
Problem A: Years
Rising stars only

Author:

Vuk Vuković

Implementation and analysis:

Drago Šmitran

Filip Kovačević

Statement:

During one of the space missions, humans have found an evidence of previous life at one of the planets.

They were lucky enough to find a book with birth and death years of each individual that had been living

at this planet. What is interesting is that these years are in the range (1,109)! Therefore, the planet was

named Longlifer.

In order to learn more about Longlifer's previous population, scientists need to determine the year with

maximum number of individuals that were alive, as well as the number of alive individuals in that year.

Your task is to help scientists solve this problem!

Input:

The first line contains an integer n (1 ≤ n ≤ 105) - the number of people.

Each of the following n lines contain two integers b and d (1 ≤ b < d ≤ 109) representing birth and death

year (respectively) of each individual.

Output:

Print two integer numbers separated by blank character, y - the year with a maximum number of people

alive and k - the number of people alive in year y.

In the case of multiple possible solutions, print the solution with minimum year.

Example input 1:

3

1 5

2 4

5 6

Example output 1:

2 2

Example input 2:

4

3 4

4 5

4 6

8 10

Example output 2:

4 2

Note:

You can assume that an individual living from b to d has been born at the beginning of b and died at the

beginning of d, and therefore living for d - b years.

Time and memory limit: 1s / 256 MB

Solution and analysis

Let us first solve this problem in . To do that, we have to keep the number of births and

deaths which occurred at the start of each year. We will denote these counts for the th year as

and . Also, let us denote the number of people which are alive in th year as . We can then

use these counts to calculate the number of people living in the th year as

. The reason this formula works is because if an individual is born in

year and dies at the start of year , will be increased by one, but if an individual dies at

the start of year , will not be increased. Similarly, in case of an individual's birth year being

greater than , they will not be counted. Unfortunately, iterating over all years is too slow in this

problem as years can be as high as . We can observe that the count of living people changes only in

years where or are greater than zero. This means we do not have to iterate through all

the years, but only through the years in which some person was born or died and only then update the

result. To do this, we can create a new list of pairs and for each individual add two pairs to the list. First

element of both pairs is year of birth or death, and the second element is a flag denoting whether the

first element is a birth year or death year. Afterwards, sort the list and iterate through it to find the

result. Time complexity is .

Problem B: Ancient Language
Rising stars only

Author:

Vuk Vuković

Implementation and analysis:

Drago Šmitran

Andrej Jakovljević

Statement:

While exploring the old caves, researchers found a book, or more precisely, a stash of mixed pages from

a book. Luckily, all the original pages are present, and each page contains its number. Therefore, the

researchers can reconstruct the book.

After taking a deeper look into the contents of these pages, linguists think that this may be some kind of

dictionary. What is interesting is that this ancient civilization used an alphabet which is a subset of the

English alphabet, however, the order of these letters in the alphabet is not like the one in the English

language.

Given the contents of pages that researchers have found, your task is to reconstruct the alphabet of this

ancient civilization using the provided pages from the dictionary.

Input:

The first line contains two integers: n and k (1 ≤ n, k ≤ 103) - the number of pages that the scientists have

found, and the number of the words present at each page. The following n groups contain a line with a

single integer pi (0 ≤ pi ≤103) - the number of ith page, as well as k lines, each line containing one of the

strings (up to 100 characters) written on the page numbered pi.

Output:

Output a string representing the reconstructed alphabet of this ancient civilization. If the book found is

not a dictionary, output "IMPOSSIBLE'' without quotes. In case there are multiple solutions, output any

of them.

Example input 1:

3 3

2

b

b

bbac

0

a

aca

acba

1

ab

c

ccb

Example output:

acb

Time and memory limit: 1s / 256 MB

Solution and analysis

We can solve this problem by converting words from pages to a directed graph and then doing

topological sort on that graph.

First of all, sort the pages by their number and then squash all the pages into a single page. Let be the

total number of words and be the th word of the resulting squashed page. If there exists an index

such that is a proper prefix of , then no solution exists. Otherwise let's continue and create a

directed graph from the words. We will process all words except the last one and we have the

following two cases emerge:

• is a prefix of in which case we should do nothing,

• is not a prefix of , then there exists a position such that -th character of is different

from -th character of . Let's also add a constraint that is the first such position where

and differ. Let be the -th character of and be the j-th character of . For this

case we add a directed edge in our resulting graph.

Now that we have the graph, we can run topological sort on that graph and print out the topological

ordering if it exists. In case the topological ordering does not exist, print out that it is impossible to find

the reconstructed alphabet.

Let's apply this solution to the sample test. Once we order the words and squash them to a single page,

we get an array of words . Let's process the words one by one.

• is a prefix of , do nothing

• differs from in third character, add edge

• differs from in second character, add edge

• differs from in first character, add edge

• is prefix of , do nothing

...

Once we finish this construction, we get the following graph.

Topological ordering of this graph is which represents the solution for this input. We can also

observe that no other topological ordering exists.

Problem C: Lonely Numbers
Premier League and Rising Stars

Author:

Nikola Aleksić

Implementation and analysis:

Nikola Aleksić

Nikola Pešić

Statement:

In number world, two different numbers are friends if they have a lot in common, but also each one has

unique perks.

More precisely, two different numbers and are friends if can form sides

of a triangle.

Three numbers , and can form sides of a triangle if , and .

In a group of numbers, a number is lonely if it does not have any friends in that group.

Given a group of numbers containing all numbers from how many numbers in that group are

lonely?

Input:

The first line contains a single integer - number of test cases.

On next line there are numbers, ni - meaning that in case you should solve for numbers 1, 2, 3, …, ni.

Output:

For each test case, print the answer in separate lines: number of lonely numbers in group 1, 2, 3, …, ni.

Constraints:

• 1 ≤ t ≤ 106

• 1 ≤ni≤ 106

Example input 1:

3

1 5 10

Example output:

1

3

3

Explanation:

For first test case, 1 is the only number and therefore lonely.

For the second test case where n = 5, numbers 1, 3 and 5 are lonely.

For the third test case where n = 10, numbers 1, 5 and 7 are lonely.

Time and memory limit: 1.5s / 256 MB

Solution and analysis

Any composite number , where , is friends with , because

 and

Hence, composite numbers are not lonely.

Any prime number is not friends with coprime number , because either or .

If , then . For them to be friends, has to be larger than and

has to be larger than . That can only happen if .

That means that prime numbers have friends in range only if . To count all lonely

number below or equal to N, count prime numbers larger than , and add 1 (1 is always lonely).

Use the sieve of Eratosthenes to determine all prime numbers below , preprocess the count of prime

numbers below for each , and for each testcase return primesBelow[N] – primesBelow[(int)sqrt(N)] +

1.

Problem D: Valuable Paper
Premier League and Rising Stars

Author:

Đorđe Stupar

Implementation and analysis:

Nikola Pešić

Drago Šmitran

Statement:

The pandemic is upon us, and the world is in shortage of the most important resource: toilet paper. As

one of the best prepared nations for this crisis, BubbleLand promised to help all other world nations

with this valuable resource. To do that, the country will send airplanes to other countries carrying toilet

paper.

In BubbleLand, there are N toilet paper factories, and N airports. Because of how much it takes to build

a road, and of course legal issues, every factory must send paper to only one airport, and every airport

can only take toilet paper from one factory.

Also, a road cannot be built between all airport-factory pairs, again because of legal issues. Every

possible road has number d given, number of days it takes to build that road.

