lattice point.

We will have a 2D bool array that indicates whether the beam has already passed through a

particular square. It is also needed to have two variables 𝑑𝑥 and 𝑑𝑦 that indicate the way at

the beam moves at 𝑥 and 𝑦-axis, respectively. Now, it only remains to consider the reflections

of the beam. This only requires a lot of casework (probably it is possible to be done without

that much casework, but firstly before bashing all the cases I got WA, so I will present only that

casework solution, anyway it is just an implementation detail, but this whole task is mostly

about implementation). So, I will separately consider each distinct pair of (𝑑𝑥, 𝑑𝑦). There are

four such pairs, but here I will cover only one because they are very similar to each other. So,

if 𝑑𝑥 = 1 and 𝑑𝑦 = 1, then there are a few subcases:

1) 𝑛𝑢𝑚[𝑥 − 1][𝑦], 𝑛𝑢𝑚[𝑥][𝑦 − 1] > 0

- The beam hits the corner and it collides with itself.

2) 𝑛𝑢𝑚[𝑥 − 1][𝑦] > 0 𝑛𝑢𝑚[𝑥][𝑦 − 1] < 0

- The beam starts going left instead of right, so 𝑑𝑥 becomes −1

3) 𝑛𝑢𝑚[𝑥 − 1][𝑦] < 0 𝑛𝑢𝑚[𝑥][𝑦 − 1] > 0

- The beam starts going down instead of up, so 𝑑𝑦 becomes −1

4) 𝑛𝑢𝑚[𝑥 − 1][𝑦], 𝑛𝑢𝑚[𝑥][𝑦 − 1] < 0 𝑛𝑢𝑚[𝑥][𝑦] < 0

- The beam hits the corner and collides with itself.

5) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

MDCS – Bubble Cup 2019 121

- The beam just continues to go in the same direction along the both axes.

After checking all those cases we just have to mark the current position of the beam as visited

and to update it.

Problem source: SPOJ

Solution by:

Name: Veljko Radić

122 MDCS – Bubble Cup 2019

Round 2: The Zebra Crossing

Statement:

Have you ever wondered why people collide with each other at pedestrian crossings? The

reasons are probably difficult to analyze from a scientific point of view, but we can hazard a

guess. A part of the problem seems to be that the statistical pedestrian, when faced with a red

light, will either cross at once (this category of pedestrians doesn't really interest us, since they

tend to collide with cars rather than with each other), or will stop dead and stand still until the

light changes. Only when the light turns green does he begin to act rationally and heads for

his destination using the shortest possible path. Since this usually involves crossing the road

slightly on the bias, he will inevitably bump into someone going across and heading another

way.

One day, while you are approaching the traffic lights you usually cross at, you begin to wonder

how many other people you could possibly collide with if you really wanted. All the people are

standing at different points on the same side of the street as you are. From past observations

you can predict the exact angle and speed at which individual pedestrians are going to cross.

You can decide at which point along the side of the street you will wait for the green light (any

real coordinate other than a place where some other pedestrian is already standing) and at

what angle and at what speed you intend to cross. There is an upper bound on the speed you

may cross at.

Assume that once the light turns green, all pedestrians start moving along straight lines, at

constant speed, and that collisions, however painful they may be, have no effect on their

further progress. Since you wouldn't like to arouse anyone's suspicions, you also have to cross

in accordance with these rules. A collision only occurs if at a given moment of time you have

exactly the same 𝑥 and 𝑦 coordinates as some other pedestrian.

Input:

Input starts with a single integer 𝑡, the number of test cases. 𝑡 test cases follow.

Each test case begins with a line containing three integers 𝑛 𝑤 𝑣, denoting the number of

people other than you who wish to cross the street, the width of the street expressed in meters,

and the maximum speed you can walk at given in meters per second, respectively. Each of the

next 𝑛 lines contains three integers 𝑥𝑖 𝑡𝑖 𝑎𝑖, which describe the starting position of

the 𝑖𝑡ℎ pedestrian measured in meters, the time (in seconds) he takes to cross the street, and

the angle at which he is walking with respect to the line normal to the sides of the street,

expressed in
1

60
 parts of a degree.