Your job is to choose N factory-airport pairs, such that if the country starts building all roads at the same

time, it takes the least amount of days to complete them.

Input:

The first line contains two integers N - number of airports/factories, and M - number of available pairs to

build a road between.

On next M lines, there are three integers u, v, d - meaning that you can build a road between airport u

and factory v in d days.

Output:

If there are no solutions, output -1. If there exists a solution, output the minimal number of days to

complete all roads, equal to maximal d among all chosen roads.

Constraints:

• 1 ≤ N ≤ 104

• 1 ≤ M ≤ 105

• 1 ≤ u, v ≤ N

• 1 ≤ d ≤ 109

Example input:

3 5

1 2 1

2 3 2

3 3 3

2 1 4

2 2 5

Example output:

4

Time and memory limit: 2s / 256 MB

Solution and analysis

We can reduce this problem to finding a perfect bipartite matching where the maximum weight of all

edges in the matching is minimized. First, we construct a bipartite graph, by having the first disjoint set

be the factories, and the second disjoint set be the airports. Weight of each edge connecting an airport

and a factory is the number of days it takes to build a road between that airport and factory.

Now that we have the graph setup, we can observe that if there exists a perfect matching such that

no edge of has weight greater than , then a perfect matching exists for all weights which are

greater than . The reason this is true is because we know that there is no edge in which has weight

greater than , which implies that there cannot be an edge in which has weight greater than

(because), so we can use the same perfect matching to satisfy .

This observation enables us to apply binary search on weights of edges to find the answer. For each

iteration of binary search, we have to check whether a perfect matching exists for some weight and

we can do that by applying the Hopcroft-Karp algorithm for finding the maximum cardinality bipartite

matching. Time complexity of the Hopcroft-Karp algorithm is where is the number of

edges and is the number of nodes in the graph. After multiplying this with the additional logarithm

factor from binary search, total time complexity of this solution ends up being where

 is the maximum weight among all edges.

We can further reduce the complexity by first sorting the edges by weight, and then applying binary

search on that sorted list of edges. This reduces the logarithm factor from to for a final

complexity of .

Problem E: Coins
Premier League and Rising Stars

Author:

Filip Kovačević

Implementation and analysis:

Aleksandar Lukač

Filip Kovačević

Statement:

A famous gang of pirates, Sea Dogs, has come back to their hideout from one of their extravagant

plunders. They want to split their treasure fairly amongst themselves, and that is why You, their trusted

financial advisor, devised a game to help them:

All of them take a sit at their round table, some of them with the golden coins they have just stolen. At

each iteration of the game, if one of them has equal or more than 2 coins, he is eligible to the splitting

and he gives one coin to each pirate sitting next to him. If there are more candidates (pirates with equal

or more than 2 coins) then You are the one that chooses which one of them will do the splitting in that

iteration. The game ends when there are no more candidates eligible to do the splitting.

The pirates can call it a day only when the game ends. Since they are beings with a finite amount of time

at their disposal, they would prefer if the game that they are playing can end after finite iterations, and

if so, they call it a good game. On the other hand, if no matter how You do the splitting, the game

cannot end in finite iterations, they call it a bad game. Can You help them figure out before they start

playing if the game will be good or bad?

Input:

The first line of input contains two integer numbers n and k (1 ≤ n ≤ 109, 0 ≤ k ≤ 2⋅105), where n denotes

the total number of the pirates and k is the number of the pirates that have any coins.

The next k lines of input contain integers ai and bi (1 ≤ ai ≤ n, 1 ≤ bi ≤ 109), where ai denotes the index of

the pirate sitting at the round table (n and 1 are neighbors) and bi the total number of the coins that

pirate ai has at the start of the game.

Output:

Print 1 if the game is a good game: There is a way to do the splitting so the game ends after the finite

number of iterations.

Print −1 if the game is a bad game: No matter how You do the splitting the game does not end in the

finite number of iterations.

Example input 1:

4 2

1 2

2 2

Example output 1:

1

Example input 2:

6 2

2 3

4 1

Example output 2:

1

Example input 3:

3 2

1 1

2 2

Example output 3:

-1

Note

In the third example the game has no end, because You always have only one candidate and after the

splitting you end up in the same position as the starting one.

Time and memory limit: 1s / 256 MB

Solution and analysis

Firstly, let’s denote the sum of all the coins that are in possession of the pirates as S. We have 3 separate

cases depending on relation S to n (the number of the pirates):

1. S > n

There are more coins than there are pirates, so no matter how we do the splitting we can never

end up in a position where every pirate has at most one coin, the position at which no more

splits can be done, therefore the game can never end.

2. S < n

If pirate A gives a coin to pirate B and then at some later point pirate B will be doing the splitting

and will be returning the “same” coin to pirate A. We can therefore denote that coin with zAB.

Since we have more pirates than we have coins, that means that there exist 2 neighboring

pirates that never exchange any coins. From that we can conclude that there exists a pirate that

can do the split the finite amount of times (even 0). We can now conclude inductively that all

the splits are done the finite amount of times, since the neighbor of the pirate that does finitely

many splits must also do the finite number of splits. This is because if the neighbor does

infinitely many splits, then his neighbor that does them finitely many times will have an infinite

number of coins, which is a contradiction. Therefore, the game always ends.

3. S = n

We can take notice of invariance of each split. Let us label each coin by its position, where by

position we mean the index (1-n) of the pirate in whose possession it is. We can see that after a

pirate does the splitting, the sum of labels mod n of the two coins split is invariant. Let’s denote

the label of the two coins as x, then after the split we lose 2*x, and gain (x-1) + (x+1) in case of x

not equal to n, and (n-1) + (1) in case of x equaling n. Therefore, we can indeed conclude that

the sum of all labels mod n will be invariant to any splitting. We can therefore see that the

necessary condition for the game to end is that the sum of labels of all coins must be congruent

to n*(n+1)/2 mod n, because that is the sum of the labels in the ending position (each pirate has

one coin).

To prove that the condition is necessary, we need to firstly look at an example where all but 2

pirates have one coin, one has 2 coins, and one has zero coins and prove that the game cannot

end. This can be done by making the sum of all labels and proving that it can never be congruent

to n*(n+1)/2. This is because the sum will be n*(n+1)/2 - x+y where x is the index of

the pirate with 0 coins, and y is the index of the pirate with 2 coins. For n*(n+1)/2 - x+y to be

congruent to n*(n+1)/2 mod n, we must have (y-x) congruent to 0 mod n, which cannot happen

because 1≤x,y≤n and x≠y.

Now we can devise an algorithm for the splitting so that we always end up in the

aforementioned position if the starting sum was not congruent to n*(n+1)/2. To do this, we

firstly take notice of a concept of island: an array of pirates where each one has at least one

coin, they all form an array of consecutive indexes (e.g. 2,3,4,5,6) and the first and last pirate in

the array have neighbors that have 0 coins. There is at least one island (or else the game is

already finished) since there are the same number of coins as the pirates. Now we do the

splitting in the following manner:

If the island has no pirates with more than one coin, leave it as it is. If it has at least one pirate

with more than one coin, not including the case of the edge pirates with exactly two coins, then

do the following: Do the splitting for that pirate, and after that do the splitting for his neighbors

(because they had at least one coins and they have just gained one more) and then of their

neighbors that are closer to the end of the island and so on until the end of the island (on both

left and right end). This will allow the island to expand by one pirate to the left, and one pirate

to the right (you basically propagate two coins from the first pirate to the 2 pirates with zero

coins that are at the end of the island). Now the expanded island might be concatenated with its

neighboring islands, forming a bigger one.

Repeat this process until all the islands are in one of the following 3 forms:

• All the pirates have just one coin

• Two edge pirates have two coins, all others have one.

• One edge pirate has two coins, all others have one.

If we do the beforementioned process of splitting on the third kind of island, we will end up with the

first kind (simply check this). That is why we end up with only 1. and 2. kind of islands. Also, If we have

more than one island of the 2nd kind, meaning that there exist different ending left and right pirates with

zero coins, then again by the repeated process we end up with two islands of the first kind. That is why

we only have two cases:

I. All the islands are of the first kind, meaning there is only one island of the first kind (because the

number of pirates is the same as coins) which means that the game has an end.

II. There is exactly one island of the 2nd kind and all others are of the first kind, meaning that there

is only one island of the 2nd kind (again because number of coins is the same as pirates) which is

the case we have already covered at the beginning, meaning the game has no end.

Since the sum of all labels is an invariance and we have just proven that we can always end up in either I

or II, and we know that the state in II is not congruent to n*(n+1)/2, we know that we will always end up

in I using this algorithm for the splitting if the sum of labels is congruent to n*(n+1)/2. Thus, we have

proven that the congruence test is the sufficient condition to check if the game has an end.

Problem F: Light switches
Premier League and Rising Stars

Author:

Nikola Pešić

Implementation and analysis:

Đorđe Stupar

Drago Šmitran

Statement:

Nikola owns a large warehouse which is illuminated by N light bulbs, numbered 1 to N. At the exit of the

warehouse, there are S light switches, numbered 1 to S. Each switch swaps the on/off state for some

light bulbs, so if a light bulb is off, flipping the switch turns it on, and if the light bulb is on, flipping the

switch turns it off.

At the end of the day, Nikola wants to turn all the lights off. To achieve this, he will flip some of the light

switches at the exit of the warehouse, but since Nikola is lazy, he wants to flip the minimum number of

switches required to turn all the lights off. Since Nikola was not able to calculate the minimum number

of switches, he asked you to help him. During a period of D days, Nikola noted which light bulbs were off

and which were on at the end of each day. He wants you to tell him the minimum number of switches

he needed to flip to turn all the lights off for each of the D days or tell him that it is impossible.

Input:

First line contains three integers, N, S and D -- representing number of light bulbs, the number of light

switches, and the number of days, respectively.

The next S lines contain the description of each light switch as follows: The first number in the line, Ci,

represents the number of light bulbs for which the on/off state is swapped by light switch i, the next Ci

numbers (sorted in increasing order) represent the indices of those light bulbs.

The next D lines contain the description of light bulbs for each day as follows: The first number in the

line, Ti, represents the number of light bulbs which are on at the end of day i, the next Ti numbers

(sorted in increasing order) represent the indices of those light bulbs.

Output:

Print D lines, one for each day. In the ith line, print the minimum number of switches that need to be

flipped on day i, or −1 if it is impossible to turn all the lights off.

Constraints:

• 1 ≤ N ≤ 103

• 1 ≤ S ≤ 30

• 1 ≤ D ≤ 103

• 1 ≤ Ci ≤ N

• 1 ≤ Ti ≤N

Example input:

4 3 4

2 1 2

2 2 3

1 2

1 1

2 1 3

3 1 2 3

3 1 2 4

Example output:

2

2

3

-1

Time and memory limit: 3s / 1024 MB

Solution and analysis

Let's consider the naive solution in . Try all combinations of switches and keep the one

with minimum number of flicks needed. We can optimize this solution to by using

bitset or an array of longs for keeping the combination of lit up light bulbs. Still, this optimized naive

solution times out.

We can use the meet-in-the-middle technique to reduce the time complexity to

. Preprocess all the combinations for first switches and keep the

resulting light bulb combinations in a hashmap. In case of multiple switch combinations producing the

same light bulb combination, keep the one which needs the minimum number of switches to be flicked.

Map key will be the light bulb combination, and the map value is minimum number of switches that

need to be flicked to get the light bulb combination. After the preprocessing is complete, we can process

the days.

For each day, calculate all combinations of the left over switches and process each one. Each switch

combination produces some light bulb combination. Since we want all the lightbulbs to be turned off,

we can query the hashmap for some combination of first switches which results in all the lightbulbs

being turned off. While processing combinations from the left over switches, keep the minimum

number of switch flicks needed to turn off all bulbs and after the processing has ended, print this

number. Time complexity of the solution is .

Problem G: Does anyone else hate the
wind?

Premier League and Rising Stars

Author:

Danilo Tonić

Implementation and analysis:

Drago Šmitran

Danilo Tonić

Statement:

Mark and his crew are sailing across the sea of Aeolus (in Greek mythology Aeolus was the keeper of the
winds). They have the map which represents the NxM matrix with land and sea fields and they want to
get to the port (the port is considered as sea field). They are in a hurry because the wind is very strong
and changeable there and they have the food for only K days on the sea (that is the maximum that they
can carry on the ship). John, the guy from Mark's crew, knows how to predict the direction of the wind
on a daily basis for W days, which is enough time for them to reach the port or to run out of the food.
Mark can move the ship in four directions (north, east, south, west) by one field for one day, but he can
also stay in the same place. The wind can blow in four directions (north, east, south, west) or just not
blow that day. The wind is so strong in the sea of Aeolus that it moves the ship for one whole field in the
direction which it blows in. The ship's resulting movement is the sum of the ship's action and the wind
from that day. Mark must be careful to keep the ship on the sea, the resulting movement must end on
the sea field and there must be a 4-connected path through the sea from the starting field. A 4-
connected path is a path where you can go from one cell to another only if they share a side.

For example, in the following image the ship cannot move to the port as there is no 4-connected path
through the sea.

In the next image, the ship can move to the port as there is a 4-connected path through the sea as
shown with the red arrow. Furthermore, the ship can move to the port in one move if one of the
following happens. The wind is blowing east and Mark moves the ship north, or the wind is blowing
north, and Mark moves the ship east. In either of these scenarios the ship will end up in the port in one
move.

Mark must also keep the ship on the map because he does not know what is outside. Luckily for Mark

and his crew, there are T fish shops on the sea where they can replenish their food supplies to the

maximum, but each shop is working on only one day of the week. That means that Mark and his crew

must be at the shop's position on the exact working day to replenish their food supplies. Help Mark to

find the minimum of the days that he and his crew need to reach the port or print −1 if that is impossible

with the food supplies they have.

Input:

The first line contains two integer numbers N and M (1 ≤ N, M ≤ 200) - representing the number of the
rows and the number of the columns of the map.

The second line contains three integers, K (0 ≤ K ≤ 200) which is the number of days with the available
food supplies, T (0 ≤ T ≤ 20) which is the number of the fields with additional food supplies and W (0 ≤ W
≤ 106) which is the number of the days with wind information.

Next is the NxM char matrix filled with the values of 'L', 'S', 'P' or 'M'. 'L' is for the land and 'S' is for the
sea parts. 'P' is for the port field and 'M' is the starting field for the ship.

The next line contains W chars with the wind direction information for every day. The possible inputs
are 'N' - north, 'S' - south, 'E' - east, 'W' - west and 'C' - no wind.

In the end there are T lines with the food supplies positions. Each line contains three integers, Yi and Xi
(0 ≤ Yi < N, 0 ≤ Xi < M) representing the coordinates (Y is row number and X is column number) of the
food supply and Fi (0 ≤ Fi ≤ 106) representing the number of days from the starting day on which the food
supply is available.