MDCS – Bubble Cup 2019 123

Output:

For each test case output a single integer - the maximum number of people you can collide

with by the time you reach the opposite side of the street.

Constraints:

• 𝑡 ≤ 100

• 1 ≤ 𝑛 ≤ 10000

• 1 ≤ 𝑤 ≤ 100

• 1 ≤ 𝑣 ≤ 10000

• −10000 ≤ 𝑥𝑖 ≤ 10000

• 1 ≤ 𝑡𝑖 ≤ 10000

• −5000 ≤ 𝑎𝑖 ≤ 5000

Example input:
1

5 20 2

-20 10 2700

20 10 -2700

-5 1 4000

-4 1 4000

5 1 -400

Example output:
2

Explanation:

In the example, due to the imposed speed limit, it is only possible to collide with the first two

pedestrians while crossing the street, at the last possible moment.

Time and memory limit: 1s / 64 MB

124 MDCS – Bubble Cup 2019

Solution:

First of all, we will split the velocity of each pedestrian into its horizontal and vertical

components. The vertical component for pedestrian i will be 𝑣𝑖𝑣 =
𝑤

𝑡𝑖
 and the horizontal

component will be 𝑣𝑖ℎ =
w ∗ tan

𝑎𝑖
60

𝑡𝑖
 .

To solve the problem we need a few observations:

• Since we can’t start at the same point as some other pedestrian, we can only collide

with a pedestrian if we have the same vertical velocity as him.

• When choosing at which speed we want to move at, it’s always optimal to move at the

maximum possible speed.

We can split the pedestrians into groups that have the same vertical velocity (the same 𝑡𝑖), and

calculate the answer for each group separately. Let’s say that the time that every pedestrian

needs to cross the street from the current group is 𝑡𝑔 . If our maximum speed is less than
𝑤

𝑡𝑔
 (vertical velocity of the group), we can’t collide with anyone from that group. Otherwise, we

can calculate the maximum horizontal velocity we can move at with the following formula:

𝑣ℎ = cos(arcsin(
𝑤

𝑡𝑔 ∗ 𝑣
)) ∗ 𝑣 = √1 − (

𝑤

𝑡𝑔 ∗ 𝑣
)

2

∗ 𝑣

Since we can move in either direction, we have two cases to consider for out horizontal velocity

 (𝑣ℎ 𝑜r −𝑣ℎ).

For each pedestrian from the group we can calculate the interval of positions we need to start

at if we want to collide with that pedestrian. One border will be 𝑥𝑖 and the other will be 𝑥𝑖 +

(𝑣𝑖ℎ − 𝑣ℎ) ∗ 𝑡𝑖 . If we calculate the intervals for all the pedestrians from the group, the solution

for the group will be the maximum number of intervals covering a point which is not already

occupied by a pedestrian. We can calculate this using the line sweep method. The final solution

is the maximum of the solutions for each group.

Complexity: 𝑂(𝑡 ∗ 𝑛 ∗ log 𝑛)

Problem source: SPOJ

Solution by:

Name: Nikola Pešić

MDCS – Bubble Cup 2019 125

Round 2: Connect the Points

Statement:

I'll give you a challenge! You will receive an array of size 𝑁 by 𝑀, with the characters '-', '#' and

'*'. See an example below:

-#-

--*--

####-

*----

The character '#' means obstacles, the characters '-' mean empty spaces and the characters '*'

mean points. Your job is to put the minimum amount of additional points needed to make all

the points connected. You can only put more points in empty spaces. For example, for the

matrix above, you need at least 7 additional points to connect all the points, as shown in the

following figure:

-#-

-*-*-

--*-*

####*

****-

Do you accept the challenge?

Input:

The input contains several test cases. Each test case starts with a line containing two

integers 𝑁 and 𝑀 indicating the dimensions of the matrix (1 ≤ 𝑁 ∗ 𝑀 ≤ 100). After the first

line, the next 𝑁 lines describe the array in the same manner shown in the statement.