Output:

One integer number representing the minimal days to reach the port or -1 if that is impossible.

Example input 1:

3 3

5 2 15

M S S

S S S

S S P

S W N N N N N N N N N N N N N

2 1 0

1 2 0

Example output 1:

-1

Explanation 1:

The ship is not able to move rightwards.

Example input 2:

3 3

5 2 15

M S S

S S S

S S P

S E N N N N N N N N N N N N N

2 1 0

1 2 0

Example input 2:

2

Explanation 1:

The ship can move rightwards.

Example input 3:

5 5

4 1 15

M S S S S

S S S S L

S S S L L

S S S S S

S S S S P

C C C C S S E E C C C C C C C

0 1 4

Example output 2:

8

Explanation 3:

The ship must wait for food.

Time and memory limit: 1.5s / 256 MB

Solution and analysis

Let’s create a matrix that is the same size as the map from the input and let’s tell that each field contains

the minimum number of days from the starting position to reach it or -1 if that field is unreachable for

some number of days. The solution is in the dynamic programming approach where you are updating

that matrix for every day using the matrix from the previous day. If the ship can reach some field until

the previous day and if wind allows reaching some other field that stands as unreachable until the

current day, then we fill that the other field in our matrix with the current day number which from that

day stands as minimum days to reach that field. If the value in the matrix on the port field is still -1 after

K days of updating then we add to queue all food fields that are reachable for K days and that are

working within the minimum number of days to reach them and the maximum number that we can be

on the sea (in this case that is K days). Then we start creating the same matrix again but with food fields

as starting points and considering that processing started from the day on which we replenished our

supplies using a food field. Every food field processing will maybe “unlock” some other food field or will

give solution for the port. We must push unlocked food fields to queue, process them all and find

minimum solution for the port. The complexity of this solution is O(N*M*K*T).

Problem H: 5G Antenna Towers
Premier League and Rising Stars

Author:

Andrej Jakovljević

Vuk Vuković

Implementation and analysis:

Drago Šmitran

Vuk Vuković

Statement:

After making a strategic plan with carriers for the expansion of the mobile network throughout the

country, the government decided to cover rural areas with the last generation of 5G network.

Since 5G antenna towers will be built in the area of mainly private properties, the government needs an

easy way to find information about landowners for each property partially or fully contained in the

planned building area.

The planned building area is represented as a rectangle with width and height sides.

Every 5G antenna tower occupies a circle with a center in (x,y) and radius r.

There is a database of the Geodetic Institute containing information about each property. Each property

is defined with its identification number and polygon represented as an array of (x,y) points in the

counter-clockwise direction.

Your task is to build an IT system which can handle queries of type (x, y, r) in which (x,y) represents a

circle center, while r represents its radius. The IT system should return the total area of the properties

that need to be acquired for the building of a tower so that the government can estimate the price.

Furthermore, the system should return a list of identification numbers of these properties (so that the

owners can be contacted for land acquisition).

A property needs to be acquired if the circle of the antenna tower is intersecting or touching it.

Input:

The first line contains the size of the building area as double values width, height, and an integer n - the

number of properties in the database.

Each of the next n lines contains the description of a single property in the form of an integer number v

(3 < v ≤ 40) - the number of points that define a property, as well as 2v double numbers - the

coordinates (x, y) of each property point. Line i (0 ≤ i < n) contains the information for the property with

id i.

The next line contains an integer q (1 ≤ n * q ≤ 106) - the number of queries.

Each of the next q lines contains double values x, y, r - the coordinates of an antenna circle center (x, y)

and its radius r.

Output:

For each of the q queries, your program should output a line containing the total area of all the

properties that need to be acquired, an integer representing the number of such properties, as well as

the list of ids of these properties (separated by blank characters, arbitrary order).

Example input:

10 10 3

4 2 2 3 2 3 3 2 3

3 3.5 2 4.5 2 4.5 3

4 7 8 7.5 8.5 8 8 7.5 9

5

2 3.5 0.5

3.3 2 0.4

5 2.5 0.5

7.5 8.5 0.5

3 7 0.5

Example output:

1.000000 1 0

1.500000 2 0 1

0.500000 1 1

0.250000 1 2

0.000000 0

Notes:

You can assume that the land not covered with properties (polygons) is under the government's

ownership and therefore does not need to be acquired.

The properties do not intersect with each other. Precision being used for solution checking is 10-4.

Time and memory limit: 3s / 256 MB

Solution and analysis

To solve the task, we have to be able to check if a circle intersects or touches a given polygon (property).

A circle is intersecting a polygon if 1) circle center is inside the polygon or 2) circle intersects or touches

any of the polygon segments.

1) Checking whether a point is inside the polygon can be checked by using the Ray casting

algorithm. The idea is to test how many times a ray, starting from the point and going in any

fixed direction, intersects the edges of the polygon. If the point is on the outside of the polygon

the ray will intersect its edge an even number of times. If the point is on the inside of the

polygon then it will intersect the edge an odd number of times. Note that one must specially

handle cases when the point is on the edge of the polygon or if the ray intersects a polygon

point.

2) Checking whether a circle intersects a segment can be accomplished using basic geometry and

solving a quadratic equation.

1. Calculate a line defined by the segment in the form .

2. Circle with center and radius can be represented using the following equation:

3. If the following system of equations has solution(s) and at least one of the solutions is inside

the limits of a segment, the circle intersects or touches the polygon.

Intersection of circle and polygon can be checked in linear time, with respect to the number of points of

the polygon.

Polygon area can be calculated using the Shoelace formula.

Polygon area can be calculated in linear time, with respect to the number of points of the polygon.

Looking at the constraints, we can conclude that this task can be solved in . Therefore, for

each query, we can iterate through all the properties and check whether the property's polygon is

intersecting the given circle. In the case of intersection, we should calculate the property's area and add

it to the total sum of areas of properties that are intersecting the given circle. Also, the id of the

property should be temporarily stored for further output. Note that we don't have to check if some two

properties intersect when summing these areas, as there is a constraint in the problem which does not

allow the intersection of different polygons.

Problem I: BubbleSquare Tokens
Premier League and Rising Stars

Author:

Bojan Vučković

Implementation and analysis:

Nikola Pešić

Bojan Vučković

Statement:

BubbleSquare social network is celebrating its 13th anniversary and rewarding its members with special

edition BubbleSquare tokens. Every member receives one personal token. Also, two additional tokens

are awarded to each member for every friend they have on the network. Yet, there is a twist - everyone

should end up with a different number of tokens from all their friends. Each member may return one

received token. Also, each pair of friends may agree to each return one or two tokens they have

obtained on behalf of their friendship.

Input:

The first line of input contains two integer numbers n and k – the number of members in the network

and the number of friendships.

Next k lines contain two integer numbers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi) - meaning members ai and bi are

friends.

Output:

The first line of output should specify the number of members who are keeping their personal token.

The second line should contain the space separated list of members who are keeping their personal

token.

Each of the following k lines should contain three space separated numbers, representing friend pairs

and the number of tokens each of them gets on behalf of their friendship.

Constraints:

• 2 ≤ n ≤ 12500

• 1 ≤ k ≤ 1000000

Example input 1:

2 1

1 2

Example output 1:

1

1

1 2 0

Explanation 1:

In the first test case, only the first member will keep its personal token and no tokens will be awarded

for friendship between the first and the second member.

Example input 2:

3 3

1 2

1 3

2 3

Example output 2:

0

1 2 1

1 3 2

2 3 0

Explanation 2:

In the second test case, none of the members will keep their personal tokens. The first member will

receive two tokens (for friendship with the third member), the second member will receive one token

(for friendship with the third member) and the third member will receive three tokens (for friendships

with the first and the second member).

Time and memory limit: 3s / 256 MB

Solution and analysis

Let Xi denote members of the network, where 1 < i ≤ n. At the start, let every member keep their

personal token, and let everyone take one token for every friendship in the network. Let X1, …, Xn be

arbitrary order of members. Starting from i = 2 till i = n, increasing by 1, do the following. Let Y = {Y1, ..,

Ym} be friends of Xi preceding it, that is for every j in [1, …, m], Yj is a friend of Xi from {X1, …, Xi-1}. Now,

let k be the number of members from Y that have taken their personal token and l be number of them

that did not take the token; that is k + l = m. Let p be current sum of tokens of Xi. Since there are m + 1

numbers in interval [p – l, p + k], there is at least one number among them that differs from number of

tokens of each member from Y. Let that be q = p + r, -l ≤ r ≤ k. If r < 0, choose arbitrary r members of Y

that did not take personal token. Now, let each of them take their token and together with Xi return one

token they obtained on behalf of their friendship. If r > 0, choose arbitrary r members of Y that took

personal token. Let each of them return their token and together with Xi each take one more token on

behalf of their friendship. After these operations, all members Xj , with j < i, will remain with the same

number of tokens as before, while Xi will now have different number of tokens from all of its friends

from Y. Continuing this way until Xn we obtain distribution of tokens satisfying the problem’s condition.

Problem J: Wakanda forever
Premier League and Rising Stars

Author:

Aleksandar Lukač

Implementation and analysis:

Aleksandar Lukač

Dušan Živanović

Nikola Pešić

Statement:

In the Kingdom of Wakanda, the 2020 economic crisis has made a great impact on each city and its

surrounding area. The cities have made a plan to build a fast train rail between them to boost the

economy, but because of the insufficient funds, each city can only build a rail with one other city, and

they want to do it together.

The cities which are paired up in the plan will share the cost of building the rail between them, and one

city might need to pay more than the other. Each city knows the estimated cost of building their part of

the rail to every other city. One city cannot have the same cost of building the rail with two different

cities.

If in the plan there are two cities that are not connected, but the cost to create a rail between them is

lower for each of them than the cost of building the rail with their current pairs, then that plan is not

acceptable and the collaboration will not go on. Your task is to create a suitable plan for the cities

(pairing of the cities) or say that such plan does not exist.

Input:

The first line contains one integer N (2 ≤ N ≤ 103) - the number of cities.

Each of the next N lines contains N−1 integers Ai,1,Ai,2,...,Ai,i−1,Ai,i+1,...,Ai,N−1 (1 ≤ Ai,j ≤ 109) - where Ai,j

represents the cost for city i to build the rail to city j. Note that in each line Ai,i is skipped.

Output:

Output should contain N integers O1, O2, …, ON, where Oi represents the city with which city i should

build the rail with, or −1 if it is not possible to find the stable pairing.

Constraints:

• 1 < N < 1001

• 1< Ai,j < 1000000001

Input example 1:

4

35 19 20

76 14 75

23 43 78

14 76 98

Output example 1:

3

4

1

2

Input example 2:

4

2 5 8

7 1 12

4 6 7

8 4 5

Output example 2:

-1

Time and memory limit: 1.5s / 256 MB

Solution and analysis

Let's interpret cities as nodes in a complete digraph (directed graph) and cost for city A to build its half

of the railway with city B is the cost of an edge pointed from A to B.

After that, we should sort the lengths of all nodes pointed from each node and store them (lengths are

no longer important, just the preference list of favored nodes for each node). Now we can look at this

problem as a standard stable matching problem (Stable roommate problem).

An efficient algorithm was proposed by Irving in 1985[1]. The algorithm will determine, for any instance

of the problem, whether a stable matching exists, and if so, will find such a matching. Irving’s algorithm

has O(n2) complexity, provided suitable data structures are used to implement the necessary

manipulation of the preference lists and identification of rotations.

[1] https://www.sciencedirect.com/science/article/abs/pii/0196677485900331?via%3Dihub

https://www.sciencedirect.com/science/article/abs/pii/0196677485900331?via%3Dihub

Problem K: Lookup tables
Premier League and Rising Stars

Author:

Dušan Živanović

Implementation and analysis:

Danilo Tonić

Dušan Živanović

Statement:

John has Q closed intervals of consecutive 2K-bit numbers [li, ri] and one 16-bit value vi for each interval

(0 ≤ i < Q).

John wants to implement a function F that maps 2K-bit numbers to 16-bit numbers in such a way that

inputs from each interval are mapped to that interval's value. In other words:

F(x) = vi, for every 0 ≤ i < Q, and every x∈[li, ri].

The output of F for other inputs is unimportant.

John wants to make his implementation of F fast, so he has decided to use lookup tables. A single 2K-bit

lookup table would be too large to fit in the memory, so instead John plans to use two K-bit lookup

tables, LSBTable and MSBTable. His implementation will look like this:

F(x) = LSBTable[lowKBits(x)] & MSBTable[highKBits(x)]

In other words, it returns the "bitwise and" of results of looking up the K least significant bits in LSBTable

and the K most significant bits in MSBTable.

John needs your help. Given K, Q and Q intervals [li, ri] and values vi, find any two lookup tables which

can implement F or report that such tables do not exist.

Input:

The first line contains two integers K and Q (1 ≤ K ≤ 16, 1 ≤ Q ≤ 2⋅105).

Each of the next Q lines contains three integers li, ri and vi. (0 ≤ li ≤ ri < 22K, 0 ≤ vi < 216).

Output:

On the first line output "possible" (without quotes) if two tables satisfying the conditions exist, or

"impossible" (without quotes) if they do not exist.

If a solution exists, in the next 2⋅2K lines your program should output all values of the two lookup tables

(LSBTable and MSBTable) it found. When there are multiple pairs of tables satisfying the conditions,

your program may output any such pair.

On lines 1 + i output LSBTable[i]. (0 ≤ i < 2K, 0 ≤ LSBTable[i] < 216).

On lines 1 + 2K + i output MSBTable[i]. (0 ≤ i < 2K, 0 ≤ MSBTable[i] < 216).

Example input 1:

1 2

0 2 1

3 3 3

Example output 1:

possible

1

3

1

3

Explanation 1:

In the first sample, tables LSBTable=[1,3] and MSBTable=[1,3] satisfy the conditions:

F[0]=LSBTable[0]&MSBTable[0]=1&1=1,

F[1]=LSBTable[1]&MSBTable[0]=3&1=1,

F[2]=LSBTable[0]&MSBTable[1]=1&3=1,

F[3]=LSBTable[1]&MSBTable[1]=3&3=3.

Example input 2:

2 4

4 5 3

6 7 2

0 3 0

12 13 1

Example output 2:

possible

3

3

2

2

0

3
0

1

Explanation 2:

In the second sample, tables LSBTable = [3,3,2,2] and MSBTable = [0,3,0,1] satisfy all the conditions.

Example input 3:

2 3

4 4 3

5 6 2

12 14 1

Example output 3:

impossible

Explanation 3:

There are no two lookup tables which can satisfy the conditions.