Output:

For each test, the output consists of one line containing the minimum number of additional

points that need to be added to the matrix to connect all the points. If it is impossible to

connect all the points, print 'impossivel'.

Example input:
5 5

-#-

--*--

####-

*----

3 4

---*

*---

1 5

-#-

2 2

-#

#-

126 MDCS – Bubble Cup 2019

Example output:
7

2

impossivel

0

Time and memory limit: 3s / 64 MB

MDCS – Bubble Cup 2019 127

Solution:

The simplest possible solution checks every of at most 2{𝑛𝑚} possibilities of placing a dot or

not. Then we can find all the connected components in the graph of the dots using DFS or

Find&Union algorithm. At the end, among the graphs with only one connected component

we choose the one that needed the smallest number of dots.

Without loss of generality, we can assume that the number of rows is no less than the number

of columns (𝑛 ≥ 𝑚).

We can design a dynamic programming algorithm, where the state contains: the number of

rows already processed, the assignment of dots in the last row, and how they are split into

connected components.

First, let’s show a way to compute this dynamic programming which is a little too slow. Fix the

number of already processed rows and consider all the states of the dynamic programming

corresponding to this number of processed rows. For every such state, we iterate over all 2𝑚

possibilities of placing a dot or not in a next row and compute the new states. Note that the

upper bound for the number of the states per row is Bell number (the number of ways of

splitting the set into any number of nonempty subsets of any size).

In order to improve this solution, we have to refrain from creating transitions for adding a full

row, since that creates 𝑂(2𝑚) transitions per state. Rather than that, we want to create

transitions which consider one field at a time. Given a state, we can either decide to stop

putting any more dots in its last row and move to the next row or add a new dot in the last

row. This brings down the number of transitions per state to 𝑂(𝑚).

Additionally, the above solution can be sped up even further, considering the states of the

dynamic programming as vertices of a graph, and transitions as weighted edges. Typically,

solving the DP involves computing the value of all states by considering them in a topological

order with respect to the transition graph. However, we can run Dijkstra algorithm, which

allows to skip the states, for which the answer is larger than the cost of the optimal solution.

Note that some care must be taken in properly designing the dynamic programming

transitions and defining final states. For example, we cannot accept a transition which

“orphans” an existing component, making it impossible for it to connect to some other

component or the dot which wasn’t considered yet.

Problem source: URI

Solution by:

Name: Katarzyna Kowalska

128 MDCS – Bubble Cup 2019

Round 2: Forest

Statement:

Bruce Force is standing in the forest. He wonders what is the tree trunk that is the farthest

away, which is not blocked from his view by other tree trunks.

Bruce has made a map of the trees in the forest. The map shows his current position as the

origin of a cartesian coordinate system. Tree 𝑖 is shown on the map as a circle with the center

(𝑥𝑖 , 𝑦𝑖) and radius 𝑟𝑖. You may assume that a tree trunk is visible if and only if there exists a

line segment on the map from the origin (0, 0) to a point on the border of the circle

representing the tree trunk, where the line segment does not intersect or touch another circle.

Input:

The input contains several test cases. The first line of each test case contains one integer 𝑛,

where 𝑛 specifies how many trees are on the map. The following 𝑛 lines contain 3 integers

𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 where (𝑥𝑖 , 𝑦𝑖) is the center of the circle representing tree trunk 𝑖, and 𝑟𝑖 is the radius

of the circle. You may assume that no two circles in the input intersect, i.e., for any of the two

circles, the distance between their centers is more than the sum of their radii. Moreover, you

may assume that no circle contains the origin. The last test case is followed by a line containing

one zero.

Hint: In the second test case, the first four trees block the view of all trees farther away than

these four trees.

Output:

For each test case, print one line with the maximum Euclidean distance from the origin to a

visible tree. The distance to a tree should be measured using the point of the tree closest to

the origin, no matter if this point is in fact visible or not.

Round the answer to 3 digits after the decimal point.