Time and memory limit: 1s / 256 MB

Solution and analysis

We can solve this problem by considering each of the 16-bits of vis and the lookup tables separately. If

we can find a solution for each of the 16 bits, then combining the bits of these 16 pairs of 1-bit lookup

tables will produce a pair of 16-bit lookup tables that solves the 16-bit problem. The rest of the

explanation will deal with 1-bit vis and lookup tables.

The constraints of the problem pose a system of equations involving the two lookup tables. Whenever

the problem requires that F[x] = v it requires that msb[highKbits(x)] & lsb[lowKbits(x)] = v. Equations

where v = 1 are easy to deal with, because we know that both msb[highKbits(x)] and lsb[lowKbits(x)]

need to be 1. Equations where v = 0 are a bit tougher because there is a choice of which term is zero. To

deal with this we set to zero all terms which are not set to one while satisfying equations with v = 1. If

this does not satisfy all equations with v = 0 then the solution does not exist, because setting any

additional term to 0 will invalidate some equation with v = 1.

That gives us a simple algorithm to solve the problem. Start with empty msb and lsb. For each query and

every bit of vi set to 1, go through all x in [li, ri] and set the corresponding bits of msb and lsb to 1. After

that go through all queries and all bits of vi which are zero, and for every x in [li, ri] check that either the

corresponding bit of msb or lsb is 0. If for one query it is not then the solution doesn't exist, otherwise

the msb and lsb you found are a solution.

This algorithm runs in O(16*Q*2^k), which is way too slow. To make our algorithm faster we can do

range operations on the msb and lsb tables. Instead of going through numbers in [l,r] one at a time, we

will split that interval into three pieces: from l to the largest number with the same highKbits as l, from

the smallest number with a larger highKbits than l to the largest number with highKbits less than that of

r, and from the first number with the same highKbits as r to r. All these intervals represent all numbers

with highKbits in [high1, high2] and lowKbits in [low1, low2] for some intervals [high1, high2], [low1,

low2].

If we want to set msb and lsb to 1 for all numbers in such an interval, we need to set msb[high1 to hig2]

to 1 and lsb[low1 to low2] to 1.

If we want to check that for each value in such a range either msb or lsb is zero, then we need to check if

either msb is zero on the whole range from high1 to high2 or lsb is zero on the whole range from low1

to low2.

The operations of setting a subarray to 1 or checking if there is a 1 in a subarray can be done in O(1)

using prefix sums. So, the whole problem can be solved in O(16*Q + 2K).

Problem L: Dušan's Railway
Premier League and Rising Stars

Author:

Lazar Milenković

Implementation and analysis:

Nikola Aleksić

Statement:

As you may already know, Dušan is keen on playing with railway models. He has a big map with the

cities that are connected with railways. His map can be seen as a graph where the vertices are the cities

and the railways connecting them are the edges. So far, the graph corresponding to his map is a tree. As

you already know, a tree is a connected acyclic undirected graph.

Dušan is curious to find out whether his railway can be optimized somehow. He wants to add so-called

shortcuts, which are also the railways connecting pairs of the cities. This shortcut will represent the

railways in the unique path in the tree between the pair of the cities it connects. Since Dušan does not

like repeating the railways, he has also defined good paths in his newly obtained network (notice that

after adding the shortcuts, his graph is no more a tree). He calls a path good if no edge appears more

than once, either as a regular railway edge or as an edge represented by some shortcut (Every shortcut

in a good path has length 1, but uses up all the edges it represents - they cannot appear again in that

path). Having defined good paths, he defines good distance between two cities to be the length of the

shortest good path between them. Finally, the shortcutting diameter of his network is the largest good

distance between any two cities.

Now he is curious to find out whether it is possible to achieve shortcutting diameter k, while adding as

few shortcuts as possible.

Your solution should add no more than 10 ⋅ n shortcuts.

Input:

The first line in the standard input contains an integer n (1 ≤ n ≤ 104), representing the number of the

cities in Dušan's railway map, and an integer k (3 ≤ k ≤ n) representing the shortcutting diameter that he

wants to achieve.

Each of the following n - 1 lines will contain two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi)), meaning that

there is a railway between cities ui and vi.

Output:

The first line of the output should contain a number t representing the number of the shortcuts that

were added.

Each of the following t lines should contain two integers ui and vi, signifying that a shortcut is added

between cities ui and vi.

Example input:

10 3

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

9 10

Example output:

8

3 7

3 5

3 6

3 1

7 9

7 10

7 4

7 5

Explanation:

Notice that adding a shortcut between all cities and city 1 will make a graph theoretic diameter become

2. On the other hand, the paths obtained that way might not be good, since some of the edges might get

duplicated. In the example, adding a shortcut between all cities and city 1 does not create a valid

solution, because for cities 5 and 10 the path that uses shortcuts 5-1 and 1-10 is not valid because it

uses edges 1-2, 2-3, 3-4, 4-5 twice.

Time and memory limit: 1s / 256 MB

Solution and analysis

Consider the following procedure for constructing the bridges. First, arbitrarily root the tree and find the

set of cut vertices, so that their respective subtree sizes are at most . Then, connect with bridges

each pair of cut vertices between each other. There will be bridges added in this step. For each cut

vertex , consider all the subtrees neighboring it. Add a bridge between and every node in all the

neighboring subtrees. It is not hard to see that the number of the bridges here will also be linear. Finally,

recursively repeat the procedure for all the subtrees. There will be at most recursive calls,

each of which contributes bridges, yielding a total of bridges added. This completes

the description of the algorithm.

For the proof of correctness, consider two vertices and , and consider the last recursive calls when

they were in the same subtree. Let be the cut vertex neighboring the subtree of and let be

the cut vertex neighboring the subtree of . By the construction above, there exist bridges between

 and , as well as between and . Finally, since we connected with with an edge, it

follows that there exists a path with at most 3 bridges between and . It is not hard to see that such

path is good. A similar idea can be applied to the case when .

An interesting thing is to notice that one cannot achieve better than bridges, when

. Similarly, there is an algorithm that achieves bridges when and this is also the

best that one can achieve. Finally, a generalized solution that achieves , where is an

Ackerman-type function, is given in [1].

[1] Shay Solomon. Sparse Euclidean Spanners with Tiny Diameter. ACM Transaction on Algorithms 2013.

Problem M: Milutin's Plums
Premier League and Rising Stars

Author:

Lazar Milenković

Implementation and analysis:

Filip Ćosović

Statement:

As you all know, the plum harvesting season is open! Little Milutin had his plums planted in an orchard

that can be represented as an n by m matrix. While he was harvesting, he wrote the heights of all trees

in a matrix of dimensions n by m.

At night, when he has spare time, he likes to perform various statistics on his trees. This time, he is

curious to find out the height of his lowest tree. So far, he has discovered some interesting properties of

his orchard. There is one particular property that he thinks is useful for finding the tree with the smallest

height.

Formally, let L(i) be the leftmost tree with the smallest height in the ith row of his orchard. He knows that

L(i) ≤ L(i+1) for all 1 ≤ i ≤ n−1. Moreover, if he takes a submatrix induced by any subset of rows and any

subset of columns, L(i) ≤ L(i+1) will hold for all 1 ≤ i ≤ n′−1, where n′ is the number of rows in that

submatrix.

Since the season is at its peak and he is short on time, he asks you to help him find the plum tree with

the minimal height.

Input:

This problem is interactive.

The first line of input will contain two integers n and m, representing the number of the rows and the

number of the columns in Milutin's orchard. It is guaranteed that 1 ≤ n, m ≤ 106.

The following lines will contain the answers to your queries.

Output:

Once you have found the minimum value r, you should print ! r to the standard output.

Interaction:

Your code is allowed to query for an entry (i, j) of a matrix (i.e. get the height of the tree which is in

the ith row and jth column). The query should be formatted as ? i j, so that 1 ≤ i ≤ n and 1 ≤ j ≤ m.

You may assume that the entries of the matrix will be integers between 1 and 109.

Your solution should use not more than 4 ⋅ (n + m) queries.

This is an interactive problem. You have to use a flush operation right after printing each line. For

example, in C++ you should use the function fflush(stdout), in Java — System.out.flush(), in

Pascal — flush(output) and in Python — sys.stdout.flush().

Time and memory limit: 1s / 1024 MB

Solution and analysis

The matrices satisfying L(i) ≤ L(i+1) for all 1 ≤ i ≤ n−1 are known as monotone matrices. If the condition

holds for all the submatrices, as defined in the statement, then a matrix is called totally monotone

matrix. We will proceed to explain the O(n + m) procedure for finding the smallest entry in such

matrices.

Let’s consider the case where the number of the columns m is at most the number of the rows n. In that

case, we can recursively find the row minimas for the matrix consisting of every second row, as depicted

below. Notice that the matrix induced by blue rows is also totally monotone, simply by the definition of

total monotonicity.

*

 *

 *

 *

Suppose that the fields denoted by asterisks are the row minimas returned by the recursive call. Using

the monotonicity of the matrix, we know that minimum elements in the row could be found only in

the columns between L(i – 1) and L(i + 1), as defined above by the grey cells. In total, there will be at

most O(n + m) such cells.

Now, consider the case where the number of the columns is bigger than the number of the rows. Using

a clever pruning procedure, we can reduce the number of the columns to at most n. Consider comparing

two cells in the same rows, M(i, j) and M(i, k) .The following two cases may arise. First, M(i, j) ≤ M(i, k),

as shown below. In this case, all the entries from M(i, k) and above are not the candidates for the

leftmost minimum element.

 * *

In the other case, when M(i, j)  M(i, k), we can similarly exclude all the entries starting from M(i, j)

below, as depicted below.

 * *

This way, we can completely eliminate some columns and keep a stack that will contain at most n

columns such that their top entries are eliminated. For an illustration, consider the example below,

where gray entries denote the eliminated elements and the indices on the stack are denoted by

asterisks.

*

 *

 *

 *

 *

This pruning procedure performs at most O(m) queries and yields a matrix that has number of the

columns less than or equal to the number of the rows. The overall algorithm will then take the following

form. First, check if m > n and if so, prune it as above. Perform a recursive call to find the row minima in

every second row. Finally, find the row minima in the remaining rows in linear time. Overall, it is not

hard to see that such recursive algorithm results in O(n + m) running time, and thus the same limit on

the number of matrix queries applies.

The explained procedure is known as SMAWK (pronounced as smoke) algorithm, after properly

permuting authors’ initials [1]. For a good and more detailed explanation, see

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/D-faster-dynprog.pdf.

[1] Alok Aggarwal, Maria M. Klawe, Shloo Moran, Peter Shor, Robert Wilber. Geometric applications of a

matrix-searching algorithm. Algorithmica 1987.

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/D-faster-dynprog.pdf

Problem N: BubbleCup hypothesis
Premier League and Rising Stars

Author:

Đorđe Stupar

Implementation and analysis:

Nikola Aleksić

Nikola Pešić

Statement:

The BubbleCup hypothesis has stood unsolved for 130 years. Whoever proves the hypothesis will be

regarded as one of the greatest mathematicians of our time! Famous mathematician Jerry Mao has

managed to reduce the hypothesis to this problem:

Given a number m, how many polynomials P with coefficients in set {0, 1, 2, 3, 4, 5, 6, 7} have: P(2) = m?

Help Jerry Mao solve the long-standing problem!

Input:

The first line contains a single integer t - number of test cases. In the next line, there are t

numbers, mi - meaning that in case you should solve for number .

Output:

For each test case i, print the answer in separate lines: number of polynomials P as described in

statement so that P(2) = m, modulo 109 + 7.

Constraints:

• 1 ≤ t ≤ 500 000

• 1 ≤ mi ≤ 1018

Example input:

2

2 4

Example output:

2

4

Explanation:

In the first case, for m = 2, polynomials that satisfy the constraint are x and 2.

In the second case, for m = 4, polynomials that satisfy the constraint are x2, x + 2, 2x and 4.

Time and memory limit: 1s / 256 MB

Solution and analysis

Let’s prove that the number of polynomials , as described in the statement, such that is

the same as the number of solutions of equation .

Let and . And let , and

 be , and written in binary, respectively. For each we can determine the -th

binary digit of , and in the following way: let be written in binary, is , is and

 is (This is a bijection).

Now we need to find the number of solutions of . Number of solutions for

equation is (If we fix is predetermined. There are ways to fix .

After rewriting as , and fix x is

predetermined. As proved earlier, number of solutions for this is We can fix to all

numbers between 0 and , so the number of solutions is . Closed form of the sum is

given with the following formula: . Complexity of the solution is .

Alternate derivation

Let and If we rewrite as

we can notice that all 3 parts correspond to 3 numbers written in octal. From this follows that there is a

bijection between number of polynomials with and solutions to .

Similar as in first solution, we use the fact that the number of solutions for is

If we move to the other side, we get the equation . If we some the number of

solutions for different values of we get:

Problem O: Virus
Premier League only

Author:

Svetislav Gajić

Filip Ćosović

Implementation and analysis:

Nikola Pešić

Svetislav Gajić

Filip Ćosović

Statement:

In Bubbleland a group of special programming forces gets a top-secret job to calculate the number of

potentially infected people by a new unknown virus. The state has a population of n people and every

day there is new information about new contacts between people. The job of the special programming

forces is to calculate how many contacts a given person had in the last k days.

The new virus has an incubation period of k days, and after that time people are considered as non-

infectious. Because the new virus is extremely dangerous, the government marks as suspicious

everybody who had direct or indirect contact in the last k days, independently of the order of contacts.

This virus is very strange, and people cannot get durable immunity.

You need to help the special programming forces to calculate the number of suspicious people for a

given person (number of people who had contact with a given person).

There are 3 given inputs at the beginning: n - population, q - number of queries, and k - virus incubation

time in days. Each query is one of three types:

1. (x, y) person xx and person y met that day (x ≠ y).
2. (z) return the number of people in contact with z, counting himself.
3. The end of the current day moves on to the next day.

Input:

The first line of input contains three integers n (1 ≤ n ≤ 105) the number of people in the state, q (1 ≤ q ≤

500 000) number of queries and k (1 ≤ k ≤ 100 000) virus incubation time in days.

Each of the next q lines starts with an integer t (1 ≤ t ≤ 3) the type of the query.

A pair of integers x and y (1 ≤ x, y ≤ n) follows in the query of the first type.

An integer i (1 ≤ i ≤ n) follows in the query of the second type.

Query of third type does not have the following number.