Constraints:

• 1 ≤ 𝑛 ≤ 1000

• −10000 ≤ 𝑥𝑖 , 𝑦𝑖 ≤ 10000

• 1 ≤ 𝑟𝑖 ≤ 1000

Example input:
3

10 10 11

1 1 1

-20 -10 20

5

1 2 2

-2 1 1

2 -1 1

-1 -2 2

10000 -10000 1000

MDCS – Bubble Cup 2019 129

0

Example output:
3.142

1.236

Time and memory limit: 1s / 64 MB

130 MDCS – Bubble Cup 2019

Solution:

Imagine and think about what exactly you see when you look at a certain circle from point

(0, 0) and can you represent it differently in your code? When you think about it, it’s the same

as if you are looking at the line whose endpoints are the points of intersection between two

tangents and a circle (tangents intersect at point (0,0)) . Now the task seems a little bit easier.

We convert circles to lines by using analytical geometry. We find the intersection points

between the tangents and the circle and those 2 points are later used instead of a circle. Also,

we will need the angles between the tangents and the 𝑥-axis in order to sort the circles later.

Now we have a set of lines on a plane and we want to analyse all of the lines we can see and

then find the furthest circle which is represented by a certain line. Another useful observation

is that we only need to look at the endpoints because only at those endpoints we may see

another circle overlap with some other circles.

Let’s sort all the endpoints by a polar angle, which we define as a number from segment [0, 2𝜋].

Now we iterate through all endpoints and we have to maintain our current solution and the

circle which is the nearest one at the moment. After we update our nearest circle, we check

whether it is better than our current solution. The overall complexity of the algorithm is

𝑂(𝑁 log 𝑁) per one test-case.

Just a few minor things you should be careful about:

• The Endpoint should have information about the distance from point (0, 0) and which

circle it represents. That way you know how to compute the distance to the nearest

point on a circle.

MDCS – Bubble Cup 2019 131

• When sorting the endpoints if they have the same polar angle you sort them by

distance to the point (0,0).

• Before iterating you should check all of the lines which intersect positive direction of

𝑥-axis and also find the closest one. That could be your initial solution.

• Be careful when rounding the numbers to a smaller number of decimals. I kept the

solution rounded to 8 decimals until the end and only round it to less on output. You

can round the results you use in computations for endpoints.

Problem source: URI

Solution by:

Name: Pavle Janevski

132 MDCS – Bubble Cup 2019

Round 2: [Challenge] JawBreaker Game

Statement

The goal of this popular game is to get the maximum number of points, by removing aligned

pieces of the same color. The pieces can only be removed if they touch each other by an entire

side. The more pieces you remove in one turn, the more points you get. The number of points

in one turn is described by the following formula: 𝑁 ∗ (𝑁 − 1), where 𝑁 is the number of pieces

(for example 2 ∗ (2 − 1) = 2, 10 ∗ (10 − 1) = 90). If you remove pieces from the middle of the

field, then all the pieces located higher fall down and occupy the empty spaces. The game is

finished when no pieces which can be removed from the field remain.

In this problem you will be given a field and pieces on it. Your goal is to obtain the maximum

number of points.

Note: You can practice a little and plan your strategy with this on-line game [the on-line game

is slightly different from the one described above]: http://www.bigfrog.net/jawbreaker/

Input

𝑡 – the number of tests, then 𝑡 tests follow.

Each test starts with 3 integers: 𝐻 - the number of rows of the playing field, 𝑊 - the number

of columns of the playing field and 𝐶 - the number of different colors of the pieces. Then follow

𝐻 rows with 𝑊 numbers in each, separated by spaces. Each number is in the range from 0

to 𝐶 − 1 and describes the color of a piece.

Output

For each test you must output the letter “Y” if you want to solve this test, or the letter “N”

otherwise. If you output Y, you must output a set of lines with 2 integers 𝑥, 𝑦 in each. These

integers define rows and columns in the field [0 ≤ 𝑥 < 𝐻], [0 ≤ 𝑦 < 𝑊]. Coordinates are

counted from the upper left corner of the field. After your last move output the line −1 − 1.

http://www.bigfrog.net/jawbreaker/

MDCS – Bubble Cup 2019 133

You’ll receive the status Wrong Answer if your coordinates are outside the field, or point to an

empty space, or to a single piece.