Output:

For the queries of the second type print in a separate line the current number of people in contact with

a given person.
Example input 1:

5 12 1

1 1 2

1 1 3

1 3 4

2 4

2 5

3

2 1

1 1 2

1 3 2

2 1

3

2 1

Example output 1:

4

1

1

3

1

Example input 2:

5 12 2

1 1 2

1 1 3

1 3 4

2 4

2 5

3

2 1

1 1 2

1 3 2

2 1

3

2 1

Example output 2:

4

1

4

4

3

Example input 3:

10 25 2

1 9 3

2 5

1 1 3

1 3 1

2 2

1 8 3

1 5 6

3

1 9 2

1 8 3

2 9

1 3 1

2 5

1 6 4

3

3

2 4

3

1 10 9

1 1 7

3

2 2

3

1 5 6

1 1 4

Example output 3:

1

1

5

2

1

1

Time and memory limit: 5s / 256 MB

Solution and analysis

Since every edge expires after exactly K days, we can solve dynamic connectivity offline.

First, we construct a segment tree over the K time moments. Then, each operation of type “edge e is

available from time L to time R” is inserted in the O(log(n)) segment tree nodes which cover the interval

[L, R]. This step takes O(n*log(n)) time and memory.

Then we traverse the segment tree by using DFS starting from the root. During the traversal we maintain

the connected components of the graph using disjoint sets. When we enter a segment tree node, we

perform a Union operation for each edge which is stored in that node. We also store the successful

Union operations in a stack of operations so that, when we exit a segment tree node, we can undo all

the Union operations performed when entering the node.

Before exiting a leaf node of the segment tree node which corresponds to a query of second type, we

have the answer as the size of set that contains node z.

Problem P: Growing flowers
Premier League only

Author:

Nikola Pešić

Implementation and analysis:

Dušan Živanović

Drago Šmitran

Statement:

Sarah has always been a lover of nature, and a couple of years ago she saved up enough money to travel

the world and explore all the things built by nature over its lifetime on earth. During this time, she

visited some truly special places which were left untouched for centuries, and did amazing things, from

watching icebergs in the freezing weather to scuba-diving in the oceans and admiring the sea life,

residing unseen. These experiences were enhanced with breathtaking views built by mountains over

time and left there for visitors to see for years on end. Over time, all these expeditions took a toll on

Sarah and culminated in her decision to settle down in the suburbs and live a quiet life.

However, as Sarah's love for nature never faded, she started growing flowers in her garden in an

attempt to stay connected with nature. In the beginning, she planted only blue orchids, but over time

she started using different flower types to add variety to her collection of flowers. This collection of

flowers can be represented as an array of N flowers and the ith of them has a type associated with it,

denoted as Ai. Each resident, passing by her collection and limited by the width of his view, can only see

K contiguous flowers at each moment in time. To see the whole collection, the resident will look at the

first K contiguous flowers A1, A2, …, Ak, then shift his view by one flower and look at the next section of K

contiguous flowers A2, A3, …, AK+1 and so on until they scan the whole collection, ending with section AN-

K+1, …, AN-1, AN.

Each resident determines the beautiness of a section of K flowers as the number of distinct flower types

in that section. Furthermore, the beautiness of the whole collection is calculated by summing the

beautiness values of each contiguous section. Formally, beautiness Bi of a section starting at the ith

position is calculated as Bi = distinct(Ai, Ai+1, …, Ai+K-1) and beautiness of the collection B is calculated as B

= B1 + B2 + … + BN-K+1.

In addition, as Sarah wants to keep her collection of flowers have a fresh feel, she can also pick two

points L and R, dispose flowers between those two points and plant new flowers, all of them being the

same type.

You will be given Q queries and each of those queries will be of the following two types:

• You will be given three integers L, R, X describing that Sarah has planted flowers of type X

between positions L and R inclusive. Formally, the collection is changed so that A[i] = X for all I

in range [L..R].

• You will be given integer K, the width of the resident's view and you have to determine the

beautiness value B resident has associated with the collection

For each query of the second type print the result - beautiness B of the collection.

Input:

First line contains two integers N and Q - number of flowers and the number of queries, respectively.

The second line contains N integers A1, A2, ..., AN --- where Ai represents type of the ith flower.

Each of the next Q lines describe queries and start with integer T.

• If T=1, there will be three more integers in the line L, R, X - L and R describing boundaries and X

describing the flower type.

• If T=2, there will be one more integer in the line K - resident's width of view.

Output:

For each query of the second type print the beautiness B of the collection.

Constraints

• 1 ≤ N, Q ≤ 105

• T ∈ {1, 2}

• 1 ≤ Ai, X ≤ 109

• 1 ≤ L, R, K ≤ N

Sample input

5 5

1 2 3 4 5

2 3

1 1 2 5

2 4

1 2 4 5

2 2

Sample output

9

6

4

Explanation

Initially the collection is [1, 2, 3, 4, 5]. In the first query K = 3, we consider sections of three flowers with

the first being [1, 2, 3]. Since beautiness of the section is the number of distinct flower types in that

section, B1=3. Second section is [2, 3, 4] and B2=3. Third section is [3, 4, 5] and B3=3, since the flower

types are all distinct. The beautiness value resident has associated with the collection is B = B1 + B2 + B3 =

3 + 3 + 3 = 9.

After the second query, the collection becomes [5, 5, 3, 4, 5].

For the third query K = 4, so we consider sections of four flowers with the first being [5, 5, 3, 4]. There

are three distinct flower types [5, 3, 4] in this section, so B1 = 3. Second section [5, 3, 4, 5] also has 3

distinct flower types, so B2=3. The beautiness value resident has associated with the collection is B = B1 +

B2 = 3 + 3 = 6

After the fourth query, the collection becomes [5, 5, 5, 5, 5].

For the fifth query K = 2 and in this case all the four sections are same with each of them being [5, 5].

Beautiness of [5, 5] is 1 since there is only one distinct element in this section [5]. Beautiness of the

whole collection is B = B1 + B2 + B3 + B4 = 1 + 1 + 1 + 1 = 4.

Time and memory limit: 4s / 256 MB

Solution and analysis

Assume that all the flower types are unique in all ranges and then subtract the number of the repeated

flower types. Let's first solve the problem when no update queries exist. We will keep a segment tree

where the sum up to the ith element (from position 1 to i) stores how much we need to subtract from

the answer if the resident's width of view is i. Let’s look at groups of same numbers, if a group contains

numbers at positions p1, p2, p3, …, pk for every two adjacent positions (p1, p2; p2, p3; p3, p4; …; pk-1, pk), we

will subtract 1 for the intervals that contain both of these positions. For example, if we have the same

number at index 3 and at index 5 (indices are indexed from 1) and there are 8 elements in the array, we

have one subarray of size 3, two subarrays of size 4, three subarrays of size 5, three subarrays of size 6,

two subarrays of size 7 and one subarray of size 8 that contain both of these positions. For this, in our

segment tree we need to add 1 in the range from 3 to 5, and -1 in the range from 7 to 9.

Now to extend this solution to processing range updates, we can keep ranges of equal numbers and

update a range of same numbers at once. If we have some ranges of numbers that are the same from l

to r, that is the same as adding r-l pairs of adjacent positions. For example, if we have l=2 and r=4 and

n=8, for pair at positions 2 and 3, we will add 1 in the range from 2 to 4 and -1 in the range from 7 to 9.

And for positions 3 and 4, we will add 1 in the range from 2 to 5 and -1 in the range from 6 to 9. The

updates for adding 1 can be grouped together and the updates for adding -1 can be grouped together.

When grouped we can process them with an arithmetic progression segment tree.

When keeping the ranges of equal numbers, we will have an amortized linear number of changes.

The final complexity for the solution is O((q + n) log(n)).