Score:

The score received for this problem is the sum of the points received for each playing field.

The score for a playing field is calculated as ⌊
100 ∗ 𝐶 ∗ 𝐶 ∗ 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒

𝐻 ∗ 𝑊
⌋, where 𝐶 – number of different

colors, 𝐻 – field height, 𝑊 – field width, 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 – the number of points calculated as in the

description of the problem.

Constraints:

• 𝑡 ≤ 500

• 4 ≤ 𝐻, 𝑊 ≤ 50

• 3 ≤ 𝐶 ≤ 20

Example input:
1

4 4 3

0 0 1 1

1 1 2 2

0 1 2 0

0 1 1 2

Example output:
Y

1 0

1 0

3 2

-1 -1

Explanation:

Initial field:

0 0 1 1

1 1 2 2

0 1 2 0

0 1 1 2

After the first turn (removed 5 "ones"):

. . . 1

0 . 1 2

0 . 2 0

0 0 2 2

After the second turn (removed 4 "zeros"):

. . . 1

. . 1 2

. . 2 0

. . 2 2

After the third turn (removed 3 "twos"):

. . . .

. . . 1

134 MDCS – Bubble Cup 2019

. . . 2

. . 1 0

Score:

In this case 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 = 5 ∗ (5 − 1) + 4 ∗ (4 − 1) + 3 ∗ (3 − 1) = 20 + 12 + 6 = 38,

so 𝑠𝑐𝑜𝑟𝑒 = ⌊(100 ∗ 3 ∗ 3 ∗ 38)/(4 ∗ 4)⌋ = ⌊2137.5⌋ = 2137.

Time and memory limit: 4s / 256 MB

MDCS – Bubble Cup 2019 135

Solution:

It’s quite clear that there is no chance of finding an optimal solution within the given input

constraints and time limits. Thus, we must rely on heuristic algorithms.

Moreover, our board is changing during the play so we cannot apply typical optimization

techniques such as local search. For example, assuming we have a sequence of moves, we

cannot simply change a move in the middle of the sequence as it will often make some of our

further moves invalid. Hence, we will focus on fully greedy approaches.

It’s worth playing this game for a while to observe that there are two basic strategies in this

game:

1) Creating and collecting as many groups of more than 1 piece as possible.

2) Building a large block in one color by eliminating the other colors and hitting it when

it cannot be enlarged.

Although the second strategy leads to much higher base score when there are few colors

available, it is not very useful when there are many colors on the board – then it is very difficult

to make a large one-colored block. Indeed, after taking experiments with randomly generated

boards, we concluded that the second strategy should be applied only if the board contains

less than 15 colors.

Now, let’s discuss some details of implementing both approaches. Firstly, we divided available

blocks of one-colored pieces into vertical and horizontal groups depending on how they are

connected. Let’s observe that if a few pieces of one color form a vertical group, they cannot

become disconnected after removing other pieces. However, this property is clearly false for

horizontal groups – it is possible that after removing some pieces below the horizontal group,

it may become disconnected.

Our implementation of the first strategy is based on the observations above. The algorithm

consists of many steps. In each step we look for horizontal blocks at first. If there are many

such groups, we choose the uppermost one and collect it. Finally, if there is no horizontal block

of pieces, we hit the lowest vertical group.

For the second strategy the only difference from the previous approach is, that we choose a

special color which should be omitted (i.e. not collected) unless we cannot hit a block of any

other color. We considered a few most frequent colors as candidates for such special color.

Summing up, our solution consists of two greedy algorithms – we decide which of them to run

based on the number of colors on the board. During the competition we tried many other

minor improvements but the key to obtaining a good score was to apply the described

methods.

136 MDCS – Bubble Cup 2019

Problem source: SPOJ

Solution by:

Name: Konrad Majewski

